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Abstract

To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide

automatic anatomy recognition (AAR) becomes essential. With the goal of building a general

AAR system that is not tied to any specific organ system, body region, or image modality, this

paper presents an AAR methodology for localizing and delineating all major organs in different

body regions based on fuzzy modeling ideas and a tight integration of fuzzy models with an

Iterative Relative Fuzzy Connectedness (IRFC) delineation algorithm. The methodology consists

of five main steps: (a) gathering image data for both building models and testing the AAR

algorithms from patient image sets existing in our health system; (b) formulating precise

definitions of each body region and organ and delineating them following these definitions; (c)

building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and

locating organs in given images by employing the hierarchical models; and (e) delineating the

organs following the hierarchy. In Step (c), we explicitly encode object size and positional

relationships into the hierarchy and subsequently exploit this information in object recognition in

Step (d) and delineation in Step (e). Modality-independent and dependent aspects are carefully
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separated in model encoding. At the model building stage, a learning process is carried out for

rehearsing an optimal threshold-based object recognition method. The recognition process in Step

(d) starts from large, well-defined objects and proceeds down the hierarchy in a global to local

manner. A fuzzy model-based version of the IRFC algorithm is created by naturally integrating the

fuzzy model constraints into the delineation algorithm.

The AAR system is tested on three body regions – thorax (on CT), abdomen (on CT and MRI),

and neck (on MRI and CT) – involving a total of over 35 organs and 130 data sets (the total used

for model building and testing). The training and testing data sets are divided into equal size in all

cases except for the neck. Overall the AAR method achieves a mean accuracy of about 2 voxels in

localizing non-sparse blob-like objects and most sparse tubular objects. The delineation accuracy

in terms of mean false positive and negative volume fractions is 2% and 8%, respectively, for non-

sparse objects, and 5% and 15%, respectively, for sparse objects. The two object groups achieve

mean boundary distance relative to ground truth of 0.9 and 1.5 voxels, respectively. Some sparse

objects – venous system (in the thorax on CT), inferior vena cava (in the abdomen on CT), and

mandible and naso-pharynx (in neck on MRI, but not on CT) – pose challenges at all levels,

leading to poor recognition and/or delineation results. The AAR method fares quite favorably

when compared with methods from the recent literature for liver, kidneys, and spleen on CT

images. We conclude that separation of modality-independent from dependent aspects,

organization of objects in a hierarchy, encoding of object relationship information explicitly into

the hierarchy, optimal threshold-based recognition learning, and fuzzy model-based IRFC are

effective concepts which allowed us to demonstrate the feasibility of a general AAR system that

works in different body regions on a variety of organs and on different modalities.
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1. INTRODUCTION

1.1 Background

Since the birth of radiology in 1895, the emphasis in clinical radiology has been on human

visualization of internal structures. Although various tomographic image modalities evolved

subsequently for deriving anatomic, functional, and molecular information about internal

structures, the emphasis on human visualization continued and the practice of clinical

radiology has remained mostly descriptive and subjective. Quantification is amply employed

in radiology in clinical research. However, in clinical radiological practice, this is not

common. In the qualitative mode, quantifiable and/or subtle image information is

underutilized, interpretations remain subjective, and subtle changes at early disease stages or

due to therapeutic intervention may be underestimated or missed (Torigian et al. 2007). It is

generally believed now that if Quantitative Radiology (QR) can be brought to routine

clinical practice, numerous advances can be made including: improved sensitivity,

specificity, accuracy, and precision of early disease diagnosis; more objective and

standardized response assessment of disease to treatment; improved understanding of what
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is “normal”; increased ease of disease measurement and reporting; and discovery of new

disease biomarkers.

To make QR a reality, we believe that computerized Automatic Anatomy Recognition (AAR)

during radiological image interpretation becomes essential. To facilitate AAR, and hence

eventually QR, and focusing only on the anatomic aspects of shape, geography, and

architecture of organs, while keeping the larger goal in mind, we present in this paper a

novel fuzzy strategy for building body-wide anatomic models, and for utilizing these models

for automatically recognizing and delineating body-wide anatomy in given patient images.

1.2 Related work

Image segmentation – the process of recognizing and delineating objects in images – has a

rich literature spanning over five decades. From the perspective of the direction in which

this field is headed, it is useful to classify the methods developed to date into three groups:

(a) Purely image-based, or pI approaches (Beucher 1992, Boykov et al. 2001, Kass et al.

1987, Malladi et al. 1995, Mumford and Shah 1989, Udupa and Samarasekera 1996),

wherein segmentation decisions are made based entirely on information derived from the

given image; (b) Object model-based, or OM approaches (Ashburner and Friston 2009,

Cootes et al. 2001, Heimann and Meinzer 2009, Pizer et al. 2003, Shattuck et al. 2008, Staib

and Duncan 1992,), wherein known object shape and image appearance information over a

population are first codified in a model and then utilized on a given image to bring

constraints into the segmentation process; (c) Hybrid approaches (Chen and Bagci 2011,

Hansegrad et al. 2007, Horsfield et al. 2007, Liu and Udupa 2009, Rousson and Paragios

2008, Shen et al. 2011, van der Lijn et al. 2012, Zhou and Bai 2007), wherein the delineation

strengths of the pI methods are combined synergistically with the global object recognition

capabilities of the OM strategies. pI algorithms predate other approaches, and they still

continue to seek new frontiers. OM approaches go by various names such as statistical

models and probabilistic atlases, and continue to be pursued aggressively. Particularly, atlas-

based techniques have gained popularity in brain MR image segmentation and analysis

(Cabezas et al. 2011). Hybrid approaches hold much promise for AAR and QR and are

currently very actively investigated. Since our focus in this paper is the body torso, and since

the nature of the images and of the objects and challenges encountered are different for these

regions (from, for example, for the brain), our review below will focus mainly on methods

developed for the torso.

Since the simultaneous consideration of multiple objects offers better constraints, in recent

years, multi-object strategies have been studied under all three groups of approaches to

improve segmentation. Under pI approaches, the strategy sets up a competition among

objects for delineating their regions/boundaries (e.g.; Bogovic et al. 2013, Saha and Udupa

2001). In OM approaches, the strategy allows including inter-relationships among objects in

the model to influence their localization and delineation (e.g.; Cerrolaza et al. 2012, Duta

and Sonka 1998). In hybrid approaches, multi-object strategies try to strengthen

segmentability by incorporating relevant information in model building, object recognition/

localization, and subsequently also in delineation via the pI counterpart of the synergistic

approach (Chen et al. 2012, Chu et al. 2013, Linguraru et al. 2012, Lu et al. 2012, Meyer et
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al. 2011, Okada et al. 2008, Shen et al. 2011, Tsechpenakis and Chatzis 2011). Motivated by

applications (such as semantic navigation) where the focus is just locating objects in image

volumes and not delineating them, a separate group of methods has been emerging

(Criminisi et al. 2013, Zhou et al. 2005, Zhou et al. 2013). They use features characterizing

the presence of whole organs or specific anatomic aspects of organs (such as the femoral

neck and head) combined with machine learning techniques to locate objects in image

volumes by finding the size, location, and orientation of rectangular bounding boxes that just

enclose the anatomic entities.

The state-of-the-art in image segmentation seems to leave several gaps that hinder the

development of a body-wide AAR system. First, while multi-object strategies have clearly

shown superior performance for all approaches, in all published works they have been

confined to only a few (three to five) selected objects and have not taken into account an

entire body region or all of its major organs, the only exception being (Baiker et al. 2010),

whose focus was whole body segmentation of mice on micro CT images. Second, and as a

result, there is no demonstrated single method that operates on different body regions, on all

major organs in each body region, and at different modalities. Third, all reported modeling

strategies have a statistical framework, either as statistical models of shape and intensity

pattern of appearance of objects in the image or as atlases, and none taking a fuzzy

approach, except (Zhou and Rajapakse 2005) and our previous work (Miranda et al. 2008,

Miranda et al. 2009), both in the brain only. Fuzzy set concepts have been used extensively

otherwise in image processing and 3D visualization. Fuzzy modeling approaches allow

bringing anatomic information in an all-digital form into graph theoretic frameworks

designed for object recognition and delineation, obviating the need for (continuous)

assumptions made otherwise in statistical approaches about shapes, random variables, their

independence, functional form of density distributions, etc. They also allow capturing

information about uncertainties at the patient level (e.g., blur, partial volume effects) and

population level, and codification of this information within the model. Fourth, objects have

complex inter-relationships in terms of their geographic layout. Learning this information

over a population and encoding this explicitly in an object hierarchy can facilitate object

localization considerably. Although several multi-object methods have accounted for this

relationship indirectly, its direct incorporation into modeling, object recognition, and

delineation in an anatomic hierarchical order has not been attempted. The AAR approach

presented in this paper is designed to help overcome these gaps.

1.3 Outline of paper and approach

We start off by describing a novel hierarchical fuzzy modeling framework for codifying

prior population information about object assemblies in Section 2. In Section 3, we delineate

methods for automatically recognizing objects in given patient images that employ these

hierarchical models. We present fuzzy-connectedness-based object delineation techniques in

Section 4 that employ the modified fuzzy models found at recognition as constraints in

delineation. We demonstrate and evaluate the applicability of the AAR methodology in

Section 5 on three different body regions – thorax, abdomen, and neck - on different

modalities. A comparison to methods from recent literature, the lessons learned, our

conclusions, and the challenges we encountered are examined in Section 6. The AAR
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approach has five unique characteristics: (1) direct hierarchical codification of the prior

object geographic and geometric relationship information; (2) a “what-you-see-is-what-you-

get” entirely digital fuzzy modeling strategy; (3) hierarchical object recognition strategies

that go from a broader gestalt to narrower specifics in locating objects; (4) demonstrated

generality of applicability of the same approach to different organ systems, body regions,

and modalities; and (5) adaptability of the system to different applications.

The AAR approach is graphically summarized in Figure 1. The body is divided into body

regions B1, …, BK. Models are built for each specific body region  ∈ {B1, …, BK} and

each population group G (whatever way G is defined). Throughout this paper,  and G are

treated as variables, and each body region is considered separately and independent of other

body regions. In Section 6, we will discuss briefly the issue of linking body regions for

considering the whole body for the AAR schema. The three main blocks in Figure 1

correspond to model building, object recognition, and object delineation. A fuzzy model

FM(Ol) is built separately for each of the L objects Ol in , and these models are integrated

into a hierarchy chosen for . The output of the first step is a fuzzy anatomic model

FAM( , G) of the body region  for group G. This model is utilized in recognizing objects

in a given patient image I of  belonging to G in the second step. The hierarchical order is

followed in this process. The output of this step is the set of transformed fuzzy models

FMT(Ol) corresponding to the state when the objects are recognized in I. These modified

models and the image I form the input to the third step of object delineation which also

follows the hierarchical order. The final output is in the form of delineated objects O1
D, …,

OL
D, where each Ol

D is a binary image.

Very preliminary versions of some of the contents of this paper appeared in SPIE Medical

Imaging conference proceedings in 2011, 2012, and 2013. Those papers did not contain the

full details presented here on model building. More importantly, based on earlier experience

many improvements are reported in this paper, none of which appeared earlier. Further, the

recognition and delineation methods presented here have many novel elements. As a result,

the entire AAR approach has changed substantially. Additional differences include

comprehensive evaluation and the demonstration of the AAR scheme on multiple body

regions.

2. BUILDING FUZZY MODEL OF BODY REGION 

Notation—We will use the following notation throughout this paper. G: the population

group under consideration. : the body region of focus. O1, …, OL : L objects or organs of 

(such as esophagus, pericardium, etc. for  = Thorax). I = {I1, …, IN}: the set of images of

 for G from N subjects which are used for model building and for training the parameters

of the AAR algorithms. In,l: the binary image representing the true delineation of object Ol

in the image In ∈ I. Ib = {In,l : 1 ≤ n ≤ N & 1 ≤ l ≤ L} is the set of all binary images used for

model building. FM(Ol): Fuzzy model of object Ol derived from the set of all binary images

Ib
l = {In,l : 1 ≤ n ≤ N} of Ol. FAM( ,G): Fuzzy anatomy model of the whole object

assembly in  with its hierarchy. FMT(Ol): Transformed (adjusted) FM(Ol) corresponding to

the state when Ol is recognized in a given patient image I. Ol
D: Delineation of Ol in I

represented as a binary image. Any image I will be represented by a pair I = (C, f), where C
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denotes a 3D rectangular array of voxels, and f is a mapping f: C → I where I is a set of

integers1 denoting the image intensities. For any binary image J = (C, fb), we will use

PAS(J) to denote the principal axes system derived from the set X of voxels of J with value

1. PAS(J) is described by the geometric center of X and the eigenvectors derived from X via

principal component analysis.

Our description in the rest of Section 2 will follow the schematic of Figure 1. Table 1 in

Appendix lists brief anatomic definitions of all objects from all three body regions

considered in this paper.

2.1 Gathering image database for  and G

This retrospective study was conducted following approval from the Institutional Review

Board at the Hospital of the University of Pennsylvania along with a Health Insurance

Portability and Accountability Act (HIPAA). The basic premise of our AAR approach is that

the fuzzy anatomic model of  for G should reflect near normal anatomy. Consequently, the

cleanest way of gathering image data for model building will be to prospectively acquire

image data in a well-defined manner from subjects in group G who are certified to be near

normal. Such an approach would be expensive and may involve radiation exposure (in case

of CT imaging). For developing the concepts and testing the feasibility of AAR, therefore,

we have taken a vastly less expensive and simpler approach of utilizing existing human

subject image data sets. For the thoracic and abdominal body regions, a board certified

radiologist (co-author DAT) selected all image data sets (CT) from our health system patient

image database in such a manner that the images appeared radiologically normal for the

body region considered, with exception of minimal incidental focal abnormalities such as

cysts, small pulmonary nodules, etc. Images with severe motion/streak artifacts or other

limitations were excluded from consideration. For these two body regions, the population

groups considered have an age range of approximately 50–60 years. This age range was

selected to maximize our chances of finding sufficient number of near normal images. For

the neck body region, we have utilized image data (MRI) previously acquired from normal

subjects for the study of pediatric upper airway disorders. G in this instance is female

subjects in the age range of 7–18. Our modeling schema is such that the population variables

can be defined at any desired “resolution” in the future and the model can then be updated

when more data are added.

Some organs in  are better defined in a slice plane different from the slice plane used for

imaging others. For example, for  = neck, the best plane for slice imaging is sagittal for

tongue and soft palate, while for the upper airways and other surrounding organs, axial

slices are preferred. Our AAR methodology automatically handles organs defined in images

with different orientations of digitization by representing image and object data in a fixed

and common scanner coordinate system of reference.

1Except when we deal with fuzzy sets, which are also expressed as images for computational purposes, in which case I is a set of real
numbers.
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2.2 Delineating objects of  in the images in the database

There are two aspects to this task – forming an operational definition of both  and the

organs in  in terms of their precise anatomic extent, and then delineating the objects

following the definition. These considerations are important for building consistent and

reliable models, and, in the future, if similar efforts and results for body-wide models are to

be combined, exchanged, and standardized.

Definition of body regions and objects—Each body region is defined consistently in

terms of a starting and ending anatomic location. For axial slice data, these locations are

determined in terms of transverse slice positions. For example, for  = Thorax, the body

region is considered to extend axially from 5 mm below the base of the lungs to 15 mm

above the apex of the lungs. Arms are not included in this study. For other orientations of

slice planes in slice imaging, the same definitions are applied but translated into other

planes. Similarly, each object included in  is defined precisely irrespective of whether it is

open-ended - because it straddles body regions (for example, esophagus) - or closed and

contained within  but is contiguous with other objects (for example, liver with hepatic

portal vein, common hepatic artery, and bile duct). For each body region, we have created a

document that delineates its precise definition and the specification of the components and

boundaries of its objects. This document is used as a reference by all involved in generating

data sets for model building. These definitions are summarized in the table included in

Appendix.

Each body region is carved out manually, following its definition, from the data sets

gathered for it. In our notation, I denotes the resulting set of such standard images that

precisely cover  as per definition. We assume the scanner coordinate system, SCS, as a

common reference system with respect to which all coordinates will be expressed.

Delineation of objects—The objects of  are delineated in the images of I, adhering to

their definition, by a combination of methods including live wire, iterative live wire (Souza

and Udupa 2006), thresholding, and manual painting, tracing and correction. To minimize

human labor and to maximize precision and accuracy, algorithms in terms of a proper

combination of these methods and the order in which objects are delineated are devised first,

all of which operate under human supervision and interaction. For illustration, in the

abdomen, to delineate subcutaneous adipose tissues (SAT) as an object, the skin outer

boundary ASkn (as an object) is first segmented by using the iterative live wire method.

Iterative live wire is a version of live wire in which once the object is segmented in one

slice, the user commands next slice, the live wire then operates automatically in the next

slice, and the process is continued until automatic tracing fails when the user resorts to

interactive live wire again, and so on. Subsequently, the interface between the subcutaneous

and visceral adipose compartments is delineated by using also the iterative live wire method.

Once these two object boundaries are delineated, the subcutaneous and visceral components

are delineated automatically by using thresholding and morphological operations. On MR

images, the same approach works if background non-uniformity correction and intensity

standardization (Nyul and Udupa 1999) are applied first to the images in I. If direct

delineation by manual tracing or even by using live wire is employed, the process would
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become complicated (because of the complex shape of the adipose and visceral

compartments) and much more labor intensive.

Because of the enormity of this task, a number of trainees, some with medical and

biomedical but some with engineering background, were involved in accomplishing this

task. All tracings were examined for accuracy by several checks – 3D surface renditions of

objects from each subject in various object combinations as well as a slice-by-slice

verification of the delineations overlaid on the gray images for all images. The set of binary

images generated in this step for all objects is denoted by Ib = {In,l : 1 ≤ n ≤ N & 1 ≤ l ≤ L}.

The set of binary images generated just for object Ol is denoted by Ib
l = {In,l : 1 ≤ n ≤ N}.

2.3 Constructing fuzzy object models

The Fuzzy Anatomy Model FAM( , G) of any body region  for group G is defined to be a

quintuple:

(1)

Briefly, the meaning of the five elements of FAM( , G) is as follows. H is a hierarchy,

represented as a tree, of the objects in ; see Figure 2. M is a collection of fuzzy models, one

model per object in . ρ describes the parent-to-offspring relationship in H over G. λ is a set

of scale factor ranges indicating the size variation of each object Ol over G. η represents a

set of measurements pertaining to the objects in . A detailed description of these elements

and the manner in which FAM( , G) is derived from I and Ib are presented below.

Hierarchy H—This element describes the way the objects of  are considered ordered

anatomically as a tree structure. This order currently specifies the inclusion of an offspring

object Ok anatomically in the parent object Ol.2 While each  has its own hierarchy,  itself

forms the offspring of a root denoting the whole body, WB, as shown in Figure 2. The

hierarchies devised for the three body regions studied are shown in Figure 2. An object that

is exactly a union of its offspring will be referred to as a composite object. Examples: RS,

Fat, Kd, etc. Note that none of the skin objects is a composite object since the full body

region inside the skin is not fully accounted for by the union of the offspring objects. The

notion of composite objects is useful in combining objects of similar characteristics at a

higher level of the hierarchy, which may make object recognition (and delineation) more

effective. Thin tubular objects will be called sparse objects: TB, E, AS, VS, AIA, IVC,

Phrx, NP, and OP. Compact, blob-like objects will be referred to as non-sparse: TSkn, RS,

IMS, LPS, RPS, PC, ASkn, Fat, SAT, VAT, Lvr, Spl, Kd, RKd, LKd, NSkn, FP, NSTs,

Tnsl, Tng, SP, Ad, RT, and LT. Some objects are a hybrid between these two types,

consisting of both features. Examples: TSk, Ask, ASTs, A&B, and Mnd.

Fuzzy model set M—The second element M in the description of FAM( , G) represents

a set of fuzzy models, M = {FM(Ol): 1 ≤ l ≤ L}, where FM(Ol) is expressed as a fuzzy

subset of a reference set Ωl ⊂ Z3 defined in the SCS; that is, FM(Ol) = (Ωl, μl). The

2However, as discussed in Section 6, other arrangements are possible for H.
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membership function μl(v) defines the degree of membership of voxel v ∈ Ωl in the model of

object Ol. Ideally, for any l, 1 ≤ l ≤ L, we would like the different samples of Ol in different

subjects to differ by a transformation An,l involving translation, rotation, and isotropic

scaling. Our idea behind the concept of the fuzzy model of an object is to codify the spatial

variations in form from this ideal that may exist among the N samples of the object as a

spatial fuzzy set, while also retaining the spatial relationship among objects in the

hierarchical order.

Given the training set of binary images Ib
l of object Ol, we determine An,l, μl, and FM(Ol)

for Ol as follows. We permit only such alignment operations, mimicking An,l, among the

members of Ib
l, that are executed precisely without involving search and that avoid the

uncertainties of local optima associated with optimization-based full-fledged registration

schemas. In this spirit, we handle the translation, rotation, and scaling components of An,l in

the following manner.

For translation and rotation, for each manifestation In,l of Ol in Ib
l, we determine, within

SCS, the principal axes system PAS(In,l) of Ol. Subsequently, all samples are aligned to the

mean center and principal axes3. The scale factor estimation is based on a linear size

estimate (in mms) of each sample of Ol and resizing all samples to the mean size. The size of

Ol in In,l is determined from , where e1, e2, and e3 are the eigenvalues

corresponding to the principal components of Ol in In,l.4

After aligning the members of Ib
l via An,l, a distance transform is applied to each

transformed member for performing shape-based interpolation (Raya and Udupa 1990,

Maurer et al. 2003), the distances are averaged over all members, and converted through a

sigmoid function to obtain the membership values μl and subsequently FM(Ol).

Parent-to-offspring relationship ρ—This element describes the parent-to-offspring

spatial relationship in H for all objects in . Since each object Ok has a unique parent, this

relationship is represented by ρ = {ρk : 1 ≤ k ≤ L}5. For each Ok, ρk codifies the mean

position as well as the orientation relationship between Ok and its parent over N samples.

We adopt the convention that ρ1 denotes the relationship of the root object of  relative to

SCS. Let GCn,l be the geometric center of Ol in In,l. Then, the mean positional relationship

Pl,k between Ol and Ok is considered to be the mean of the vectors in the set {GCn,k −

GCn,l : 1≤ n ≤ N}. To find the mean orientation Ql,k, we make use of the eigenvectors E1
n,l,

E2
n,l, and E3

n,l of the shape of Ol in In,l estimated over all N samples. We take an average of

each Ei
n,l over N samples for i = 1, 2, 3. However, for some n and i, Ei

n,l may be more than

90 degrees from the average, in which case we replace Ei
n,l by −Ei

n,l while simultaneously

replacing Ej
n,l by −Ej

n,l for some j different from i so as to keep the system right-handed.

We then recalculate the average, and repeat until the eigenvector is within 90 degrees of the

3In our empirical investigations of the AAR system, we have studied the construction and use of fuzzy models both with and without
orientation alignment. See Section 5.
4Among several size measures we tested, such as , largest eigenvalue, the length of the diagonal of the enclosing box etc.,
this measure turned out to be the most robust.
5It also encodes WB to body region relationships, although this is not taken into account in our current implementation. See comments
in Section 6.
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average. Then, starting from either the first or the third eigenvector, whichever has the

eigenvalue farther from the second, we normalize and make the others orthogonal to it. Ql,k

is then taken to be the transformation that aligns the eigenvector system of the parent Ol

with that mean orientation. This method guarantees a robust orientation estimate despite the

180-degrees switching property of eigenvectors.

In order not to corrupt ρk by the differences in size among subjects, before estimating ρk, the

parent Ol and all offspring objects Ok of Ol are scaled with respect to the center GCn,l of Ol

as per a common scale factor, estimated for Ol via the method described above. The

reasoning behind this scaling strategy is that an object and its entire offspring should be

scaled similarly to retain their positional relationship information correctly.

Scale range λ—The fourth element λ of FAM( , G) is a set of scale factor ranges, λ =

{λl = [λb
l, λh

l] : 1 ≤ l ≤ L}, indicating the size variation of each object Ol over its family Ib
l.

This information is used in recognizing Ol in a given image to limit the search space for its

pose; see Section 3.

Measurements η—This element represents a set of measurements pertaining to the object

assembly in . Its purpose is to provide a database of normative measurements for future

use. We are not exploring this aspect in this paper. However, this element also serves to

improve our knowledge about object relationships (in form, geographical layout etc. in )

and thence in constructing better hierarchies for improving AAR. We will discuss this

briefly in Section 5.

There are several parameters related to object recognition (Section 3) and delineation

(Section 4), some of which are image modality specific. (They are identified by T1
m and Thl

in Section 3 and σψO, mϕO, mϕB, σϕO, and σϕB, in Section 4.) The values of these parameters

are also considered part of the description of η. The definition of these parameters and the

process of their estimation are described at relevant places in Sections 3 and 4 for ease of

reading, although their actual estimation is done at the model building stage.

The fuzzy anatomy model FAM( , G) output by the model building process is used in

performing AAR on any image I of  for group G as described in Sections 3 and 4.

3. RECOGNIZING OBJECTS

We think of the process of what is usually referred to as “segmenting an object in an image”

as consisting of two related phenomena – object recognition (or localization) and object

delineation. Recognition is a high-level process of determining the whereabouts of the object

in the image. Given this information for the object, its delineation is the meticulous low-

level act of precisely indicating the space occupied by the object in the image. The design of

the entire AAR methodology is influenced by this conceptual division. We believe that

without achieving acceptably accurate recognition it is impossible to obtain good delineation

accuracy. The hierarchical concept of organizing the objects for AAR evolved from an

understanding of the difficulty involved in automatic object recognition. Once good

recognition accuracy is achieved, several avenues for locally confined accurate delineation

become available, as we discuss in Section 4. The goal of recognition in AAR is to output
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the pose (translation, rotation, and scaling) of FM(Ol), or equivalently the pose-adjusted

fuzzy model FMT(Ol), for each Ol in a given test image I of  such that FMT(Ol) matches

the information about Ol present in I optimally.

The recognition process proceeds hierarchically as outlined in the procedure AAR-R

presented below. In Step R1, the root object is recognized first by calling algorithm R-

ROOT6. Then, proceeding down the tree represented by H in the breadth-first order, other

objects are recognized by calling algorithm R-OBJECT. The latter makes essential use of the

parent fuzzy model and the parent-to-offspring relationship ρ encoded in FAM( , G).

Procedure AAR-R

Input:  An image I of , FAM( , G).

Output:  FMT(Ol), l = 1, …, L.

Begin

R1. Call R-ROOT to recognize the root object in H;

R2. Repeat

R3.  Find the next offspring Ok to recognize in H (see text);

R4.  Knowing FMT(Ol), ρk, and λk, call R-OBJECT to recognize Ok;

R5. Until all objects are covered in H;

R6. Output FMT(Ol), l = 1, …, L;

End

Two strategies are described here for each of algorithms R-ROOT and R-OBJECT. The first,

a global approach, does not involve searching for the best pose. We call this the One-Shot

Method since the model pose is determined directly by combining the prior information

stored in FAM( , G) and information quickly gathered from the given image I. The one-

shot method is used as initialization for a more refined second method called Thresholded

Optimal Search.

One-Shot Method

A threshold interval Th1 corresponding to the root object O1 is applied to I followed by a

morphological opening operation to roughly segment O1 to produce a binary image J. The

purpose of the morphological operation is to exclude as much as possible any significant

extraneous material, such as the scanner table and patient clothing, from J. Then the

transformed model FMT(O1) is found by applying a transformation T1
m to FM(O1). T1

m is

devised to express the mean relationship between the roughly segmented O1 and the true

segmentation of O1 represented in the binary images In,1 ∈ Ib. The estimation of T1
m is done

at the model building stage of AAR as mentioned in Section 2.3. To determine T1
m, similar

thresholding and morphological operations are performed on each gray image In in the

training set to obtain a rough segmentation of O1, denoted Jn,1, in In. The relationship

6We assume that the field of view in I fully encloses the root object. For the hierarchies shown in Figure 2, the root object is the skin
outer boundary which is typically more-or-less, although not perfectly, fully included within the imaging field of view. See also
Section 6 for further comments.
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between this rough segmentation Jn,1 and the true segmentation In,1 of O1 in Ib is found as a

transformation Tn,1 that maps PAS(Jn,1) to PAS(In,1). The mean, denoted T1
m, of such

transformations over all training images is then found.

Once the root object O1 is recognized, the poses for other objects in I in the hierarchy H are

determined by combining (in the sense of composition) T1
m with the parent to offspring

relationship information stored in ρk for each parent-offspring pair. The transformed models

FMT(Ol) are then found from this information.

Thresholded Optimal Search

This is a strategy to refine the results obtained from the one-shot method. Its premise is that

the overall image intensity of the objects in  can be characterized by threshold intervals7

such that, at the model’s pose corresponding to the best match of the model with an

underlying object in the given test image I, the mismatch between the thresholded result and

the model is minimal. For MR images for this approach to make sense, it is essential to

correct for background intensity nonuniformities first followed by intensity standardization

(Nyul and Udupa 1999).

Suppose that at the model building stage, the optimal threshold interval Thl for each object

Ol has already been determined automatically from the training image set. We will explain

below how this is accomplished. Then, at the recognition stage, the threshold for Ol is fixed

at this learned value Thl. Starting from the initial pose found by the one-shot method, a

search is made within the pose space for an optimal pose p* of the fuzzy model over I that

yields the smallest sum of the volume of false positive and false negative regions, where the

model itself is taken as the reference for defining false positive and negative regions.

Specifically, let FM p(Ol)denote the fuzzy model of Ol at any pose p, expressed as an image,

and let J denote the binary image resulting from thresholding I at Thl. Then8,

(2)

Image subtraction here is done in the sense of fuzzy logic, and |x| denotes the fuzzy

cardinality of x, meaning that it represents the sum total of the membership values in x. The

search space to find p* is limited to a region around the initial pose. This region is

determined from knowledge of ρk and its variation and the scale factor range λk. For the

positional vector, we search in an ellipsoid with its axes in the coordinate axis directions and

with length four times the standard deviation of the corresponding coordinate. When

searching in orientation space, we search in an ellipsoid with its axes in the direction of the

eigenvectors of the rotation vector distribution (covariance matrix) and with length four

times the square root of the corresponding eigenvalue. (A rotation vector has magnitude

equal to the angle of rotation and direction along the axis of right-handed rotation. The

rotation referred to is the rotation of Ql,k required to bring it into coincidence with Ei
n,l.) For

7All thresholds are assumed to represent intervals in this paper unless specified otherwise.
8Since arg min is a set, “∈” means one of the values chosen from the set is assigned to p*.
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the scale factor, we search in an interval of size four times the standard deviation of the scale

factor.

Determining Thl at the model building stage—To estimate Thl, we run a rehearsal of

the recognition method described above as follows, essentially for attempting to learn the

recognition process. Imagine we already built M and estimated ρ and λ. Suppose that we

now run the recognition process on the training images. Since we do not know the optimal

threshold but have the true segmentations, the idea behind this learning of the recognition

process is to test recognition efficacy for each of a number of threshold intervals t and then

select the interval Thl that yields the best match of the model with the known true

segmentations for each Ol. That is, if Jn(t) is the binary image resulting from thresholding

the training image In at t, then

(3)

Here, × denotes fuzzy intersection. In words, the optimal threshold Thl is found by searching

over the pose space over all training data sets and all thresholds the best match between the

true segmentation of Ol with the result of thresholding In restricted to the model. In our

implementation, 81 different values of the intervals are searched (9 for each end of the

interval). The 9 positions for the lower end are the 5th, 10th, …, 45th percentile values of the

cumulative object intensity histogram determined from the training image set. Similarly, for

the upper end, the positions are 55th to 95th percentile values.

To summarize, the thresholded optimal search method starts the search process from the

initial pose found by the one-shot method. It uses the optimal threshold values Thl

determined at the training stage for each object Ol and finds the best pose for the fuzzy

model of Ol in the given image I by optimally matching the model with the thresholded

version of I. The only parameters involved in the entire recognition process are the

thresholds Thl, one threshold interval per object, and T1
m. Their values are automatically

determined in the model building stage from image and binary image sets I and Ib and they

become part of the model FAM( , G) itself.

4. DELINEATING OBJECTS

Once the recognition process is completed and the adjusted models FMT(Ol) are output for a

given image I of , delineation of objects is performed on I in the hierarchical order as

outlined in the procedure AAR-D presented below. As in recognition, in Step D1, the root

object is first delineated by calling D-ROOT. AAR-D then proceeds in the breadth-first order

to delineate other objects by calling D-OBJECT.

Procedure AAR-D

Input:  An image I of , FAM( , G), FMT(Ol), l = 1, …, L.

Output:  Ol
D, l = 1, …, L.
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Begin

D1. Call D-ROOT to delineate the root object in H;

D2. Repeat

D3.  Traverse H and find the next offspring Ok to delineate in H;

D4.  Knowing delineation of Ol, call D-OBJECT to delineate Ok in I;

D5. Until all objects are covered in H;

D6. Output Ol
D, l = 1, …, L;

End

For D-ROOT and D-OBJECT, we have chosen an algorithm from the fuzzy connectedness

(FC) family in view of the natural and intimate adaptability of the FC methods to prior

information coming in the form of fuzzy sets. In particular, since we focus on the problem of

delineating one object at a time, for both Steps D1 and D4, we have selected the linear-time

Iterative Relative FC (IRFC) algorithm of (Ciesielski et al. 2012) for separating each object

Ol from its background. Our novel adaptations are in incorporating fuzzy model information

into the IRFC formulation and in making the latter fully automatic. These modifications are

described below.

Fuzzy model-based IRFC (FMIRFC)

There are two aspects that need to be addressed to fully describe the FMIRFC algorithm:

affinity function and seed specification. Affinity is a local concept indicating the degree of

connectedness of voxels locally in terms of their spatial and intensity nearness. In the FC

family, this local property is grown into a global phenomenon of object connectedness

through the notion of path strengths.

Affinity function—The FC framework (Udupa and Samarasekera 1996, Ciesielski et al.

2012) is graph-based. An ordered graph (C, α) is associated with the given image I = (C, f)

where α is an adjacency relation on C such as 6-, 18-, or 26-adjacency. Each ordered pair (c,

d) of adjacent voxels in α is assigned an affinity value κ(c, d) which constitutes the weight

assigned to arc (c, d) in the graph. To each path π in the graph (or equivalently in I) in the

set of all possible paths Πa,b between two voxels a and b of C, a strength of connectedness

K(π) is determined, which is the minimum of the affinities along the path. The connectivity

measure K*(a, b) between a and b is then defined to be K*(a, b) = max{K(π): π ∈ Πa,b}. The

notion of connectivity measure can be generalized to the case of “between a set A and a

voxel b” by a slight modification: K*(A, b) = max{K(π): π ∈ Πa,b & a ∈ A}. By using a fast

algorithm to compute K*(A, b), the machinery of FC allows a variety of approaches to define

and compute “objects” in images by specifying appropriate affinity functions and seed sets.

In particular, in IRFC, two seed sets AO and AB are indicated for an object O and its

background B, respectively. Then the object indicated by AO is separated optimally from the

background indicated by AB by an iterative competition in connectivity measure between AO

and every voxel c ∈ C and between AB and c. In published IRFC methods, AO and AB are

specified usually with human interaction.
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In FMIRFC, affinities κO(c, d) and κB(c, d) for O and B are designed separately.

Subsequently they are combined into a single affinity κ by taking a fuzzy union of κO and

κB. Each of κO and κB has three components. The description below is for κO. The same

applies to κB.

(4)

Here, ψO(c, d) represents a homogeneity component of affinity, meaning, the more similar

image intensities f(c) and f(d) are at c and d, the greater is this component of affinity

between c and d. As commonly done in the FC literature, we set

(5)

where σψo is a homogeneity parameter that indicates the standard deviation of intensities

within object O. ϕO(c, d), the object feature component, on the other hand, describes the

“degree of nearness” of the intensities at c and d to the intensity mϕO expected for the object

O under consideration. Denoting the standard deviation of object intensity by σϕO this

nearness is expressed by

(6)

The third component γO incorporates fuzzy model information into affinity by directly taking

the larger of the two fuzzy model membership values μO(c) and μO(d) at c and d for the

object,

(7)

Finally, a combined single affinity κ on I is constructed by

(8)

The weights in (4) are chosen equal and such that they add up to 1. The homogeneity

parameter is set equal for object and background (σψO = σψB) and estimated from uniform

regions in the training images (after leaving out high gradient regions), as commonly done in

the FC literature (Saha and Udupa 2001). The remaining parameters (σϕO, σϕB, mϕO, mϕB)

are estimated automatically from the training data sets from the knowledge of O and B

regions for each object.

Seed specification—Seed sets AO and AB are found by a joint criterion of a threshold for

image intensity and for model membership for each of O and B. The threshold interval ThO

for O is the same as the one used for recognition, namely Thl. The threshold interval ThB for

background is a union of similar threshold intervals for the background objects. (In

principle, all objects other than O can be considered to be background objects of O;
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however, in practice, only the anatomic neighbors of O matter.) The only new parameters

are ThO
M and ThB

M used as model thresholds for indicating AO and AB, respectively. These

parameters are used as follows:

(9)

Algorithm FMIRFC

Input:  Image I of , FAM( , G), FMT(Ol) at recognition. Below, we assume O = Ol.

Output:  Ol
D.

Begin

FC1. Determine background B of O;

FC2. Retrieve affinities κO and κB from FAM( , G);

FC3. Compute combined affinity κ;

FC4. Retrieve thresholds ThO, ThB, ThO
M, and ThB

M from FAM( , G) and determine seed sets AO and AB in I via
(9);

FC5. Call the IRFC delineation algorithm with κ, AO, AB, and I as arguments;

FC6. Output image Ol
D returned by the IRFC algorithm;

End

In our implementation, ThO
M is fixed at [0, 0.9] and [0, 0.5] for non-sparse and sparse

objects, respectively, and ThB
M is set to [0, 0].

Finally, we summarize the FMIRFC algorithm as shown in the box display.

5. ILLUSTRATIONS, EXPERIMENTS, RESULTS, AND DISCUSSION

We will describe the image data sets in Section 5.1, present model-construction related

results in Section 5.2, and illustrate and evaluate recognition and delineation results in

Sections 5.3 and 5.4.

5.1 Image data

The data sets used for the three body regions are summarized in Table 2.

Data sets DS1 and DS2 are from CT and are selected from our hospital patient image

database, and were verified to be of acceptable quality and radiologically normal, with

exception of minimal incidental focal abnormalities, in the body regions for which they are

chosen. Note the typical clinical resolution for pixel size (~ 1 mm) and slice spacing (5 mm)

in these data sets and hence the challenge for object recognition and delineation. Our goal in

focusing on these data was to challenge the AAR system to perform on typical clinical data

sets. DS3 is from an on-going research project investigating the association of Polycystic

Ovary Syndrome with Obstructive Sleep Apnea in obese pediatric female subjects (Arens et

al. 2011). It consists of both axial and sagittal acquisitions and a mix of T1- and T2-

weighted images. DS1–DS3 represent the three body regions for which the hierarchy of

organs was depicted in Figure 2. DS4 (Wagshul et al. 2013), however, is used for testing the
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ability of the AAR method to rapidly prototype an application by using existing models for

the same body region. In this case, models built from DS2 from CT are deployed on DS4

from MRI.

In all data sets, any extra slices falling outside the body region  as per definition are

removed manually first. Note the variation in the size of the body region in Table 2

(expressed roughly as slice spacing × number of slices). In the case of MRI, the resulting

images are processed, first to suppress background non-uniformities and subsequently to

standardize the image intensities (Nyul and Udupa 1999). Standardization is a post-

acquisition image processing technique which significantly minimizes the inter-subject and

intra- and inter-scanner image intensity variations for the same tissue and achieves tissue-

specific numeric meaning for MR images. It has been shown to significantly improve the

accuracy of delineation algorithms (Zhuge and Udupa 2009). It is done separately for each

MRI protocol and body region. For DS1 and DS2, one half of the image data sets were used

for model building, which included the estimation of the parameters of the recognition and

delineation algorithms (T1
m, Thl, σψO, mϕO, mϕB, σϕO, and σϕB), and the remaining data sets

were used for testing the methods. For DS3, the train-test sets were set up as 11 and 4, and

this was repeated 30 times for different choices of 11 and 4 data sets. For DS4, all data sets

were used for testing, and model building was based on one half of the data sets in DS2.

This provided an interesting scenario for the challenge for the AAR method, in that, models

built from normal CT data sets for one patient group were used for performing AAR on MRI

data sets from normal subjects and patients from another group.

5.2 Model building

In Figure 3, the organs defined in the image of one of the subjects employed in model

building are displayed for each body region in different combinations of the organs. We

have examined all data sets under DS1–DS3 in this manner which has helped us in properly

understanding the organ relationships. This is crucial for devising effective hierarchies,

recognition strategies, and delineation algorithms.

Figure 4 displays fuzzy models FM(Ol) of objects in various combinations for the three

body regions. Since the volumes are fuzzy, they are volume rendered by using an

appropriate opacity function. Note that although the models appear blurred, they portray the

overall shape of the objects they represent and the object relationships. From consideration

of the difficulties in model building, recognition, and delineation, we divided objects in the

body into sparse, non-sparse, and hybrid groups. Sparse objects pose special challenges for

recognition and delineation, stemming mostly from difficulties in model building. We will

come back to these issues in Sections 5.3 and 5.4. Variations in the form, shape, and

orientation of sparse objects cause them to overlap far less, or often not at all, compared to

non-sparse objects, when forming the model by gathering fuzzy overlap information. In

other words, the models tend to diffuse or become too fuzzy. For example, in AS (thorax),

the descending aortic portion extends from superior to inferior. However, this part is often

either bent from the vertical or is crooked, and the pattern of the brachiocephalic and

subclavian arteries arising from the aortic arch is different. If the variation is just in

orientation only, then aligning by orientation may produce sharper models. But the issue is
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not one of producing less fuzzy models but of building models that have the right/correct

amount of fuzziness so that the recognition process will be least misguided by the model9.

We will say more on this in Section 6. To study the effect of orientation alignment, we

display in Figure 5 models created without and with orientation adjustment, for several

sparse as well as non-sparse objects from all three body regions. The volume renditions were

created with exactly the same settings for each object for its two versions of models.

Orientation adjustment does not produce any dramatic difference in the models created,

although close scrutiny reveals that the model definition improves slightly; examine

especially LPS, AIA, AS, and Lvr.

Relating to the fifth element η of FAM( , G), we show in Tables 3–5 correlations among

objects in their size for the three body regions10. Object size is determined as explained in

Section 2.3. As may be expected, bilateral organs, such as LPS and RPS, LKd and RKd, and

LT and RT, are strongly correlated in size. That is, their sizes go together, whatever way

they may be related to the subject’s body size. There are also other interesting strong, poor

(or no), and even weak negative, correlations, as highlighted in the tables; for example, TSk

with RS and RPS; VS with TB, PC, and E; ASkn with ASTs, SAT and Msl; ASTs with SAT

and Msl; Msl with SAT; NSkn with A&B; Ad with NSkn, FP, NP, and SP. Although we

have not explored the utility of such information in this paper, we envisage that this and

other information will be useful in devising hierarchies more intelligently than guided by

just anatomy, and hence in building better FAM( , G).

5.3 Object recognition

Results for recognition are summarized in Figures 6–8 and Tables 6–9 for the different body

regions. Figures 6–8 and Tables 6–8 illustrate recognition results for the three body regions

for the best set up involving orientation adjustment selectively for different objects. The

alignment strategy was as follows for the different objects in these results.

(10)

The recognition accuracy is expressed in terms of position and size. The position error is

defined as the distance between the geometric centers of the known true objects in Ib and the

center of the adjusted fuzzy model FMT(Ol). The size error is expressed as a ratio of the

estimated size of the object at recognition and true size. Values 0 and 1 for the two

measures, respectively, indicate perfect recognition. Note in Figures 6–8 that the model

bleeds into adjacent tissue regions with some membership value since it is fuzzy. This

should not be construed as wrong segmentation. The main issue is if the model placement

via recognition is accurate enough to yield good delineation. Similarly and due to the slice

9This dilemma of the disconnection between model building and recognition is common to all model/atlas-based methods and is the
real challenge in automatic recognition of sparse and hybrid objects.
10For this analysis, we have used all image data sets since the information provided by this analysis does not influence at present the
testing of AAR algorithms for recognition and delineation.
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visualization mode, sparse object components may appear to be missed or to present with

low membership values.

Although we have not conducted extensive experiments to test all possible arrangements for

orientation alignment for non-sparse and sparse objects, generally we found that orientation

adjustment for non-sparse objects does not improve recognition results. In some cases like

PC, it may actually lead to deterioration of results. In our experience, the set up in (10)

turned out to be an excellent compromise from the viewpoint of accuracy of results and

efficiency. For comparison, we demonstrate in Table 9 recognition results for the thorax

with no orientation adjustment for any object in both model building and recognition.

Size error is always close to 1 for all body regions and objects. Generally, recognition results

for non-sparse objects are excellent with a positional error of mostly 1–2 voxels. Note that

for DS1 and DS2, voxels are quite large11. We observed that, the positional accuracy within

the slice plane is better than across slices. In other words, errors listed in the tables are

mostly in the third dimension in which voxel size is large. Orientation adjustment improves

recognition somewhat for some sparse objects, but has negligible effect for non-sparse

objects, at least in the thorax.

The recognition results for the MRI data set DS4 are demonstrated in Figure 9 and Table 10.

Again, since the model is fuzzy, it will encroach into adjacent tissue regions with some

membership value. Since our goal here was just to measure subcutaneous adiposity, the

hierarchy was simplified as shown in Figure 9. Again the position error is 1–2 voxels. These

results are particularly noteworthy since they are generated by using the models built from

image data sets acquired from a different modality, namely CT, and for a different group

with an age difference of about 40 years and with a different gender. This underscores the

importance of understanding the dichotomy between recognition and delineation.

Recognition is a high-level and rough process which gives anatomic context. The models do

not have to be, and we argue should not be, detailed attempting to capture fine details.

Obtaining the anatomic context is a necessary step for achieving accurate delineation. It is

important to note here that for the cross modality operation to work in this manner, the MR

image intensities must be standardized (Nyul and Udupa 1999).

5.4 Object delineation

Sample delineation results are displayed in Figures 10–13 for DS1–DS4. Delineation

accuracy statistics for these data sets, expressed as false positive and false negative volume

fractions (FPVF, FNVF) as well as mean Hausdorff distance (HD) between the true and

delineated boundary surfaces, are listed in Tables 11–14. The HD measure is defined as the

mean over all test subjects of the median of the distances of the points on the delineated

object boundary surface from the true object boundary surface.

Delineation results for VS (Thorax) are not presented since the recognition accuracy for VS

is not adequate for reliable delineation. We note that the delineation of 21 non-sparse objects

11Since recognition results do not improve much with finer discretization of the model but only increase computation for recognition,
we construct models with isotropic voxels of side equal to one half of the largest dimension of the voxels in the original data. Thus for
DS1 and DS2, the model voxels are of size 2.5 × 2.5 × 2.5 mm3.
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achieves a mean FPVF and FNVF of 0.02 and 0.08, respectively, and a mean HD of 0.9

voxels, which are generally considered to be excellent. Six sparse objects also achieve good

delineation outcome, with the above mean measures reading 0.05, 0.15, and 1.5,

respectively. However, sparse objects VS, E, IVC, Mnd, and NP pose challenges for

effective delineation. Often, even when their recognition is effective, it is difficult to

guarantee placement of seed sets AO and AB appropriately within and outside these objects

because of their sparse nature. In DS3 (MR images of neck), it is very difficult to properly

delineate Mnd, NP, and OP because of their poor definition in the image. To test the

effectiveness of the models created from these data (DS3) in segmenting the same objects on

CT data of a group of three different pediatric subjects, we devised a simple hierarchy with

NSkn as the root and with Mnd, NP, and OP as its offspring objects. The delineation results

obtained for these four objects were excellent, with a mean FPVF of 0, 0.01, 0, and 0.02,

and mean FNVF of 0.01, 0.01, 0.02 and 0.1, respectively.

5.5 Comparison with a non-hierarchical approach

To study the effect of the hierarchy and the knowledge encoded in it on recognition, we list

in Table 15 the recognition performance of a non-hierarchical approach. The results are

shown for Thorax wherein each object is recognized on its own by using the same fuzzy

models FM(Ol) as used in the hierarchical AAR system. The initial pose for search is taken

to be the center of the image and search range covers roughly the whole body region with

the scale factor range the same as that for the hierarchical approach. In comparison to the

hierarchical approach (Tables 6 and 9), it is clear that non-hierarchical recognition

performance is much worse.

5.6 Computational considerations

Program execution times are estimated on a Dell computer with the following specifications:

4-core Intel Xeon 3.6 GHz CPU with 8 GB RAM and running the Linux-jb18 3.7.10–1.16

operating system. Mean computational times for the AAR steps are listed in Table 16.

Model building includes the construction of fuzzy models and the estimation of ρ, λ, and all

parameters related to recognition and delineation, including the optimal threshold

parameters Thl. This latter step takes about 12 seconds per object. As seen from Table 16,

each of the three main operations takes under 1 minute per object. Among these operations,

only the time for model building depends on the number of training data sets, while

recognition and delineation are independent of this factor. On average, model building times

per object per training data set for Thorax, Abdomen, and Neck are, respectively, 1.4 sec,

1.7 sec, and 1 sec. In statistical atlas based methods, the computational time for image

registration becomes the bottleneck. Our calculation taking Elastix as a representative

registration tool kit (Klein et al. 2010) indicates that the creation of a single atlas for each of

the 11 objects of the Thorax at a reduced image resolution of 2.5 × 2.5 × 2.5 mm3 for the 25

training data sets of DS1 would take about 23.5 hours compared to 6.4 min for the AAR

system. The time per object for recognition and delineation can also take several minutes for

these methods. Even with 100 data sets for training and 15 objects in a body region, the total

time needed for the AAR model building step would be about 40 minutes, whereas atlas

building may take days to complete especially when multi-atlas strategies are used.
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5.7 Comparison with other methods

The publications reporting works that are directly related to our work in spirit are (Baiker et

al. 2010, Chu et al. 2013, Criminisi et al. 2013, Lu et al. 2012, Linguraru et al. 2012, Okada

et al. 2008, Zhou et al. 2012). In Table 17, we present a comparison to our AAR system

based on the results reported in these works. We note that a quantitative grading/

understanding of the methods is impossible since the data sets used, acquisition protocols

and resolutions, considered objects, training and test data set subdivisions, cross validation

strategies, and computing platforms are all different in these methods. Interestingly, a

commonality among them is that they all focused on CT image data sets.

Among these methods, (Chu et al. 2013, Linguraru et al. 2012, Lu et al. 2012, Okada et al.

2008) comprise one group wherein the body region of focus was the pelvis or abdomen,

with 3–5 objects considered for segmentation. They all employ an object localization step,

which is achieved either through an atlas (Chu et al. 2013, Linguraru et al. 2012, Okada et

al. 2008), statistical shape models (Okada et al. 2008), or machine learning techniques (Lu et

al. 2012), and subsequently a delineation step that uses graph cuts (Chu et al. 2013,

Linguraru et al. 2012), information theory (Lu et al. 2012), and MAP or ML estimation (Chu

et al. 2013, Okada et al. 2008). In the second group (Criminisi et al. 2013, Zhou et al. 2012),

the aim is only to locate the objects via machine learning techniques. The third group is

constituted by (Baiker et al. 2010), the only work that considered body-wide organs, but in

mice, using a kinematic model of the skeletal joints to localize objects relative to different

skeletal components.

We observe that, for the same objects (liver, kidneys, and spleen), our results are

comparable to, often better than, the current results from literature, especially considering

the 5 mm slice spacing and the equal training-to-test data set proportion for our evaluation.

We conclude that the development of a general AAR system that can be readily applied and

adapted to different body regions, multitudes of organs, and modalities has not yet been

demonstrated. Perhaps some of the above methods can be made to work in this general

manner. However, we believe that this may require considerable further development and

innovation.

6. CONCLUDING REMARKS

In this paper, we presented a general body of methods for automatic anatomy recognition

and delineation whose principles are not tied to any specific body region, organ system, or

imaging modality. We took a fuzzy approach for building the models and attempted to

harness as much specific anatomic information as possible to be embedded into the fuzzy

anatomic model. We demonstrated the generality of the approach by examining the

performance of the same AAR system on three different body regions using CT and MR

image data sets. We also illustrated the potential of the system for rapid prototyping by

demonstrating its adaptability to a new application on a different modality (DS4). Our

system is set up to operate fully automatically. All image modality-specific parameters

needed – threshold intervals for objects in  for recognition and affinity parameters for

delineation – are estimated automatically from the training data sets. When a new

application is sought at a modality different from those considered in the anatomy model
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FAM( , G), a few sample segmentations of the objects of interest and the matching images

are needed for relearning these image intensity-related parameter values (specifically, Thl

and the affinity parameters). All other modality-independent aspects of the model do not

need retraining. In the case of MRI, images from each separate MRI protocol have to be

standardized for image intensity so that setting up these parametric values becomes sensible.

Separation of modality-independent from dependent aspects, organization of objects in a

hierarchy, encoding object relationship information into the hierarchy, optimal threshold-

based recognition learning, and fuzzy model-based IRFC are novel and powerful concepts

with consequences in recognition and delineation, as we demonstrated in this paper.

While the above strengths of this AAR system are quite unique as revealed in our literature

review, the system has some limitations at present. First, we have not studied the

performance of the system on patient images that contain significant pathology. However,

we note that DS4 indeed includes image data sets of patients who are obese. Note also that

these image data sets are from a very different age and gender group and on a different

imaging modality from those used to build FAM( , G). We believe that it is essential to

make the system operate satisfactorily on normal or near-normal images before testing it on

images with diverse pathologies. As such, we are currently in the process of testing the

system on organs and organ systems with significant pathology in all three body regions

focusing on specific disease processes.

Second, the accuracy is inadequate for some sparse objects for recognition (VS, IVC) and

delineation (E, Mnd, NP). Also we have not considered in this paper other important and

challenging sparse objects such as the adrenal glands, pancreas, and the spinal cord. If

recognition is inadequate, delineation will become unacceptable because it becomes

impossible to appropriately initialize the delineation process and to exploit the model for

making up for missing boundary information in the image in delineation. When we closely

examined these cases, it became clear that there are fundamental challenges in the model

building stage itself for sparse objects. Generally we found that sparse objects have much

greater variation than their non-sparse counterparts in form, topology, and geographic

layout, compared to their size. As an example, consider AS and VS (Thorax). The

descending aortic portion of AS is often straight and directed vertically downward while in

some subjects it may be inclined, curved, or even tortuous, with other portions, especially

the aortic arch, not varying much. The branching pattern of the left and right brachiocephalic

veins and the course of the azygos vein in VS also vary considerably. In view of such

difficulties, we have come to the realization that sparse objects should not be modeled

directly from their precise shape information in the binary image set Ib, instead only their

rough super form (such as a minimal super set that subsumes such variations) should be

utilized in model building. We are exploring the use of rough sets (Maji and Pal 2012) for

this purpose.

The AAR methodology seems to have definite computational advantages over atlas-based

approaches. Further, in atlas-based methods, it is perhaps much more challenging to

incorporate the extensive object-level knowledge that the AAR approach exploits at various

stages for recognition and delineation. These incorporations constitute highly non-linear and

discontinuous phenomena which are effected in intensity, geometric, and topological spaces.
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The kinematic model employed in (Baiker et al. 2010) is a good analogy of how one may

encode object relationships via a model that are difficult to emulate through continuous and

smooth image/atlas deformations.

Some of the avenues we are currently exploring for the proposed AAR approach are

delineated below.

In this paper, we did not address the problem of automatically determining the body region

 following the definition of  within the given data set. As demonstrated in (Chen et al.

2012), it is possible to determine the slices delimiting a body region  automatically based

on slice profiles. Furthermore, the information about the relationship between  and WB can

also be encoded into the hierarchy as illustrated in Figure 2(a) for each .

The use of composite objects often leads to better recognition accuracy. This is because the

multiple objects contained in a composite object offer tighter constraints in recognition

search. The aspect of how objects can be grouped to achieve optimum recognition results

needs investigation. A related topic is how to device optimal hierarchies for a given body

region. The hierarchies we have considered so far are anatomically motivated. Perhaps there

are “optimal” hierarchies from the view point of achieving the best recognition (and hence,

delineation) results. In such an investigation, matters of how objects should be grouped as

well as ordered in the hierarchy can both be addressed simultaneously using graph

optimization techniques.

We have set up the AAR-R and AAR-D procedures in a general way. Recognition and

delineation algorithms other than those we have tested can be used independently for R-

ROOT and R-OBJECT and for D-ROOT and D-OBJECT within the same hierarchical set up.

Similar to composite object recognition, delineation done simultaneously for multiple

objects, unlike the one-object-at-a-time approach of AAR-D, may improve overall accuracy.

Computationally, there are three expensive operations in the AAR system – image

interpolation, distance transform, and the delineation algorithm (FMIRFC). To make

recognition and delineation operate in practical time in a clinical setting, implementations of

these operations will have to be sped up. Toward this goal, we are studying GPU

implementations of these operations. GPU implementations of some fuzzy connectedness

algorithms have already been published (Zhuge et al. 2011, Zhuge et al. 2013).

Finally, along the lines of the study underlying DS4, we are exploring the adaptation of the

AAR system to several clinical applications.
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APPENDIX

Table 1

Anatomic definitions of organs considered in this paper.

Thoracic objects Acronym Definition of object

Thoracic skin TSkn

The outer boundary of the thoracic skin (arms excluded). The interior
region constitutes the entire thoracic body region. The inferior boundary

is defined to be 5 mm below the base of the lungs and the superior
boundary is defined to be 15 mm above the lung apices.

Thoracic skeleton TSk
All skeletal structures contained in the thoracic body region, including the
spine, ribs, sternum, and the portions of the scapulae and clavicles that are

inside the body region.

Respiratory system RS Grouping of RPS, LPS, and TB.

Right lung RPS The outer boundary of the right lung along the right pleura.

Left lung LPS The outer boundary of the left lung along the left pleura.

Trachea and bronchi TB The outer boundary of the trachea and bronchi from the superior thoracic
trachea to the distal main stem bronchi.

Internal mediastinum IMS Grouping of PC, E, AS, and VS.

Pericardial region PC Region within the boundary of pericardial sac. The superior aspect is
defined by the branching of the main pulmonary artery.

Esophagus E The outer boundary of the esophagus from the superior aspect of thorax to
the level of gastric cardia.

Arterial system AS

The outer boundary of the ascending aorta, aortic arch, descending
thoracic aorta, pulmonary arteries, innominate artery, proximal left

common carotid artery, and proximal left subclavian artery. The superior
aspect is defined by the branching of the innominate artery.
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Thoracic objects Acronym Definition of object

Venous system VS The outer boundary of the superior vena cava, right and left
brachiocephalic veins, and azygos vein.

Abdominal objects Acronym Definition of object

Abdominal skin ASkn

The outer boundary of the abdominal skin. The interior region constitutes
the entire abdominal body region. The superior boundary is defined by the

superior aspect of the liver. The inferior boundary is defined by the
bifurcation of the abdominal aorta into the common iliac arteries.

Abdominal skeleton ASk All skeletal structures contained in the abdominal body region, including
lumbar spine and portion of the inferior ribs within the body region.

Soft tissue ASTs Grouping of Kd, Spl, Msl, AIA, IVC.

Kidneys Kd Grouping of RKd and LKd.

Right kidney RKd The outer boundary of the right kidney. All external blood vessels are
excluded.

Left kidney LKd The outer boundary of the left kidney. All external blood vessels are
excluded.

Spleen Spl The outer boundary of the spleen. All external blood vessels are excluded

Muscle Msl The outer boundaries of the abdominal musculature, including the rectus
abdominis, abdominal oblique, psoas, and paraspinal muscles.

Abdominal aorta AIA The outer boundary of the abdominal aorta. The superior and inferior
slices of AIA are the same as those of the abdominal region.

Inferior vena cava IVC The outer boundary of the inferior vena cava. The superior and inferior
slices of IVC are the same as those of the abdominal region.

Liver Lvr The outer boundary of the liver. The intrahepatic portal veins and hepatic
arteries are included in this region.

Fat Fat Grouping of SAT and VAT.

Subcutaneous adipose tissue SAT Adipose tissue in the subcutaneous region in the abdomen.

Visceral adipose tissue VAT Adipose tissue internal to the abdominal musculature.

Neck objects Acronym Definition of object

Head and Neck skin NSkn

The outer boundary of the head and neck skin, where the interior region
constitutes the entire head and neck body region. The superior boundary
is defined by a level 6.6 mm above the superior aspect of the globes. The

inferior boundary is defined by a level 6.6 mm inferior to the inferior
aspect of the mandible.

Air and Bone A&B Grouping of Mnd and Phrnx.

Mandible Mnd The outer boundary of the mandible.

Pharynx Phrx Grouping of NP and OP.

Nasopharyngeal airway NP The outer contour of the nasal and nasopharyngeal air cavity, extending to
the inferior aspect of the soft palate.

Oropharyngeal airway OP The outer contour of the oropharyngeal air cavities, extending from the
inferior aspect of the soft palate to the superior aspect of the epiglottis.

Fat pad FP The outer boundary of the parapharyngeal fat pad.

Neck soft tissues NSTs Grouping of Tnsl, Tng, SP, Ad.

Palatine tonsils Tnsl Grouping of RT and LT.

Right palatine tonsil RT The outer boundary of the right palatine tonsil.

Left palatine tonsil LT The outer boundary of the left palatine tonsil.

Tongue Tng The outer boundary of the tongue.

Soft palate SP The outer boundary of the soft palate.
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Thoracic objects Acronym Definition of object

Adenoid tissue Ad The outer boundary of the adenoid tissue.
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HIGHLIGHTS

• Fuzzy hierarchical modeling of all major organs in a body region

• Detailed object relationship information encoded into models

• Hierarchical object recognition and delineation

• Optimal threshold-based recognition strategy

• Demonstration of the same method on several body regions and different

modalities
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Figure 1.
A schematic representation of the AAR schema. The three main steps of model building,

object recognition, and object delineation are explained in Sections 2, 3, and 4.
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Figure 2.
(a) Hierarchy for whole body WB. (b) Hierarchy for Thorax. TSkn: Outer boundary of

thoracic skin as an object; RS: Respiratory System; TSk: Thoracic Skeleton; IMS: Internal

Mediastinum; RPS, LPS: Right & Left Pleural Spaces; TB: Trachea & Bronchi; E:

Esophagus; PC: Pericardium; AS, VS: Arterial & Venous Systems. (c) Hierarchy for
Abdomen. ASkn: Outer boundary of abdominal skin; ASk: Abdominal Skeleton; Lvr: Liver;

ASTs: Abdominal Soft Tissues; SAT & VAT: Subcutaneous and Visceral Adipose Tissues;

Kd: Kidneys; Spl: Spleen; Msl: Muscle; AIA: Aorta and Iliac arteries; IVC: Inferior Vena

Cava; RKd & LKd: Right and Left Kidneys. (d) Hierarchy for Neck. NSkn: Outer boundary

of skin in neck; A&B: Air & Bone; FP: Fat Pad; NSTs: Soft Tissues in neck; Mnd:

Mandible; Phrx: Pharynx; Tnsl: Tonsils; Tng: Tongue; SP: Soft Palate; Ad: Adenoid; NP &

OP: Nasopharynx and Oropharynx; RT & LT: Right and Left Tonsils.
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Figure 3.
Organs from one training set for each body region are displayed via surface rendering. For

each row, objects in one picture are listed as {..}. Top row: Thorax. 3rd picture: {RPS, TB,

E, AS, VS, PC}. Middle row: Abdomen. 3rd picture: {Ask, Lvr, LKd, IVC, AIA, Spl, SAT,

Msl}. Bottom row: Neck. 5th picture: {Mnd, Tng, NP, OP, Ad, FP, Tnsl}.
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Figure 4.
Volume renditions of fuzzy models of objects in different combinations for the three body

regions. For each row, objects in one picture are listed as {..}. Top row: Thorax. 5th picture:

{LPS, AS, TB}. Middle row: Abdomen. 3rd picture: {ASk, Lvr, LKd, RKd, AIA, IVC, Spl}.

Bottom row: Neck: 5th picture: {Mnd, Tng, NP, OP, Ad, FP}.
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Figure 5.
Volume renditions of fuzzy models created without (Rows 1 and 3) and with (Rows 2 and 4)

orientation alignment for several non-sparse (Rows 1 and 2) and sparse (Rows 3 and 4)

objects. Row 1: PC, RPS, LKd, Lvr. Row 3: AS, E, AIA, IVC, TB.
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Figure 6.
Sample recognition results for Thorax for the alignment strategy shown in (10). Cross

sections of the model are shown overlaid on test image slices. Left to right: TSkn, TSk, LPS,

TB, RPS, E, PC, AS, VS.
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Figure 7.
Sample recognition results for Abdomen for the alignment strategy shown in (10). Cross

sections of the model are shown overlaid on test image slices. Left to right: ASkn, ASk,

SAT, Lvr, RKd, LKd, Spl, Msl, AIA, IVC.
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Figure 8.
Sample recognition results for Neck for the alignment strategy shown in (10). Cross sections

of the model are shown overlaid on test image slices. Left to right: NSkn, FP, Mnd, NP (note

that NP is a combination of nasal cavity and nasopharynx), Ad, OP, RT, LT, Tng, SP.
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Figure 9.
The hierarchy used (left) and sample recognition results for DS4 (right) with model cross

section overlaid on test image slices for ASkn and SAT.

Udupa et al. Page 38

Med Image Anal. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 10.
Sample delineation results for Thorax. Left to Right: TSkn, IMS, LPS, AS, RPS, PC, TB, E.
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Figure 11.
Sample delineation results for Abdomen. Left to Right: ASkn, SAT, Lvr, SAT, RKd, LKd,

Spl, Msl, AIA.
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Figure 12.
Sample delineation results for Neck. Left to Right: NSkn, FP, NP, OP, RT, LT, Tng, SP, Ad.
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Figure 13.
Sample delineation results for DS4. ASkn (left) and SAT (right).
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Table 10

Recognition accuracy for the objects shown in Figure 9.

ASkn SAT

Position Error (mm)
4.6 12.97

2.5 5.3

Size Error
1.01 1

0.05 0.03
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Table 14

Delineation results for DS4.

ASkn SAT

FPVF 0.0 0.06

FNVF 0.03 0.01

HD (mm) 1.7 3.9
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Table 16

Mean computational time in seconds per object for different operations and body regions.

Operation Thorax Abdomen Neck

Model building 35 42 24

Object recognition 30 46 6

Object delineation 47 56 24
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