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Abstract

Next-generation sequencing technologies provide unprecedented power to explore the repertoire

of genes and their alternative splice variants, collectively defining the transcriptome of a species in

great detail. However, assembling the short reads into full-length gene and transcript models

presents significant computational challenges. We review current algorithms for assembling

transcripts and genes from next-generation sequencing reads aligned to a reference genome, and

lay out areas for future improvements.
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1 Introduction

Identifying the genes being expressed by a cell is a critical step in studying a wide range of

biological questions, ranging from what defines a cell’s type to what makes it turn

cancerous. Despite tremendous progress in the dozen years since the human genome was

first published [1], [2], our knowledge of transcriptomes remains incomplete, even for

humans, owing to the high cost of generating the cDNA resources needed to characterize all

genes and their possible isoforms in all cell types. Next-generation sequencing (NGS)

technologies can now produce billions of short reads in a matter of days at a cost of pennies

per megabase. In particular, RNA-seq, a technique in which RNA from a collection of cells

is sampled and then sequenced, has become ubiquitous as a means to survey the cellular

transcriptome [3]. This technology has dramatically expanded our view of the gene

landscape, revealing thousands of novel splice variants and a wealth of previously unknown

long, noncoding RNA genes. Analysis of RNA-seq data requires that the reads themselves

be assembled together to reconstruct the transcripts from which they came, and this

requirement has driven the development of sophisticated new computational methods.
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Assembling reads into transcripts involves identifying overlaps between the reads,

establishing their precise order, and orientation, and then connecting all reads so as to satisfy

these relationships, some of which may be ambiguous. When a high-quality reference

genome sequence is available, as it is for human, mouse, fly, and many other model

organisms, assembly methods that first map the reads to the genome and then use that

mapping to infer transcript structure [4], [5], [6], [7] are by far the most accurate. If the

genome has not been sequenced or is available only as a highly fragmented draft assembly,

de novo assembly methods that detect overlaps based on local similarities among read

sequences must be employed instead. De novo transcriptome assemblers include Trinity [8],

Oases [9], and TransABySS [10]; see Martin and Wang [11] for a review. In this

perspective, we focus on the algorithmic challenges of genome-guided methods.

Perhaps the most fundamental challenge for reconstructing transcripts from NGS data is

fragmentation, an unavoidable consequence of the fact that the reads are much shorter than

the transcripts. A typical RNA-sequencing run today produces 50–200 million short read

(50–250 bp) from a single sample, usually in pairs where the reads come from opposite ends

of a short fragment. These reads must be aligned to the genome, and then pieced together to

create gene and transcript models. Due to repetitive sequences in the genome, many reads

cannot be placed unambiguously, as happens for example in a multigene family where two

or more copies of the gene are nearly identical. Further complicating matters, even when a

read can be aligned precisely, it may originate from any of several transcripts at the same

gene locus. More than 90 percent of human genes have multiple isoforms due to the use of

alternative splicing, alternative transcription initiation, or alternative transcription

termination sites [12], [13], and high levels of alternative splicing have similarly been

reported for many other eukaryotes. The number of transcripts per gene varies widely, with

some genes potentially expressing thousands of isoforms [14]. And while the number of

annotations in gene databases grows each year, there is no agreed-upon estimate yet for the

true number of transcripts encoded in the human genome, let alone a complete catalog of

these variants.

Furthermore, unlike whole-genome sequencing data where read coverage levels along the

genome are relatively stable and statistically well characterized by a Poisson distribution, in

RNA-seq data each gene may have a different expression level, with some genes represented

by thousands of reads and others by just a few. Thus, every gene essentially poses a different

transcript assembly problem, where the goal is to assemble all expressed isoforms, and then

count the reads deriving from each isoform. Read coverage tends to be highly nonuniform

even within a gene, due to biases introduced by the various steps during the library

preparation, sequencing, and mapping procedures [15], [16]. Artifacts introduced by the

alignment algorithm can confound the assembly by creating spurious splice junctions and

exon boundaries, which in turn will lead to additional candidate gene variants. Transcript

assembly programs must also be computationally efficient to process the vast amounts of

data in an RNA-seq experiment. Several genome-guided transcript assembly algorithms

have emerged over the past few years that address all of these challenges, albeit in different

ways. Below, we give an overview of the basic design considerations and algorithmic

techniques they employ, and lay out areas for further improvement.
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2 Overview of The RNA-seq Data Analysis Process

A typical transcriptome analysis consists of several stages (see Fig. 1). In an RNA-seq

experiment, the RNA population in the cell is sampled, then fragmented and converted into

a library of cDNAs, which are (sometimes) amplified and then sequenced at one or both

ends. A single RNA-seq experiment produces tens to hundreds of millions of such reads,

either single-end or paired-end. In stage 2, the reads are mapped to the genome using a fast

alignment program that allows for introns and sequencing errors. Short read mapping

programs such as Tophat [17], [18], MapSplice [19], and STAR [20] use compressed

representations of the genome to quickly locate exact matches, then extend these matches to

longer gapped alignments. More recently, tools such as TrueSight [21] and OLego [22] have

incorporated splice site scoring schemes in an effort to increase the accuracy of some

alignments. In stage 3, read alignments are assembled into gene and transcript models; note

that this type of assembly is algorithmically much simpler than de novo assembly. In the

fourth and last stage, reads are assigned to individual transcripts and genes to quantify their

expression levels, which can later be compared between different samples to identify genes

that are differentially expressed. Reads with multiple matches on the genome or reads that

can be attributed to different isoforms of a same gene, significantly complicate the

quantitation problem. Some transcript assembly programs generate the transcripts and

quantify their abundance in one step, while others separate the two stages. Other approaches

use statistical methods and models of fragment distributions to estimate transcript abundance

levels, which can be done separately from the assembly itself; these methods are not

reviewed here. A useful current listing of computational tools for RNA-seq data analysis can

be found at http://www.rna-seqblog.com, and many of these tools can be run directly using

the Galaxy system [23].

3 Algorithmic Techniques in Transcript Assembly

All current approaches for genome-based transcript assembly start by clustering overlapping

reads from each locus, then building a graph that captures all possible isoforms, and

traversing the graph to resolve individual isoforms (see Fig. 2). Since many such graphs

encode a very large number of theoretically possible splice variants, many of them are

artificial combinations of exons and introns, a crucial step is selecting a subset of transcripts

that are the most likely to be represented in the RNA-seq sample. Next, we describe some of

the representative data structures and transcript assembly and selection techniques.

3.1 Transcript Representation and Enumeration

3.1.1 Overlap graph—An overlap graph compactly represents the order of reads along

putative transcripts based on each read location and its alignment pattern. Each read is a

node in the graph, and two nodes are connected by an edge if the two reads overlap and have

compatible alignments, meaning that they share the same splicing patterns along the overlap

segment. For single-end reads, this condition forms a partial order. However, for paired-end

reads the relationship is not always transitive, leading to reads whose placements are

“uncertain” (see Fig. 3a). Consequently, overlap graph-based programs tend to ignore

“uncertain” reads. To simplify the problem, reads contained within others are also ignored.

The overlap graph has a directed acyclic (DAG) structure that can be traversed to produce

Florea and Salzberg Page 3

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.rna-seqblog.com


paths that cover all qualifying reads, each representing a putative transcript. The

representative program for this class of methods is Cufflinks [5], which was also the first

widely used transcriptome assembler. Cufflinks uses an efficient polynomial time

partitioning algorithm to select the minimum number of transcripts (isoforms) that can

explain all the reads in the graph. It infers both the exons and the full transcripts in one

sweep. Although the minimum number of isoforms is intuitively appealing as an explanation

for the data, the true set of isoforms may sometimes contain more than the minimum

number, in which cases Cufflinks will miss some variants.

3.1.2 Connectivity Graph—A connectivity graph connects any two bases that are next to

each other on the genome or are connected via a spliced read. This is also a directed acyclic

graph, and it too can be traversed to build a set of transcripts. Several transcript assembly

programs use the connectivity graph, but they differ in how they extract exons and

transcripts from the connectivity graph. In Scripture [6], for instance, a connectivity graph

contains all bases in a single chromosome, with edges between any two consecutive

positions in the genome and between the two endpoints of an intron. Scripture then uses a

segmentation approach that takes into account the read coverage levels along the genome to

determine significant paths. More specifically, it scans paths in the connectivity graph

within fixed-size windows and compares the read coverage levels to those derived from a

genome-wide Poisson distribution, retaining those in the top 5 percent significance interval.

Significant paths are then merged into a splice graph (described below), from which

transcripts can be enumerated. Scripture retains all transcripts enumerated from the graph,

and hence it reconstructs the full set of true transcripts it encodes, but it may also produce

many false variants, as well as unfeasible combinations that cannot be fully accounted for by

the input reads (see Fig. 3b). A complementary approach is taken by IsoLasso [7]. IsoLasso

builds a connectivity graph that contains only those genome bases that are covered by read

alignments. It then traverses the graph to build all possible transcripts for a gene, which are

later reduced using a quadratic program, described below.

3.1.3 Splice Graph and Subexon Graph—A splice graph is a DAG in which nodes

represent exons, edges are introns connecting the exons, and transcripts can be enumerated

as maximal paths. These graphs offer an intuitive representation of a gene [24], [25], and

have been previously used for transcript reconstruction from conventional (Sanger) cDNA

data. One common variation is the subexon graph (see Fig. 2), where each exon segment

between consecutive splice sites is a node, and two nodes are connected by edges if they are

adjoined as part of the same exon or are connected by a spliced read. Because RNA-seq

reads are typically too short to cover an entire exon, exons in the graph need to be first

assembled from reads. Scripture, for instance, uses the segmentation procedure described

earlier to determine enriched paths representing groups of exons or exon fragments. Other

programs, such as SLIDE and SpliceGrapher [4], [26], use an existing set of gene

annotations to build a subexon graph, augmenting it with new splicing events from the

RNA-seq data. Both splice graphs and subexon graphs may encode thousands if not millions

of potential splice variants, most of which are spurious combinations of exons and introns.

Therefore, once the graph is constructed, a critical next step is to select a subset of likely

transcripts. A variety of transcript selection strategies have been devised, including greedy
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methods, dynamic programming, linear programming, and LASSO or expectation

maximization (EM) algorithms [4], [7], [27], some of which are described below.

3.2 Transcript Selection via Numerical Optimization

Intuitively, read coverage levels along the genome offer clues into the structure of genes,

with exons represented by peaks and introns represented by valleys, and therefore can guide

algorithms on how to reconstruct the set of transcript and quantify their abundance from

reads. One class of algorithmic approaches has focused on simultaneously selecting a subset

of candidate transcripts and estimating their abundance, using quadratic programming (QP)

or expectation maximization techniques.

3.2.1 Quadratic Programming—Given a set of transcripts generated using one of the

methods described previously, the quadratic programming approach assigns each possible

transcript an (unknown) abundance level, typically expressed as average reads per base, and

finds the combination of transcripts that best explains the observed read coverage levels, by

minimizing the total estimation error. More specifically, starting with a collection of T

transcripts, each with abundance xj, j = 1 … T, the problem of finding a subset of transcripts

that most accurately explain the observed coverage levels along the gene can be formulated

as a quadratic program:

where ri, li are the number of reads aligning to subexon i and the length of i; and aji is an

indicator variable that, in the simplest case, has value 1 iff segment i is present in transcript

j, or otherwise can incorporate more complex information about the probability of reads in

segment i to be sampled from isoform j [4]. The accuracy of the solution depends critically

on the completeness of the initial set of transcripts, hence the set has to be large enough to

encompass nearly all of the true transcripts. However, too large a set of initial candidates

may lead to solutions with a large number of transcripts with values close to 0, which is

biologically implausible. Therefore, a penalty term (λ ∑j xj) is typically added to the

objective function to minimize the number of isoforms in the solution. A representative

program for this class is IsoLasso [7], which simultaneously selects a set of transcripts from

among those enumerated from the connectivity graph, and estimates their abundance levels.

A similar approach is taken by SLIDE [4], which however starts by enumerating transcripts

from the subexon graph constructed from a known set of gene annotations.

3.2.2 Expectation Maximization—The abundance of each isoform can be determined in

principle from the reads assigned to it. With short RNA-seq reads, however, their

assignments can be ambiguous because they might be mapped to multiple genes at different

genomic loci, or to multiple isoforms of a same gene. For this reason, each read is assigned a

probability of belonging to any of the isoforms, a value that depends on the current

abundance estimates for isoforms and, in some formulations, on the read alignment scores

[27]. The EM algorithm, as used by iReckon and Cufflinks, then attempts to determine the
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maximum-likelihood expression levels for all isoforms, by iteratively assigning reads to

isoforms according to the probabilities above, and re-estimating the abundances and the

fitness of the solution. This iterative process can start by assigning reads in equal numbers to

all isoforms of a given gene, or by distributing reads proportionally to the number of

uniquely mapped reads for each isoform, or by other heuristics. The process evaluates the

likelihood of the total set of transcripts and their expression levels at each iteration, and

stops when the change in likelihood is smaller than a predefined cutoff. As with quadratic

programming methods, EM methods may suffer from overfitting. Therefore, programs

incorporate additional penalties and adopt criteria to discourage low-expressed isoforms and

to simplify the system, for instance by splitting the isoforms into smaller independent groups

to speed up calculations, as implemented in iReckon [27]. Unlike with simultaneous

methods, the set of transcripts in Cufflinks is predetermined, and the EM procedure is used

only to estimate the expression levels of the transcripts previously selected by the minimum

partition procedure.

Lastly, all of these approaches can take advantage of the paired-end read information such as

distance and orientation, to connect disparate portions of the genes and reduce the number of

transcripts by eliminating unlikely or inconsistent isoforms. More specifically, all programs

use paired reads in the graph construction stage, and overlap graph-based programs such as

Cufflinks use the paired-read alignments to determine read pair compatibilities and to filter

out “uncertain” pairs (see Fig. 3a). Furthermore, to allocate paired reads to isoforms during

expression level estimations, programs may take into account their compatibility of both the

exon-intron structure and the underlying fragment length distribution (e.g., reads placed too

far apart can be penalized). Lastly, Scripture uses paired-end reads to connect splice graphs

representing portions of the genes, resulting in more contiguous gene structures.

4 Algorithm Design Considerations

In addition to the choice of data structure and algorithmic technique, there are several other

design considerations that programs must take into account (see Table 1). The first is

condensing the very large set of input reads into a relatively small number of transcripts for

each gene. Early approaches that have gained wide popularity, such as Cufflinks and later

IsoLasso, take the parsimonious approach by seeking the minimum number of isoforms that

can explain the input reads. This strategy based on Occam’s Razor is mathematically

appealing, but it may miss some transcripts, for at least two reasons. First, it might be that

the true set of isoforms is larger than the minimal set. And second, the minimal set is not

unique; for example, if the minimal set has four splice variants at a given locus, there could

be more than one set of four variants that explain the data. At the opposite end of the

spectrum, Scripture reports all possible isoforms that can be formed by connecting gene

segments, which can generate very large numbers of isoforms, many of them likely

spurious. Other approaches use a “best fit” strategy, minimizing a mathematically defined

cost function implemented as a quadratic program or expectation maximization system.

Even for this class of methods, however, the large number of candidate transcripts for a gene

can lead to large systems that are difficult to solve and are prone to overfitting. In the end, in

practice most algorithms and annotation pipelines apply filters based on the abundance and

structural properties of the predicted transcripts, such as length, number of exons and
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positioning in the context of other genes, to reduce the number of transcripts to a relative

small subset, typically capturing the major isoforms of the gene. Overall, the wide

variability in the numbers of transcripts produced by all these methods, and the lack of a true

gold standard for human gene annotation, makes it very difficult to determine which

program is more accurate for any given RNA-seq data set.

Read completeness, which refers to how many of the input reads are contained in the

solution, is another important algorithm constraint. Scripture, iReckon, and SpliceGrapher

produce assemblies that explain all the reads, but Cufflinks ignores “uncertain” reads, and as

a result may miss some splice variations (see Fig. 3a). Similarly, transcript feasibility [7]

refers to whether all transcripts produced by the method can be explained by the input reads.

All the isoforms produced by Cufflinks and IsoLasso can be fully reconstructed from the

input reads, whereas some combinations of exons reported by Scripture and SLIDE cannot

be explained by the read data alone (see Fig. 3b). While no method can reconstruct the set of

transcripts with 100 percent accuracy, methods that report only “feasible” transcripts

generally produce a more conservative and more precise set of annotations, albeit at the

expense of occasionally missing variants with low expression levels.

An important practical choice that programs must make is the treatment of intronic reads. A

typical RNA-seq experiment will sample RNA that has not been completely processed and

that therefore still contains introns [28]. Incompletely spliced RNA, which can be extremely

difficult to remove completely in the lab, greatly complicates exon prediction and confounds

the detection of true intron retention events. To distinguish the true mRNA signal from

transcriptional “noise,” some methods largely ignore intronic reads when inferring exons.

Others judge the validity of intronic reads by comparing them to a background distribution

that they estimate either locally (at the intron or gene level) or genome wide (see Table 1).

For instance, Cufflinks compares the level of intronic reads to the coverage of the flanking

exons to determine whether the intronic reads represent true intron retention. iReckon

explicitly considers the unprocessed primary transcript in its list of transcript candidates, and

includes the intron with the strongest read support, if that intron is significantly enriched

over the gene’s background. Scripture uses a segmentation approach to define exons,

including those containing retained introns, by comparing the read coverage against the

genome-wide distribution. Since the number and preponderance of intron retention events in

the human genome and in individual samples are unknown, the performance of any of these

approaches is difficult to assess without extensive experimental validation.

Apart from alternative splicing, alternative polyadenylation and alternative promoter usage

also contribute to transcriptome diversity. More than 50 percent of human genes have

multiple polyadenylation sites that create different 3’ ends of the gene [29]. The recent

ENCODE project identified over 120,000 transcription start sites (for approximately 25,000

genes) and a similar number of 3’ transcription termination sites across 15 cell lines [30].

Most transcript assembly programs can identify events with distinct splicing patterns of the

alternative last or first exons (see Table 1). However, detection of tandem polyadenylation

events, where the gene uses different termination sites within the same terminal exon, or

transcript ends that occur at internal exons, is particularly difficult and not yet systematically

addressed by existing methods.
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5 CONCLUSIONS

Despite the fact that the gene annotation problem has been in computational biologists’ cross

hairs for more than two decades, and despite the recent influx of RNA-seq data, we still

have many challenges to overcome before we can precisely identify and quantify all the

transcripts expressed in a cell. With new RNA-seq surveys emerging, and with different

algorithms producing vastly different accounts of the number and structure of transcripts,

gene annotations are still in flux, even for the intensely studied human genome. New and

more accurate transcript assembly tools are needed to further refine the gene and transcript

models, in view of the expanding biological knowledge about gene structure and variation

and advances in sequencing technologies. Future algorithms may do a better job at

distinguishing transcriptional “noise” from intronic retention, or at removing read mapping

artifacts. Additional work too is needed on methods to more accurately assess the number of

transcripts and the expression level of each one. Some help may come from sequencing

technology: longer reads will make it easier to link exons together in the same isoform, and

eventually the assembly problem may become entirely an alignment problem, if reads can

capture entire transcripts. Over time, publicly available catalogs of carefully validated

splicing variations across human cell types will provide a gold standard that can be used to

measure the effectiveness of transcript assemblers, and at the same time bring us closer to

the goal of fully characterizing the human transcriptome.
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Fig. 1.
Overview of RNA-seq analysis. Reads produced by an RNA-seq experiment are aligned to

the genome, then clustered into a graph structure that is traversed to recover all possible

isoforms at one locus. Lastly, a subset of transcripts is selected and their abundance

quantified from the input reads.
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Fig. 2.
Overview of data structures employed by reference-based transcript assembly. (Top) RNA-

seq molecules are sequenced and reads are aligned to the reference genome. Light-colored

segments are alternatively spliced. Spliced reads define the introns of a gene, whereas exons

are derived from both unspliced and spliced reads. Transcripts are assembled from the reads

using various algorithmic techniques. An overlap graph has a node for each read, and two

reads are connected by an edge iff they are compatible (i.e., they have the same splicing

patterns along the overlap segment). A connectivity graph connects any two consecutive

bases on the chromosome, as well as the endpoints of introns. For simplicity, only spliced

edges are shown, with arrows. A splice graph has exons as nodes, connected by introns

(edges); splice variants can then be read from the graph as maximal paths. As a variation, a

subexon graph connects gene segments if they are adjacent on the genome as part of the

same exon, or are connected via a spliced read.

Florea and Salzberg Page 13

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
Design choices implications for transcript assembly: (a) filtering out “uncertain” reads and

(b) “unfeasible” transcripts. (Adapted from Li et al. [7] with permission from Mary Ann

Liebert, Inc.) In (a), removing any of the three read pairs will cause some introns and splice

variants to be missed. Read pairs (p1 and p2) and (p2 and p3) are compatible, but p1 and p3

could not have come from the same transcript. In (b), four possible combinations of

segments are encoded in the graph: ACD, ACE, BCD, and BCE. Of these, ACE and BCD

are unfeasible, i.e., cannot be assembled from the mapped paired-end reads.
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