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Abstract

Devising a reproducible approach for species delimitation of hyperdiverse groups is an ongoing challenge in evolutionary
biology. Speciation processes combine modes of passive and adaptive trait divergence requiring an integrative taxonomy
approach to accurately generate robust species hypotheses. However, in light of the rapid decline of diversity on Earth,
complete integrative approaches may not be practical in certain species-rich environments. As an alternative, we applied a
two-step strategy combining ABGD (Automated Barcode Gap Discovery) and Klee diagrams, to balance speed and accuracy
in producing primary species hypotheses (PSHs). Specifically, an ABGD/Klee approach was used for species delimitation in
the Terebridae, a neurotoxin-producing marine snail family included in the Conoidea. Delimitation of species boundaries is
problematic in the Conoidea, as traditional taxonomic approaches are hampered by the high levels of variation,
convergence and morphological plasticity of shell characters. We used ABGD to analyze gaps in the distribution of pairwise
distances of 454 COI sequences attributed to 87 morphospecies and obtained 98 to 125 Primary Species Hypotheses (PSHs).
The PSH partitions were subsequently visualized as a Klee diagram color map, allowing easy detection of the incongruences
that were further evaluated individually with two other species delimitation models, General Mixed Yule Coalescent (GMYC)
and Poisson Tree Processes (PTP). GMYC and PTP results confirmed the presence of 17 putative cryptic terebrid species in
our dataset. The consensus of GMYC, PTP, and ABGD/Klee findings suggest the combination of ABGD and Klee diagrams is
an effective approach for rapidly proposing primary species proxies in hyperdiverse groups and a reliable first step for
macroscopic biodiversity assessment.
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Introduction

The practice of identifying biological diversity at the species

level, referred to as species delimitation, usually consists of first

proposing a primary partition of species hypotheses, and then

testing these hypotheses. However, when novel taxa are almost

completely unknown, such as in hotspot habitats of high diversity

as found in recent explorations of the deep-sea [1,2] or forest

canopy [3], a hypothesis-driven approach is not possible as

primary species hypotheses (PSHs) are not available for such

groups. In high diversity environments, an exploratory DNA based

approach, such as DNA barcoding, has been instrumental in

producing primary species hypotheses [4–6] The current standard

for producing and/or testing PSHs is the integration of molecular,

and if possible, multi-locus/genomic data, with morphological,

ecological, behavioural, geographical characters that are analyzed

using multiple criteria such as similarity, phylogeny, and

reproduction tested directly or indirectly via gene flow estimations

[7–10]. The order in which characters and criteria should be

applied and which characters are more reliable is debateable [11–

19]. Additionally, any proposed strategy of species delimitations

has to confront two conflicting aims: A) Producing robust species

hypotheses and B) Accelerating the pace of species delimitation/

description in the context of the growing magnitude of unknown

biodiversity and the increasing rate of biodiversity extinction.

Integrative taxonomy fulfills the first deliverable of 20th century

taxonomy, i.e. it can propose robust species hypotheses, but is not

a strategy that can meet the requirements for a rapid survey of

species diversity, such as in floral hotspots. The analysis required

to obtain robust species delimitations using a fully integrative

taxonomy approach can be at times unattainable for a number of

reasons such as: (1) technical, e.g. in hyperdiverse groups,

characterized by an exceedingly high species number, relatively

few available variable genes and inapplicable morphological
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characters; (2) economical, e.g. lack of funds to obtain and analyze

sufficient specimens and characters; or (3) strategic, the need to

rapidly assess the diversity of a group or an environment that is

potentially threatened. In an effort to address these issues, there

has been an increase in species delimitation methods with over

60% being published after 2008 [20]. Carstens and colleagues

recently reviewed several species delimitation methods and suggest

species delimitations are robust when several delimitation analyses

are applied and are congruent [21].

With the aim of finding a balance between rapidity and

robustness, the two-step strategy presented here uses the

cytochrome C oxidase subunit 1 mitochondrial region (COI)

Barcode fragment to propose Primary Species Hypotheses (PSHs)

based on analysis of species delimitation tool ABGD (Automatic

Barcode Gap Discovery) [22], combined with Klee diagrams, a

graphical mathematical method for effectively visualizing large

datasets such as the Terebridae [23,24] (Fig. 1). The ABGD/Klee

strategy addresses four of five criteria of integrative taxonomy as

outlined by Padial and colleagues [25]. Namely, ABGD/Klee

improves taxonomic work protocol, refines the probabilistic

procedures to evaluate character congruence, develops modular

software for species delimitation, description, and publishing, and

can be considered a semi-automated approach for identification of

PSH candidates. To date, a mere 4,500 of the estimated 10,000–

20,000 species of the Conoidea, a group of hyperdiverse venomous

marine snails that include cone snails (Conidae), auger snails

(Terebridae) and turrids, are described [26,27] (Fig. 2). Increasing

the rate of species description for conoideans is crucial for two

main reasons: (1) Their potential susceptibility to environmental

threats, as many of them are members of coral reef communities;

and (2) conoidean venoms are rich in neuropeptides that are

important tools for biochemical investigations of neuronal

signaling and have relevant pharmacological applications. Con-

oidea is one of the most promising animal groups for the discovery

of novel pharmacologically active neuropeptides, as exemplified by

the development of the first drug from a cone snail conopeptide,

ziconotide (Prialt), which is used to alleviate chronic pain in HIV

and cancer patients [28]. Traditional taxonomic approaches,

based mainly on shell characters, are of little value to identify

conoidean species [29,30], and recent DNA-based taxonomic

studies demonstrated that the traditional taxonomic framework of

conoideans is largely inadequate [27,31–33]. A recent large-scale

survey of species diversity in the Turridae revealed that an

exploratory approach using ABGD and Klee diagrams was useful

to quickly define numerous PSHs, which were confirmed as valid

species with additional evidence [27]. In order to validate the

ABGD/Klee approach with another group, a similar analysis has

been carried out here on the Terebridae. The Terebridae was

chosen as it is a well-characterized family of Conoidea that

includes ,350 described species, with an estimated total number

of 450 extant species (WORMS–www.marinespecies.org). Recent

molecular surveys indicate that most terebrid morphologically

defined species are generally congruent with DNA-based clusters

[33], which constitutes an exception for the conoideans, making

terebrids a good model to test the ability of the ABGD/Klee

approach to accurately delimit PSHs.

Methods

Ethics statement
Collection permits were provided by the Smithsonian Tropical

Research Institute Permit Office (STRI-SPO) and the Panama

Aquatic Resources Authority (ARAP) for East Pacific localities and

by the Muséum National d’Histoire Naturelle, Paris for all the

other localities. Specific locations of collection sites are recorded in

Table S1. Our study did not involve endangered or protected

species.

Sample collection
Specimens were collected during several expeditions, mostly in

the West and East Pacific (Table S1, Figure 1) and stored in the

Malacology Collection of the Muséum National d’Histoire

Naturelle (Paris, France).

Specimen identification
COI (cytochrome oxidase C subunit I, COI) and 28S rDNA gene

sequence data were produced using standard methodologies as

detailed in Supplementary Materials (see also Castelin et al. [32]

for choice of outgroups and GenBank accession numbers). To

briefly describe DNA sequencing and PCR amplification proce-

dures, total genomic DNA was extracted from muscle tissue using

NucleoSpin 96 Tissues (Macherey-Nagel). Primers used for COI

and 28S rDNA (hereafter referred to as 28S) genes were as

described in Castelin et al. [32]. PCR reactions were performed in

25 mL final volume, containing approximately 3 ng template

DNA, 1.5 mM MgCl2, 0.26 mM of each nucleotide, 0.3 mM of

each primer, 5% DMSO and 0.75 U of Taq Polymerase

(Qbiogene). PCR amplification products were generated by an

initial denaturation step of 4 min at 94uC followed by 35 cycles at

94uC for 40 s, annealing at 50uC for COI and 52uC for 28S for

40 s, and by an extension at 72uC for 1 min. All sequenced

individuals were examined by Y. Terryn, a taxonomy specialist of

the group, and by MH, and were segregated into 87 morphospe-

cies on the basis of shell characters. Specimens of each PSH were

attributed to a species name based on the taxonomic literature and

on the similarity with identified reference shells available in the

Malacology Collection of the MNHN.

Species delimitation
DNA sequences were aligned with MUSCLE 3.8.31 [34] and

accuracy of the alignment was confirmed by eye.

To propose molecular PSHs, 454 COI sequences were analyzed

using the ABGD method (http://wwwabi.snv.jussieu.fr/public/

abgd/abgdweb.html), which tentatively detects for a series of prior

thresholds a gap in the pairwise distribution of genetic distances

that would eventually correspond to the upper limit of intraspecific

distances and lower limit of interspecific distances. A partition of

PSHs is given for each prior threshold tested; each PSH of these

initial partitions are then recursively tested to eventually detect a

second gap in the distribution and propose a recursive partition.

The most inclusive (lumper) and the least inclusive (splitter) among

ABGD partitions proposed were taken into consideration. To

visualize incongruence between these partitions, one sequence of

each PSH of the splitter partition was used to build indicator

vectors according to Sirovich et al. [23,24] to produce a Klee

diagram. Specimens showing .90% of indicator vector similarity

were considered to belong to the same species, and grouped into

corresponding PSHs. Support values for monophyletic PSHs in

both COI and 28S (for a subset of taxa) phylogenies were

compared and evaluated. Maximum Likelihood phylogenetic

inference (ML) was performed for both genes using RAxML

8.1.8 [35], with a GTR substitution matrix [36] and a C-

distributed model of among-site rate heterogeneity with four

discrete rate categories [37]. Three partitions were defined for the

COI gene, corresponding to each position of the codon. Accuracy

of the results was assessed by bootstrap (1000 replicates) using the

rapid bootstrap implemented in RAxML 8.1.8 [38]. Bayesian

Analyses (BA) were performed running two parallel analyses in
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MrBayes 3.1.2 [39], consisting each of eight Metropolis-coupled

Markov chains of 50,000,000 generations each with a 10,000-step

thinning. The number of chains was set to four, and the chain

temperature at 0.02. A GTR substitution model with six

substitution categories and a C-distributed rate variation across

sites approximated in four discrete categories was applied for each

gene (and each of the three partitions of the COI gene).

Convergence of each analysis was evaluated using Tracer 1.4.1

[40], and analyses were terminated when ESS values were all

superior to 200. A consensus tree was then calculated after

omitting the first 25% trees as burn-in.

To evaluate the PSHs proposed with the ABGD/Klee

approach, ABGD/Klee species delimitations were compared with

clustering obtained from two different species delimitation tools,

General Mixed Yule Coalescent (GMYC) and the Poisson Tree

Processes (PTP). Unlike ABGD/Klee, GMYC and PTP use a

previously generated phylogenetic hypothesis to delimitate species

boundaries. GMYC infers species boundaries using the differences

of the branching rates in an ultrametric phylogenetic tree to

discriminate between inter and intraspecific branching events. In

the single-threshold version of the method the switch from

speciation to coalescence is supposed to be unique [41], while in

the multiple thresholds version the initial species partition can be

recursively re-analyzed to further split or join species [42]. Here

we generated an ultrametric tree in BEAST 1.7.5 [43], using a

site-specific GTR substitution matrix [36] and a C-distributed

model of among-site rate heterogeneity with four discrete rate

categories [37]. Relative divergence times were estimated running

four relaxed lognormal clock analyses with a coalescent prior and

a constant population size, that according to Monaghan et al. [42]

are the best-fitting parameters to be used in GMYC analyses.

Convergence of each analysis was evaluated in Tracer 1.4.1 [40],

and analyses were interrupted when ESS values exceeded 200.

After excluding the first 25% trees as burn-in, a consensus tree was

calculated. The consensus tree was then used to infer species

delimitation with the GMYC method, using both the single and

Figure 1. ABGD/Klee species proxy strategy. Species delimitation is shown as a function of time and robustness. ABGD/Klee allows for a fast
and relatively accurate first assessment of species diversity. A sampling of biodiverse taxa is first analyzed by bioinformatics species delimitation tool
ABGD (Automated Barcode Gap Discovery) using the COI gene and visualized by Klee diagrams generated from indicator vectors of COI allowing
primary species hypotheses (PSHs) to be made. Further analyses using integrative taxonomy in which additional characters (genes, morphology,
geography) and criteria (similarity, phylogeny) will generate secondary species hypotheses (SSHs), but this involves a significant increase in time to
produce a definitive robust species hypothesis (RSH).
doi:10.1371/journal.pone.0102160.g001
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the multiple thresholds methods, with the package SPLITS in R

[44,45]. On the contrary, PTP does not require an ultrametric

tree, as the transition point between intra- and inter-specific

branching rates is identified using directly the number of

nucleotide substitution [46]. PTP incorporates the number of

substitutions in the model of speciation and assumes that the

probability that a substitution gives rise to a speciation event

follows a Poisson distribution. The branch lengths of the input tree

are supposed to be generated by two independent classes of

Poisson events, one corresponding to speciation and the other to

coalescence. The ML phylogeny obtained with RAxML as the

input tree was used as described previously, and PTP analysis was

run from Python using the ETE (Python Environment for Tree

Exploration) package [47] for tree manipulation and visualization.

Results

A total of 454 specimens of Terebridae were sequenced for a

658-bp fragment of the COI gene, while a portion of the 28S rDNA

ranging from 696 to 742 bp was sequenced in a subset of 195

specimens and used to build a 758-bp alignment (Data S1 and S2).

The COI alignment was analyzed with ABGD to propose

partitions with variable numbers of PSHs, depending on the prior

threshold and initial or recursive analyses. The more inclusive

(lumper) partition provided by ABGD included 98 clusters, and

the least inclusive (splitter) partition contained 125 clusters. Based

on the COI gene only, GMYC and PTP analyses contained a

variable number of clusters, mostly overlapping with ABGD: 110

in the GMYC single threshold, 130 in the GMYC multiple

threshold and 112 in the PTP (Fig. S1–S3). Sixty-three PSHs are

found identical in the five partitions. If the partitions obtained with

the GMYC multiple threshold method are excluded, the number

of identical PSHs raises to 83.

Eighty-seven morphospecies were identified from the analyzed

terebrid dataset, representing about 25% of the known diversity of

the family, which corresponds to 12 genera as defined in Terryn,

2007 [48], and further classified in Castelin et al. [32]. Sixty-nine

morphospecies were linked to a unique species name, one is

similar to Terebra variegata and 17 were assigned only to a genus

name (designated by ‘‘sp.’’) (Table S1). Eight morphospecies were

split in two or three PSH in both the lumper and the splitter

ABGD partition, namely: Triplostephanus fenestratus (PSHs 16 and

31), T. triseriatus (PSHs 20 and 81), Clathroterebra fortunei (PSHs 17

and 93), Hastula strigilata (PSH 26, 28 and 34), Hastulopsis pertusa

(PSHs 15 and 49), Strioterebrum plumbeum (PSHs 47 and 63), Terebra

succincta (PSHs 2 and 13) and T. textilis (PSHs 4, 79 and 80). The

same pattern is observed in the results from other species

delimitation methods (GMYC single, GMYC multiple and PTP)

(Table S1). In most cases, the two or three PSHs sharing a single

morphospecies name were not closely related, and Klee diagrams

highlighted the low correlation values between them (Fig. 3). Most

PSHs identified are monophyletic with high support values in the

COI phylogeny.

Additionally, ten PSHs defined in the lumper partition were

split in several PSH in the splitter partitions. Incongruence

between the lumper and splitter ABGD partitions can be easily

visualized and evaluated when sequence data corresponding to the

splitter partition are transformed in indicator vectors and used to

build a Klee diagram with the indicator vector method [23,24]

(Fig. 3).

For five groups of PSHs, 13a–b, 24a–d, 71a–c, 81a–c and 98a–

c, the single PSHs identified in the splitter partition are barely

distinguishable in the Klee diagram due to the high correlation (.

90%) between indicator vectors of the PSHs in each group (Fig. 3).

This observation is confirmed by the low support values obtained

in the COI phylogenies for the PSHs groups in the splitter partition

vs. the lumper partition (Fig. 4 & Table S1). Additionally, 28S gene

Figure 2. Known and estimated conoidean biodiversity. The
three predatory marine mollusk groups of Conoidea are illustrated with
representative shells. Conidae (cone snails) in red, Terebridae (auger
snails) in green, and the 14 remaining families, referred to as turrids, in
yellow. The inner dark colors refer to known diversity and the outer
light colors refer to estimated diversity.
doi:10.1371/journal.pone.0102160.g002

Figure 3. Terebridae Klee diagram. Klee diagram for the COI gene
showing the correlation amongst indicator vectors for the less inclusive
(splitter) dataset obtained with the ABGD method and including 125
PSHs. Color gradation in red indicates high correlation values. Arrows
indicate the conflicting PSHs between the more inclusive and the less
inclusive partitions discussed in the text and listed in Table S1.
doi:10.1371/journal.pone.0102160.g003
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sequences were paraphyletic between members of each splitter

PSH. On the basis of these results 13a–b, 24a–d, 71a–c, 81a–c and

98a–c PSHs were rejected and not considered candidate species.

However, three groups of PSHs from the same partition as those

rejected, 3a–d, 12a–b, 30a–b, were clearly recognized in the Klee

diagram (Fig. 3). These splitter PSH groups are mostly monophy-

letic in the COI phylogeny, with support values comparable or only

slightly lower than the lumper partition. Additionally, results

obtained from the GMYC and PTP are congruent and support the

splitting of partitions. For 3a–d, 12a–b, 30a–b PSH groups, 28S

gene results either confirmed the monophyly of the group (e.g. for

30a–b) or were inconclusive. These results substantially reflect a

geographical differentiation. Specifically, Terebra cingulifera (PSH3)

appears split in four species, 3a from Philippines and Solomon

Islands, 3d from Philippines, 3b and c from Vanuatu (Fig. 5). PSHs

12a and 12b were identified as the single morphospecies Myurella

undulata, respectively from Vanuatu and West Africa. The same

pattern is observed in Strioterebrum nitidum, with PSH 30a from

Vanuatu and 30b from East Africa. As a result, 3a–d, 12a–b, 30a–

b PSHs, referring to T. cingulifera, M. undulata, and S. nitidum were

accepted as sound candidate species.

A more complex pattern was retrieved for one of the two cluster

morphologically identified as Triplostephanus fenestratus (PSH 16) and

Duplicaria sp. 3 (PSH 33). PSHs 16 and 33 were split respectively in

three (PSHs 16a–c) and ten (PSHs 33a–j) partitions in the ABGD

splitter analysis. Inspection of the Klee diagram for PSH 16 and 33

clearly shows that correlation values of indicator vectors are lower

than 90% only between two clusters internal to each PSH (Fig. 3).

In other words, the Klee diagram only supports a split between

PSHs 16a–b and 16c, respectively from Philippines and Mada-

gascar) and between PSHs 33a and 33b–j, respectively from

Vanuatu and Madagascar (Fig. 5). This result, although not

congruent with ABGD analyses, is supported by GMYC analyses

and, in case of PSH 33, by PTP analysis as well. PSHs 16a–b and

16c and 33a and 33b–j were thus accepted as candidate species.

In summary a partition of 104 Primary Species Hypotheses are

proposed that are congruent based on different characters (COI,

28S), criteria (similarity, phylogeny) and species delimitation

methods (ABGD/Klee, GMYC, PTP).

Discussion

A two-step species delimitation strategy of ABGD and Klee

diagrams was used to propose 104 primary species hypotheses for

the conoidean family Terebridae. Our results reinforce that the

ABGD/Klee strategy is both fast and robust. The majority of

PSHs proposed by ABGD/Klee were confirmed by additional

evidence, 28S gene/morphological variability, and species delim-

itations methods GMYC and PTP, suggesting that a large number

of PSHs obtained by ABGD/Klee would be validated by a more

comprehensive integrative approach. Congruence across results

obtained with different methods is critical to strengthen confidence

in proposed species delimitation hypothesis [21]. For the

Terebridae dataset used, 17 cryptic species were identified based

on congruence of ABCD/Klee, GMYC, and PTP analyses.

Except for an apparent overestimation of PSHs in GMYC

multiple threshold analysis, general agreement was observed in

proposed terebrid species partitioning. Overestimation in species

number is a common issue when using a multiple threshold

method [49], especially when dealing with species with strong

intra-specific genetic structure, due to features such as limited

dispersal abilities [50].

While some of the proposed terebrid taxonomic issues presented

cannot be resolved without a full integrative taxonomy approach,

ABGD/Klee has provided a solid foundation for further

investigation. In a number of cases, e.g. in T. textilis, (PSHs 79

and 80), S. plumbeum (PSHs 47 and 63), H. pertusa (PSHs 26, 28 and

34), T. triseriatus (PSHs 20 and 81), T. fenestratus (SSHs 16 and 31)

and T. cingulifera (PSHs 3b and 3c), the proposed pairs or triplets of

PSHs were collected in at least one common area, and are

considered sympatric (Table S1). In such cases the phylogeo-

graphic pattern observed strongly supports the results obtained

with our approach. The observed levels of genetic differentiation

indicate that these ABGD/Klee PSHs correspond to valid species,

with a remarkable extent of morphological convergence of their

shell features.

In other instances, the identification of two or more PSHs in

single morphospecies of our sample correlated with a disjunct

geographic distribution, e.g. in T. succincta (PSHs 2 and 13), C.

fortunei (PSHs 17 and 93), T. textilis (PSHs 4, 79 and 80), T.

fenestratus (PSHs 16ab and 16c), M. undulata (PSHs 12a and 12b)

and T. cingulifera (PSHs 3a, 3b, 3c and 3d) (Fig. 5). For these

putative allopatric species pairs, a more complete integrative

approach taking into account evidence such as dispersal abilities is

needed to rule out the possibility that genetic differentiation is due

to an intraspecific geographic structure for PSH pairs. In disjoint

populations, reduced dispersal abilities are generally linked to

higher levels of interpopulation genetic divergence [51]. In marine

environment, dispersal ability of benthic organisms is frequently

influenced by the duration of their larval stage. This can be

extremely variable, even in closely related species, ranging from

remarkably long (species with teleplanic planktotrophic larvae), to

short (species with lecitotrophic pelagic larvae), or even absent

(species with intracapsular development or brooding) [52,53]. In

Caenogastropoda, the mode of larval development can be inferred

from the protoconch morphology and has been shown to exert a

remarkable influence on microevolutionary processes [53,54].

Remarkably, there are no cases in which two morphological

distinct species are joined in a single PSH using ABGD/Klee

approach, suggesting that the use of morphological characters in

Terebridae is not likely to lead to alpha errors in biodiversity

estimate (e.g. overestimation of the number of species), due to a

general lack of informativeness of shell characters.

For the Conoidea, DNA-based taxonomy has frequently

resulted in the discovery of new species [31]. More specifically,

for the hyperdiverse family Turridae, more than half of the

delimited species were not congruent with the morphospecies

hypotheses [27]. In that case, the ABGD/Klee strategy coupled

with GMYC allowed the identification of 87 species, more than

doubling the number species for the genus Gemmula alone. In

contrast, the number of new candidate species identified for

terebrids via the ABGD/Klee approach is roughly 4% of the 350

total number of recognized species. This finding is in agreement

with the high congruence generally observed between molecular–

based species delimitation and morphospecies hypothesis for the

Terebridae [32]. In the terebrid and turrid families of the

Conoidea, the ABGD/Klee approach, and more generally, a

single gene approach, was successful in defining PSHs, validating

this approach for hyperdiverse marine mollusks and other

biodiverse organisms. Additionally, as ABGD/Klee is based on a

single COI gene analysis it requires less than a few minutes of

computation time to analyze relatively large datasets such as the

400–1,000 sequences of conoidean terebrids or turrids. Differently

from PTP analysis, which is also relatively fast, ABGD/Klee

approach only relies on sequence similarity thresholds. This

characteristic makes ABGD/Klee more suitable for hyperdiverse

taxa, where robust single gene phylogenies are difficult to obtain

and hamper the accurateness of species delimitation in tree-based

Rapid and Robust Species Proxies in Auger Snails
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Figure 4. Terebridae COI phylogeny. Bayesian phylogenetic tree estimated with the COI gene alignment. Clades including several specimens
identified as a single morphospecies are compressed in triangles. Green circles indicate PP = 100; Blue upward triangles indicate PP.80; Black
downward triangles indicate PP.50.
doi:10.1371/journal.pone.0102160.g004

Figure 5. Geographical distribution of Terebridae specimens analyzed.
doi:10.1371/journal.pone.0102160.g005
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methods [21]. Another difference is that PTP may overestimate

the number of species when taxon sampling is uneven between

species [46], a common issue especially in hyperdiverse groups.

Admittedly, the ABGD/Klee strategy may define some PSHs

that could be invalidated by a comprehensive total evidence

analysis, but for biodiversity hotspots, a tactical approach such as

ABGD/Klee is satisfactory, as it represents a good compromise

between rapidity and robustness. In instances such as, biodiversity

inventories of threatened environments, species richness estima-

tions, and metabarcoding of soil or gut contents, especially in the

emergency imposed by the context of the recent increase in the

extinction rates, the application of ABGD/Klee would produce

stable proxies of species hypotheses in order to advance scientific

investigations. In biomedically relevant groups such as the

conoideans, time-efficient species delimitation is a fundamental

prerequisite for drug discovery [55]. Plurality of characters and

methods is important for deciphering temporal order of evolving

traits, and relying on a single trait is not ideal, but every race has a

starting line, ABGD in combination with Klee diagrams is a robust

starting line for species delimitation in hyperdiverse taxa.
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Développement (IRD) and Pro-Natura International (see Castelin et al.

[32] for details). The authors acknowledge support from P. Bouchet, B.

Buge, J. Brisset and J. Utge for access to, processing, and curation of the

specimens used in this study. M. Oliverio is acknowledged for discussion on

larval development and microevolution. The phylogenetic analyses were

partly performed on the CIPRES Science Gateway (https://www.phylo.

org).

Author Contributions

Conceived and designed the experiments: MVM NP. Performed the

experiments: MVM NP MC. Analyzed the data: MVM NP MC YZ.

Contributed reagents/materials/analysis tools: MH. Wrote the paper:

MVM NP MC MH YZ. Conducted fieldwork to collected specimens:

MVM MH MC NP.

References

1. Richer de Forges B, Hoffschir C, Chauvin C, Berthault C (2005) Census of deep-

sea species of New Caledonia. Rapport Scientifique et Technique II6, volume
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