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Abstract

Recent theories suggest that reward-based choice reflects competition between value signals in the

ventromedial prefrontal cortex (vmPFC). We tested this idea by recording vmPFC neurons while

macaques performed a gambling task with asynchronous offer presentation. We found that

neuronal activity shows four patterns consistent with selection via mutual inhibition. (1)

Correlated tuning for probability and reward size, suggesting that vmPFC carries an integrated

value signal, (2) anti-correlated tuning curves for the two options, suggesting mutual inhibition,

(3) neurons rapidly come to signal the value of the chosen offer, suggesting the circuit serves to

produce a choice, (4) after regressing out the effects of option values, firing rates still could

predict choice – a choice probability signal. In addition, neurons signaled gamble outcomes,

suggesting that vmPFC contributes to both monitoring and choice processes. These data suggest a

possible mechanism for reward-based choice and endorse the centrality of vmPFC in that process.

INTRODUCTION

In reward-based (i.e. economic) choice, decision-makers select options based on the values

of the outcomes they yield (Padoa-Schioppa, 2011; Rangel et al., 2008). Elucidating the

mechanisms of reward-based choice is a fundamental problem in economics, psychology,

cognitive science, and evolutionary biology (Glimcher, 2003; Rangel et al., 2008;

Rushworth et al., 2011). Recent scholarship suggests that reward value comparisons can be

efficiently implemented by mutual inhibition between representations of the values of the

options (Hunt et al., 2012; Hunt et al., 2013; Jocham et al., 2012). This mutual inhibition

hypothesis is analogous to one closely associated with memory-guided perceptual

comparisons (Hussar and Pasternak, 2012; Machens et al., 2005; Romo et al., 2002; Wang,

2008). This theory is also supported by neuroimaging results consistent with its general

predictions (Basten et al., 2010; Boorman et al., 2009; FitzGerald et al., 2009). However,
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support is greatly limited by the lack of single unit evidence for what is ultimately a

neuronal hypothesis.

We chose to record in area 14 of the ventromedial prefrontal cortex (vmPFC), a central

region of the monkey ventromedial reward network that is analogous to human vmPFC

(Ongur and Price, 2000). We chose vmPFC for five reasons. First, a large number of

neuroimaging and lesion studies have identified the vmPFC as the most likely locus for

reward value comparison (Levy and Glimcher, 2012; Rangel and Clithero, 2012; Rushworth

et al., 2011). Second, lesions to vmPFC are associated with deficits in choices between

similarly valued items, possibly leading to inconsistent choices and shifts in choice strategy

(Camille et al., 2011; Fellows, 2006; Noonan et al., 2010; Walton et al., 2010). Third,

activity in this area correlates with the difference between offered values, suggesting that it

may implement a value comparison process (Boorman et al., 2013; FitzGerald et al., 2009;

Philiastides et al., 2010). Some recent neuroimaging specifically suggests that vmPFC is the

site of a competitive inhibition process that implements reward-based choice. Blood oxygen

levels in vmPFC track the relative value between the chosen option and the next-best

alternative (Boorman et al., 2009; Boorman et al., 2013). Fourth, the vmPFC BOLD signal

shifts from signaling value to signaling value difference in a manner consistent with

competitive inhibition (Hunt et al., 2012). Fifth, relative GABAergic and glutamatergic

concentrations – chemical signatures of inhibition/excitation balance – in vmPFC are

correlated with choice accuracy (Jocham et al., 2012).

Some previous studies have identified correlates of choice processes in a closely related (and

adjacent) structure, the lateral orbitofrontal cortex (lOFC, Padoa-Schioppa, 2009, 2013;

Padoa-Schioppa and Assad, 2006). A key prediction of choice models is that representations

of value in lOFC are stored in a common currency format and compared locally within lOFC

(Padoa-Schioppa, 2011). We chose to record in the vmPFC rather than the lOFC because

some evidence suggests the function of lOFC may be more aptly characterized as credit

assignment, salience, reward history, or flexible control of choice (Feierstein et al., 2006;

Hosokawa et al., 2013; Kennerley et al., 2011; Noonan et al., 2010; O’Neill and Schultz,

2010; Ogawa et al., 2013; Roesch et al., 2006; Schoenbaum et al., 2009; Walton et al., 2010;

Watson and Platt, 2012; Wilson et al., 2014).

We used a modified version of a two-option risky choice task we have used in the past

(Hayden et al., 2011a; Hayden et al., 2010). To temporally dissociate offered value signals

from comparison and selection signals, we presented each of the two offers asynchronously

before allowing overt choice. We found that four patterns that are consistent with the idea

that vmPFC contributes to choice through mutual inhibition of value representations: (1) in

response to the presentation of the first offer, neurons carried a signal that correlated with

both its reward probability and reward size; these signals were positively correlated. This

suggests that vmPFC neurons carry integrated value representations. (2) After presentation

of the second offer, but before choice, neural responses were correlated with values of both

options, but with anti-correlated tuning for the two options, suggesting the two values serve

to mutually inhibit neuronal responding. (3) Neurons rapidly came to signal the value of the

chosen offer but not the unchosen one, suggesting that the processes we are observing

generate a choice. (4) After accounting for option values, variability in firing rates after
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presentation of the offers predicted choices. This fourth finding is analogous to the idea of

choice probability in perceptual decision-making, and provides a strong link between neural

activity in vmPFC and control of choices (Britten et al., 1996; Nienborg and Cumming,

2009). Collectively, these patterns are consistent with the idea that vmPFC stores values and

compares them through a mutual inhibition process (Hunt et al., 2012; Jocham et al., 2012;

Machens et al., 2005; Wang, 2008).

We made an additional observation that fleshes out our understanding of the mechanisms of

reward value comparison in vmPFC. We found that vmPFC neurons tracked gamble

outcomes; these monitoring signals were even stronger than choice-related signals. Unlike

similar signals observed in posterior and dorsal anterior cingulate corteces (PCC and

dACC), these responses did not predict strategic adjustments (Hayden et al., 2011a; Hayden

et al., 2008). We infer that monitoring functions of vmPFC are subject to downstream gating

before influencing behavior (cf. Blanchard and Hayden, 2014).

RESULTS

Preferences patterns for risky gambles

Two monkeys performed a two-option gambling task (see Methods, Fig. 1A and B). Options

differed on two dimensions, probability (0-100% by 0.1% increments) and reward size

(either medium, 165 μL, or large, 240 μL, see Methods). On 12.5% of trials, one option was

a small safe choice (100% chance of 125 μL). Subjects chose the offer with the higher

expected value 85% of the time, suggesting that they generally understood the task and

sought to maximize rewards (n=70350 trials for all preference pattern analyses).

Both monkeys were risk-seeking, meaning that they preferred risky to safe offers with

matched expected values; Figure 2A). We quantified risk preferences by computing points

of subjective equivalence (PSE) between safe offers and gambles (Hayden et al., 2007). The

PSE for large reward (green) gambles (0.39 of the value of the safe offer) was lower than for

medium (blue) gambles (0.52). This difference, and also the fact that both large and medium

reward PSE’s were lower than 1, indicates strong risk-seekingness (cf. McCoy and Platt,

2005). This risk-seeking pattern is consistent with what we and others have observed in

rhesus monkeys (Hayden et al., 2011a; Heilbronner and Hayden, 2013; Monosov and

Hikosaka, 2013; O’Neill and Schultz, 2010; Seo and Lee, 2009; So and Stuphorn, 2012) and

are inconsistent with one recent study showing risk-aversion in rhesus monkeys (Yamada et

al., 2013).

To delineate the factors that influence monkeys’ choices, we implemented a logistic general

linear model with choice (offer 1 vs. offer 2) as a function of 7 regressors: both reward sizes,

both reward probabilities, outcome of previous trial (reward vs. no reward), choice of

previous trial (offer 1 vs. offer 2), and side of offer 1 (left vs. right). Choice was

significantly affected by both reward sizes (offer 1: t=115.89; offer 2: t=-114.77, P<0.0001

in both cases), and both probabilities (offer 1 probability: t=107.31, offer 2 probability:

t=-109.65, P<0.0001 in both cases; Fig. 2B). Choice was not affected by outcome of

previous trial (t=0.73, P=0.47), by chosen offer order on previous trial (t=1.37, P=0.17), or

side of offer 1 (t=1.60, P=0.11). Moreover, previous outcomes did not affect choice coded
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by side (left offer vs. right offer; X2=1.17, P=0.28), same order offer as previous trial

(X2=1.03, P=0.31), same side offer as previous trial (X2=0.91, P=0.34), or previous offer

expected value (high vs. low; X2=1.70, P=0.19). The lack of an observed trial-to-trial

dependence is inconsistent with an earlier study using a similar task in we observed a weak

trial-to-trial dependence (Hayden et al., 2011a). We suspect the difference in preferences is

due to the small changes in task design between the earlier studies and the present one.

Single unit responses

We recorded the activity of 156 vmPFC neurons while monkeys performed our gambling

task (106 neurons in monkey B, 50 neurons in monkey H). To maximize our sensitivity to

potentially weak neuronal signals, we deliberately recorded large numbers of trials for each

cell (mean 1036 trials per neuron, minimum 500 trials). Neurons were localized to area 14

(see electronic supplementary material for precise demarcation, Fig. S1). For purposes of

analysis, we defined three task epochs. Epochs 1, 2, and 3 began with the presentation of

offer 1, the presentation of offer 2, and the reward, respectively, and each lasted 500 ms. We

found that 46.15% of neurons (n=72/156) showed some sensitivity to task events, as

indicated by individual cell ANOVAs of firing rate against epoch for the three task epochs

and a 500 ms inter-trial epoch (P<0.0001, binomial test). All proportions presented below

refer to all neurons, not just the ones that produced a significant response modulation.

Neurons represent value in a common currency-like format

Monkeys clearly attend to both probability and reward size in evaluating offers (Fig. 2B).

We found that the firing rates of a small but significant number of neurons significantly

encoded reward size (n=18/156, P<0.05, linear regression) and probability (n=12/156) in

epoch 1. These proportions are both greater than would be expected by chance (binomial

test, α=0.05, P=0.0003 for reward size and P=0.025 for probability.) Safe offers, which

occurred on 12.5% of trials, introduce a negative correlation between reward size and

probability, so trials with safe offers are excluded from this analysis. Therefore, reward size

and probability were strictly uncorrelated in the design of the task.

Do single neurons represent both reward size and probability, or do neurons specialize for

one or the other component variable, as lOFC neurons appear to (O’Neill and Schultz, 2010;

Roesch et al., 2006)? To address this question, we compared regression coefficients for

firing rate vs. probability to coefficients from the regression of firing rate vs. reward size (in

epoch 1). We found a significant positive correlation between these coefficients (r=0.25,

P=0.0023; Fig. 3A). We confirmed that this correlation is significant using a bootstrap (and

thus, non-parametric) correlation test (P=0.0155; see Methods). These effects were even

stronger using a 500 ms epoch beginning 100 ms later, suggesting that value responses in

vmPFC may be sluggish (r=0.34, P<0.0001). These data are consistent with the idea that

vmPFC represents value in a common currency-like format, and suggest the possibility that

these values may be compared here as well (Montague and Berns, 2002; Padoa-Schioppa,

2011).

If we assume that neurons represent offer values, defined here as an offer’s reward size

multiplied by its probability, we can assess the frequency of tuning for offer value in our
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sample. We find that responses of 10.9% (n=17/156, P=0.0009, binomial test) of neurons

correlated with the value of offer 1 in epoch 1. This percentage rose to 16.66% (n=26/156)

using a 500 ms epoch that begins 100 ms later. Of these 26 neurons, 34.62% (n=9/26)

showed positive tuning for offer value in epoch 1 while the remainder showed negative

tuning (this bias towards negative tuning is significant; binomial test, P<0.0001). See

Supplemental Information for neuronal response characteristics separated by offer 1 reward

size.

Neurons code offer values simultaneously and antagonistically

Figure 3B and C show value-related responses of an example neuron. Its firing rates signal

the value of offer 1 in epoch 1 (r=0.18, P<0.0001, linear regression) and in epoch 2,

although the direction is reversed and the effect is weaker for the second epoch (r=-0.09,

P=0.0025). This neuron also showed tuning for offer 2 in epoch 2 (r=0.21, P<0.0001),

meaning it coded both values simultaneously. Population data are shown in Fig. 3D. In

epoch 2, 10.26% of neurons (n=16/156, this proportion is significant by a binomial test

P=0.0022,) encoded offer value 1 and 15.38% of neurons (n=24/156, P<0.0001) encoded

offer value 2. The number of neurons signaling offer value 2 rose to 16.03% (n=25/156,

P<0.0001. binomial test) 100 ms later.

The observation that tuning direction for offer values 1 and 2 are anticorrelated in our

example neuron suggests that these values interact competitively to influence its firing when

information about both options is available (Fig. 4A). At the population level, regression

coefficients for offer value 1 in epoch 2 are anti-correlated with coefficients for offer value 2

in the same epoch (r=−0.218, P=0.006, Fig. 4B). We confirmed the significance of this

correlation using a bootstrap correlation test (P=0.0061; see Methods). To match the criteria

used above, these analyses do not include trials with safe options; however, if we repeat the

analysis but include the safe offer trials as well, we still find an anti-correlation (r=−0.162,

P=0.044).

We have shown that neurons encode the value of offer 1 in epochs 1 and 2. But does vmPFC

use a similar format to represent offers 1 and 2 as they initially appear, or does it use

opposed ones? Our results support the former idea. We found a significant positive

correlation between the regression coefficients for offer 1 in epoch 1 and those for offer 2 in

epoch 2 (r=0.453, P<0.0001; see Fig. 4C). We confirmed the significance of this correlation

using a bootstrap correlation test (P<0.0001; see Methods). Thus, whatever effect a larger

offer 1 had on firing rates during epoch 1 in each neuron – whether excitatory or suppressive

– the same effect was observed for those neurons to a larger offer 2 in epoch 2. This

indicates that vmPFC neurons code the currently offered option in a common framework (cf.

Lim et al., 2011).

Neurons signal chosen offer value, not unchosen offer value

Neurons in vmPFC represent the values of both offers simultaneously, but do they

participate in selecting a preferred one? If they participate in choice, we may expect to see

the gradual formation of a representation of the value of the chosen option and the

dissolution of the value of the unchosen one. Figure 4D shows the proportion of neurons
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whose activity is significantly modulated by chosen offer values (blue) and by unchosen

offer values (red). (Note that this figure shows a peak during epoch 3 that is even larger than

the peak in epoch 2; this is because the value of the chosen offer was highly correlated with

the value of the outcome, and outcome coding was stronger than other effects, see below.)

We found weak coding for the value of the chosen option even during epoch 1 (7.69% of

cells, n=12/156, binomial test, this proportion just barely achieves statistical significance,

P=0.05). This activity is not “pre-cognitive” because monkeys can sometimes guess their

chosen option if the first offer is good enough. We found coding of chosen value during the

first 200 ms of the presentation of offer 2 (11.54% of cells, n=18/156, P=0.0003). We used

this short epoch (200 ms instead of the 500 ms we used in other analyses) because it allows

us to more closely inspect the time course of this signal. By a 200 ms epoch 200 ms later

into the second epoch, chosen value coding was observed in 17.31% of cells (n=27/156,

P<0.0001). In contrast, 7.69% of cells encoded the value of the unchosen offer during the

first epoch (binomial test; again, this proportion is right at the significance threshold,

P=0.05) and only 6.4% (n=10/156) of neurons encoded unchosen values at the beginning of

the second epoch and 200 ms into it (not significant, P=0.159). These results indicate that

neurons in vmPFC preferentially encode the value of the chosen offer, and do so rapidly

once both offers appear.

Variability in firing rates predicts choice

To explore the connection between neural activity in vmPFC and offer selection, we made a

calculation similar to choice probability (Britten et al., 1996). For each neuron, we regressed

firing rate in epoch 1 onto offer value, probability, and reward size. We then examined

whether the sign of the residuals from this regression predicted choice (offer 1 vs. offer 2)

for each neuron. This analysis provides a measure of residual variance in firing rate after

accounting for the three factors that influence value. We found a significant correlation

between residual firing rate variance and choice in 11.53% (n=18/156, P=0.0003, binomial

test) of cells, which is more than is expected by chance. Similarly, residual variation in

firing rate in response to offer value 2 during epoch 2 predicted choice in 12.18% of cells

(n=19/156, P=0.0001, binomial test). This link between firing rates and choice is consistent

with the fourth key prediction of the competitive inhibition hypothesis.

Neurons in vmPFC strongly encode outcome values

Outcome-monitoring signals were particularly strong during our task. Figure 5A shows

responses of an example neuron with trials separated by gamble outcome. This neuron

signaled received reward size in epoch 3 (r=−0.11, P=0.0047, linear regression). We

observed a significant relationship between firing rate and gamble outcome in 18.59% of

cells (n=29/156; P<0.0001, binomial test; Fig. 5B). In an epoch beginning 400 ms later, this

proportion rose to 25% of cells (n=39/156; P<0.0001). Of these cells, 56.41% (n=22/39)

showed negative tuning (no significant bias, P=0.55, binomial test). Interestingly, outcome

coding persisted across the delay between trials. Specifically, previous trial outcome was a

major influence on firing rates during both epochs 1 (14.74% of cells, n=23/156, P<0.0001,

binomial test) and 2 (16.03% of cells, n=25/156, P<0.0001; Fig. 5C).
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Is the vmPFC coding format for outcome related to its coding format for offer values? We

next compared tuning profiles for outcome and offer value 1 (we found that coding in

epochs 1 and 2 is shared, see above). Specifically, we asked whether, in our population of

cells, regression coefficients for offer value 1 in epoch 1 are correlated with regression

coefficients for received reward size in epoch 3. We found a significant correlation between

regression coefficients for offer value 1 in epoch 1 and regression coefficients for received

reward size in epoch 3 (r=0.22, P=0.0054). This suggests that vmPFC neurons use a single

coding scheme to represent offer values and represent outcomes.

Do vmPFC neurons signal outcomes or the difference between expected outcome and

received outcome? To investigate this issue, we performed a stepwise regression to

determine whether post-outcome responses in vmPFC are related to reward size (first) and to

the probability of that reward (second). Specifically, we performed a stepwise regression on

average neural firing rates in epoch 3 onto gamble outcome and the probability that the

chosen option would yield a reward. To deal with the problem that many neurons have

negative tuning, we flipped the values for neurons that had negative individual tuning

profiles.

We first examined all risky trials together (medium reward size, blue/red bars, and high

reward size, green/red bars). With these trials, gamble outcome regressor met the criteria for

model inclusion (β=0.1058, p<0.0001), but the reward probability of the chosen option did

not (β=−0.0034, p=0.8077). We then repeated these analyses for the medium and high

reward size trials together, in case there was an interaction with reward size. We find similar

results when examining only trials where a blue option was chosen (gamble outcome:

β=0.1224, p<0.0001; chosen option reward probability: β=0.0188, p=0.4093) and when

examining only trials where a green option was chosen (gamble outcome: β=0.1211,

p<0.0001; chosen option reward probability: β=0.0244, p=0.1602). This indicates that

vmPFC neurons signal pure outcome, not the deviation of outcomes from expectation.

DISCUSSION

We recorded responses of neurons in area 14 of vmPFC while rhesus monkeys performed a

gambling task with staggered presentation of offers. We observed four major effects. First,
neurons carried an abstract value signal that depended on both probability and reward size.

Second, when information about both options was available, responses were

antagonistically modulated by values of the two options. Third, neurons rapidly came to

signal the value of the chosen offer but not the unchosen one. Fourth, after accounting for

option values, residual variability in firing rates around the time of choice predicted choice.

While we do not show directly that vmPFC neurons engage in mutual inhibition, these

results are consistent with the theory that value comparison reflects a competition for control

of vmPFC responses through mutual inhibition (Cisek, 2012; Hunt et al., 2012; Jocham et

al., 2012; Wang, 2008).

Although reward correlates are observed in many brain areas, we suspect that vmPFC may

be specialized for reward value comparisons. A great deal of neuroimaging evidence

supports this hypothesis (Levy and Glimcher, 2012; Rushworth et al., 2011). The lateral
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orbitofrontal cortex (lOFC) does not appear to integrate different dimensions of risky

choices into a single value, suggesting that it may be pre-decisional. Moreover, value-coding

neurons there do not show choice probability correlates, suggesting they may be only

peripherally involved in choice (Padoa-Schioppa, 2013). Finally, human and monkey lesions

in lOFC do not produce choice deficits but learning deficits. Indeed, recent comprehensive

theories of lOFC function suggest that it carries multiple different values useful for

controlling choice, but does not itself implement choice (Rushworth et al., 2011; Wilson et

al., 2014). In a similar vein, while the anterior cingulate cortex codes reward values, its

signals appear to be post-decisional (Blanchard and Hayden, 2014; Cai and Padoa-Schioppa,

2012). These findings are consistent with the idea that dACC is a controller but not a decider

(Shenhav et al., 2013). Finally, the lateral intraparietal cortex (LIP) is associated with choice

processes, but it does not appear to represent values (Leathers and Olson, 2012) and does not

show value comparison signals (Louie et al., 2011). These results suggest that choice occurs

elsewhere; neuroimaging and anatomical evidence suggest that vmPFC is the site; our

results endorse this idea.

Nonetheless, these results do not suggest that vmPFC is the only area in which value

comparison occurs. Value comparison may, in some circumstances, occur in the lOFC, the

ventral striatum (Cai et al., 2011), and the premotor cortex (Hunt et al., 2013). Indeed, it is

not certain that value comparison occurs exclusively in one region instead of multiple

regions acting in parallel (Cisek, 2012). However, in any of these cases, our results provide

the first direct evidence for a specific mechanism by which value comparison occurs.

One limitation of the present study is that monkeys were overtrained on the task, which may

change choice behavior or how reward information is represented in the brain. This is a

limitation of all single-unit behavioral studies in monkeys. It is possible that large scale

recording grids combined with innovative recording techniques might help with this

problem in the future.

Four recent reports describe response properties of vmPFC neurons. Bouret and Richmond

demonstrated that neurons in area 14 preferentially encode internal sources of reward

information, such as satiety, over external sources of reward information, such as visually

offered rewards, or gamble offers (Bouret and Richmond, 2010). While we did not compare

vmPFC to lOFC as they did, our results demonstrate that strong and significant external

value and comparison signals can be readily observed in area 14 with a sufficiently

demanding task. Monosov and Hikosaka showed that in a Pavlovian task, separate

populations of area 14 neurons preferentially encode reward size and probability (Monosov

and Hikosaka, 2012). Our recordings suggest that at least some neurons in area 14 can

integrate probability and reward size into a combined signal. One possible explanation for

the difference the two sets of findings, unlike Monosov and Hikosaka, we used a choice

task, which demands active consideration of both aspects of reward. Watson and Platt found

that social information is prioritized in vmPFC (and in lOFC), even relative to its influence

on preferences (Watson and Platt, 2012). In combination with our findings, these results

suggest that social influences may be treated as qualitatively different than other factors that

influence value (but see Smith et al., 2010). Rich and Wallis found generally weak and

inconsistent responses in area 14 (which they call mOFC), suggesting that their task, which
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did not require value comparison, did not strongly selectively drive these neurons (Rich and

Wallis, 2014).

Relative to our recordings in a similar task in another medial prefrontal structure, dACC, we

find that neuronal responses in vmPFC are weaker and have less consistent tuning directions

(Hayden and Platt, 2010). This difference may reflect that we have not yet identified the

ideal driving stimuli for vmPFC. Another possibility is a bias in recorded cell types. Unlike

dACC, vmPFC lacks a prominent layer 5 (Vogt, 2009), which means that our sample of

neurons may contain fewer output cells and more interneurons (Hayden et al., 2011a;

Hayden et al., 2011b). These responses may also simply be representative of vmPFC. The

vmPFC responses we report here are generally small and long-lasting, making them

reminiscent of those observed in PCC (Hayden et al., 2008; Hayden et al., 2009;

Heilbronner et al., 2011). Intriguingly, PCC shows strong anatomical and functional

connections with vmPFC (Andrews-Hanna et al., 2010; Vogt and Pandya, 1987), and like it,

is part of the poorly understood default mode network (Raichle and Gusnard, 2005).

Integrating our understanding of default mode function with choice is an important goal for

future studies.

Finally, we were surprised that the largest and most robust responses in vmPFC were

outcome monitoring signals. Outcome monitoring signals are common in both ACC and

PCC, and in these areas, they predict adjustments in behavior that follow specific outcomes

(Hayden et al., 2011a; Hayden et al., 2008). In contrast, the outcome signals we observed in

vmPFC did not predict changes in behavior. This lack of an effect suggests that value

monitoring signals in vmPFC may be somewhat automatic (that is, not contingent on the

outcome having a specific effect), and are subject to a downstream gating process (that is,

they do no affect behavior directly). Thus, these signals may be considered monitoring

signals while those in cingulate may be more helpfully classified as control signals. Given

the anatomy, we suspect that vmPFC may be one input for the control signals generated by

cingulate cortex. Interestingly, a recent report suggests that monitoring signals that do not

affect behavior are also observed on the dorsolateral surface of the prefrontal cortex

(Genovesio et al., 2014).

In contrast to perceptual decision-making, very little work has looked at the mechanisms of

reward-based decisions. Kacelnik and colleagues (2011) have investigated this problem and

have specifically compared two hypotheses: (1) the tug-of-war hypothesis, in which there is

a mutual inhibition between value representations and (2) the race-to-threshold hypothesis,

in which value representations compete, non-interactively, and the first one to achieve some

threshold is chosen. While Kacelnik’s work provides strong support for the race-to-threshold

model, ours would seem to support the tug-of-war hypothesis. In particular, the finding that

vmPFC neurons gradually come to represent the value of the chosen option at the expense of

the unchosen would appear difficult to reconcile with a pure race-to-threshold model.

Instead, our finding of value difference signals is consistent with a version of the race-to-

threshold model that involves competition between racing value representations.

Nonetheless, these results do not endorse a single model of reward-based choice.

Unfortunately, by presenting options asynchronously, we were unable to measure reaction
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times in our task, meaning a direct comparison is impossible. It seems that further work will

be needed to more fully compare these two hypotheses.

One of the most interesting aspects of these post-reward signals is that vmPFC appeared to

use a similar coding framework to encode outcomes and offers. One speculative explanation

for this finding is that offer signals are essentially reactivations of reward representations

(Kahnt et al., 2011). Monkeys might consider offers by predicting the activation they would

generate if they received that reward. If so, then choice may work through competition

between mental simulations of outcomes. While this hypothesis is speculative, it is at least

tenuously supported by the existence of direct anatomical projections to vmPFC from

hippocampus and amygdala, structures associated with associative learning (Carmichael and

Price, 1995), and by evidence of co-occurring outcome and value signals throughout the

medial frontal lobe (Luk and Wallis, 2009). Future studies will be needed to more fully test

this hypothesis.

EXPERIMENTAL PROCEDURES

Surgical procedures

All animal procedures were approved by the University Committee on Animal Resources at

the University of Rochester and were designed and conducted in compliance with the Public

Health Service’s Guide for the Care and Use of Animals. Two male rhesus macaques

(Macaca mulatta) served as subjects. A small prosthesis for holding the head was used.

Animals were habituated to laboratory conditions and then trained to perform oculomotor

tasks for liquid reward. A Cilux recording chamber (Crist Instruments) was placed over the

ventromedial prefrontal cortex. Position was verified by magnetic resonance imaging with

the aid of a Brainsight system (Rogue Research Inc.). Animals received appropriate

analgesics and antibiotics after all procedures. Throughout both behavioral and

physiological recording sessions, the chamber was kept sterile with regular antibiotic washes

and sealed with sterile caps.

Recording site

We approached vmPFC through a standard recording grid (Crist Instruments). We defined

vmPFC as the coronal planes situated between 29 and 44 mm rostral to the interaural plane,

the horizontal planes situated between 0 and 9 mm from the ventral surface of vmPFC, and

the sagittal planes between 0 and 8 mm from the medial wall (Fig. 1C and Fig. S1). These

coordinates correspond to area 14 (Ongur and Price, 2000). Our recordings were made from

a central region within this zone. We confirmed recording location before each recording

session using our Brainsight system with structural magnetic resonance images taken before

the experiment. Neuroimaging was performed at the Rochester Center for Brain Imaging, on

a Siemens 3T MAGNETOM Trio Tim using 0.5 mm voxels. We confirmed recording

locations by listening for characteristic sounds of white and gray matter during recording,

which in all cases matched the loci indicated by the Brainsight system with an error of <1

mm in the horizontal plane and <2 mm in the z-direction.
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Electrophysiological techniques

Single electrodes (Frederick Haer & Co., impedance range 0.8 to 4Ω) were lowered using a

microdrive (NAN Instruments) until waveforms of between 1 and 3 neuron(s) were isolated.

Individual action potentials were isolated on a Plexon system (Plexon). Neurons were

selected for study solely on the basis of the quality of isolation; we never pre-selected based

on task-related response properties. All collected neurons for which we managed to obtain at

least 500 trials were analyzed; no neurons that surpassed our isolation criteria were excluded

from analysis.

Eye-tracking and reward delivery

Eye position was sampled at 1000 Hz by an infrared eye-monitoring camera system (SR

Research). Stimuli were controlled by a computer running Matlab (Mathworks) with

Psychtoolbox (Brainard, 1997) and Eyelink Toolbox (Cornelissen et al., 2002). Visual

stimuli were colored rectangles on a computer monitor placed 57 cm from the animal and

centered on its eyes (Fig. 1A). A standard solenoid valve controlled the duration of juice

delivery. The relationship between solenoid open time and juice volume was established and

confirmed before, during, and after recording.

Behavioral task

Monkeys performed a two-option gambling task (Fig. 1A-B). The task was similar to one

we have used previously (Hayden et al., 2011a; Hayden et al., 2010) with two major

differences: (1) offers were presented asynchronously and (2) two different winning reward

sizes (medium and large) offers were available, depending on the gamble.

Two offers were presented on each trial. Each offer was represented by a rectangle 300

pixels tall and 80 pixels wide (11.35° of visual angle tall and 4.08° of visual angle wide).

Options offered either a gamble or a safe (100% probability) bet for liquid reward. Gamble

offers were defined by two parameters, reward size and probability. Each gamble rectangle

was divided into two portions, one red and the other either blue or green. The size of the

blue or green portions signified the probability of winning a medium (mean 165 μL) or large

reward (mean 240 μL), respectively. These probabilities were drawn from a uniform

distribution between 0 and 100%. The rest of the bar was colored red; the size of the red

portion indicated the probability of no reward. Safe offers were entirely gray, and always

carried a 100% probability of a small reward (125 μL).

On each trial, one offer appeared on the left side of the screen and the other appeared on the

right. Offers were separated from the fixation point by 550 pixels (27.53° of visual angle).

The side of the first and second offer (left and right) were randomized by trial. Each offer

appeared for 400 ms and was followed by a 600 ms blank period. Monkeys were free to

fixate upon the offers when they appeared (and in our casual observations almost always did

so). After the offers were presented separately, a central fixation spot appeared and the

monkey fixated on it for 100 ms. Following this, both offers appeared simultaneously and

the animal indicated its choice by shifting gaze to its preferred offer and maintaining

fixation on it for 200 ms. Failure to maintain gaze for 200 ms did not lead to the end of the

trial, but instead returned the monkey to a choice state; thus monkeys were free to change
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their mind if they did so within 200 ms (although in our observations, they seldom did so).

Following a successful 200-ms fixation, the gamble was immediately resolved and reward

delivered. Trials that took more than 7 seconds were considered inattentive trials and were

not included in analysis (this removed <1% of trials). Outcomes that yielded rewards were

accompanied by a visual cue: a white circle in the center of the chosen offer (see Fig. 1A).

All trials were followed by an 800-ms inter-trial interval with a blank screen.

Probabilities were drawn from uniform distributions with a resolution only limited by the

size of the computer screen’s pixels. This let us present hundreds of unique gambles. Offer

types were selected at random with a 43.75% probability of blue gamble, a 43.75%

probability of green gambles, and 12.5% probability of safe offers.

Statistical methods

PSTHs were constructed by aligning spike rasters to the presentation of the first offer and

averaging firing rates across multiple trials. Firing rates were calculated in 20-ms bins, but

were generally analyzed in longer (500 ms) epochs. For display, PSTHs were smoothed

using a 200-ms running boxcar.

Some statistical tests of neuron activity were only appropriate when applied to single

neurons one-at-a-time because of variations in response properties across the population. In

such cases, a binomial test was used to determine if a significant portion of single neurons

reached significance on their own, thereby allowing conclusions about the neural population

as a whole.

Throughout data collection, rewards for gray, blue, and green offers were associated with a

few different sets of reward sizes due in part to the use of two different juicer solenoids.

Despite this, reward sizes maintained the same sizes relative to each other. To account for

overall variations in reward size, our analyses consistently make use of an ordinal coding of

reward size, with gray, blue, and green offers offering 1, 2, and 3 juice units, respectively.

To test if certain signals tend to occur within the same neurons, we used the following

bootstrap method. For each neuron, we calculated regression coefficients for those signals.

We then calculated the correlation between those two sets of regression coefficients. We

repeated this process 10,000 times using randomly reshuffled firing rates. We used the

percentile at which the original data correlation coefficient fell in this distribution of

randomized correlation coefficients as the p-value for a single-tailed test, which we

multiplied by two to calculate the p-value for a two-tailed test. For example, if the

correlation coefficient from the original data was greater than 90% of the randomized

correlation coefficients, we considered the tuning significant at P=0.05.

We performed one analysis to investigate how variance in firing related to variance in

preference. First, we determined the best-fit curve for firing rate in epoch 1 as a function of

the expected value of the first offer. In one analysis we fit to a line; in a second one we fit to

the best-fit second-order polynomial. (We tested third and fourth order polynomials as well

and found similar results; data not reported.) We next classified each trial based on whether

the observed firing rate in epoch 1 was greater or lower than a value predicted by the best-fit
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functions. Finally, we correlated choice (coded as 1 or 0, indicating choice of offer 1 or 2)

with whether firing rate was higher or lower than expected, on a trial-by-trial basis. We

tested for a significant relation within each individual neuron using Pearson’s correlation

test of these two sets of variables with trial as the unit of analysis. We then repeated this

analysis for epoch 2.

In this paper we made a deliberate decision to use expected values rather than subjective

values in correlating neural activity with value. The primary reason for this is that it’s the

most agnostic approach one can take with regard to the causes of risk-seeking. While it may

be standard practice to transform values into utilities, behavioral economics has

demonstrated that utility curve shape cannot explain risk attitudes in general (Kahneman and

Tversky, 2000; Rabin, 2000). Our research has demonstrated that these arguments apply to

monkeys as well (Hayden et al., 2010; Heilbronner and Hayden, 2013; Strait and Hayden,

2013). Moreover, using expected values bypasses the troubling question of what timescale

to use to determine value functions, a decision that can have great consequences on data

interpretation (Sugrue et al., 2005). Fortunately, the question of whether we use expected

value or subjective value is unlikely to have more than a marginal effect on our numbers,

and no effect on the qualitative findings we report. This is most directly demonstrated by the

fact that our findings all reproduce if we restrict our analyses to high and medium value

gambles alone. Because these gambles have only two outcomes, utility transformations have

no effect. In any case, because the mapping function between firing rate and value is non-

linear and quite noisy, the subtle changes causes by using subjective value are almost certain

to produce effects that are around the level of statistical noise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Task and recording location. A. Timeline of gambling task. Two options were presented,

each offering a gamble for water reward. Each gamble was represented by a rectangle, some

proportion of which was grey, blue, or green, signifying a small, medium, or large reward

respectively. The size of this colored region indicated the probability that choosing that offer

would yield the corresponding reward. Offers appeared in sequence, offset by one second

and in a random order for 400 ms each. Then, after fixation, both offers reappeared during a

decision phase. Outcomes that yielded rewards were accompanied by a visual cue: a white

circle in the center of the chosen offer. B. Example offers. Probabilities for blue and green

offers were drawn from a uniform distribution between 0 and 100% by 1% increments. Gray

(safe) offers were always associated with a 100% chance for reward. C. Magnetic resonance

image of monkey B. Recordings were made in area 14 of vmPFC (highlighted in green).
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Figure 2.
Behavioral results. A. Likelihood of choosing risky offer instead of a safe one as a function

of risky offer expected value. Data are separated for high value (green) and medium value

(blue) gambles. Fits are made with a lowess smoothing function. Expected values are

calculated in units of ordinal expected value (see Methods). B. Effects of seven trial

variables on choice (offer 1 vs. 2) using a logistic GLM. Tested variables are: (1) the reward

and (2) probability for offer 1, the (3) reward and (4) probability for offer 2, (5) the outcome

of the most recent trial (win or choose safe = 1, loss = 0), (6) the previous choice (first = 1,

second = 0), and (7) the order of presentation of offers (left first = 1, right first = 0). Error

bars in all cases are smaller than the border of the bar, and are therefore not shown.
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Figure 3.
Coding of offer values in vmPFC neurons. A. Scatter plot of coefficients for tuning for

probability (x-axis) and reward size (y-axis). Coefficients are significantly correlated,

suggesting a common currency coding scheme. Each point corresponds to one neuron in our

sample. Data are shown with a least-squares regression line and confidence intervals in red.

B. Average responses (+/− 1 SE in firing rate) of an example neuron to task events,

separated by binned expected value of offer 1. This neuron showed tuning for offer value 1

during epoch 1 (shaded region). C. Responses of the same neuron (+/− 1 SE in firing rate),

separated by binned expected value of offer 2. The neuron showed tuning for offer value 2

during epoch 2 (shaded region). D. Plot of proportion of neurons (%) with responses

significantly tuned to offer value 1 (blue) and offer value 2 (red), 500 ms sliding boxcar.

Horizontal line indicates 5%, significance bar at alpha=0.05.
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Figure 4.
vmPFC neuron activity related to comparison and choice. A. Average responses of example

neuron (+/− 1 SE in firing rate), separated by binned expected value difference between

offer values (offer value 1 minus offer value 2). During epoch 2, this neuron showed higher

firing rates when offer value 2 was greater than offer value 1 (red), and lower firing when

offer value 1 was greater than offer value 2 (blue). B. Scatter plot of coefficients for tuning

for offer value 1 during epoch 2 (x-axis) and for offer value 2 during epoch 2 (y-axis).

Least-squares regression line and confidence intervals are shown in red. C. Scatter plot of

coefficients for tuning for offer value 1 during epoch 1 (x-axis) and for offer value 2 during

epoch 2 (y-axis). Least-squares regression line and confidence intervals are shown in red. D.
Plot of proportion of neurons that show a significant correlation between neural activity and

the value of the chosen (blue) and unchosen (red) offers (500 ms sliding boxcar).
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Figure 5.
Coding of outcomes in vmPFC neurons. A. Average responses (+/− 1 SE in firing rate) of an

example neuron to task events, separated by outcome. This neuron showed a positive tuning

for outcome during epoch 3 (shaded area). B. Plot of proportion of neurons significantly

tuned for outcomes as a function of time in task using a 500 ms sliding window. C. Same

data as in B, but sorted for outcome on previous trial instead of on current trial. Influence of

outcome on previous trial was strong and lasted throughout the current trial.
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