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Summary

In biomedical research such as the development of vaccines for infectious diseases or cancer,

measures from the same assay are often collected from multiple sources or laboratories.

Measurement error that may vary between laboratories needs to be adjusted for when combining

samples across laboratories. We incorporate such adjustment in comparing and combining

independent samples from different labs via integration of external data, collected on paired

samples from the same two laboratories. We propose: 1) normalization of individual level data

from two laboratories to the same scale via the expectation of true measurements conditioning on

the observed; 2) comparison of mean assay values between two independent samples in the Main

study accounting for inter-source measurement error; and 3) sample size calculations of the

paired-sample study so that hypothesis testing error rates are appropriately controlled in the Main

study comparison. Because the goal is not to estimate the true underlying measurements but to

combine data on the same scale, our proposed methods do not require that the true values for the

errorprone measurements are known in the external data. Simulation results under a variety of

scenarios demonstrate satisfactory finite sample performance of our proposed methods when

measurement errors vary. We illustrate our methods using real ELISpot assay data generated by

two HIV vaccine laboratories.
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1 Introduction

In the development of an effective vaccine against a particular infectious disease or cancer,

vaccine-induced immune responses are routinely assessed in Phase I and II preventive or

therapeutic vaccine trials. Wherein trials of antibody-based vaccines typically evaluate

vaccine-induced neutralization and/or binding antibody responses, trials of cell-mediated-
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immunity (CMI)-based vaccines typically evaluate vaccine-induced T-cell responses. When

comparing two vaccine candidates or evaluating a single candidate, it is common that a

certain immune response (e.g., the percent of vaccine-induced T-cells secreting Interferon-

gamma among vaccinated subjects) is assessed by two different laboratories. This often

occurs when collaboration across multiple laboratories is desirable or when one single

laboratory is not feasible or optimal for expedited evaluation of a given vaccine candidate in

a large multi-center trial. Because independent samples are tested by each laboratory, these

studies are hereafter referred to as the “Independent two-sample” or the “Main” study. In

these studies, however, the true underlying immune responses are unknown or cannot be

observed exactly. Instead, along with random errors, the observed readouts may carry lab-

specific and, possibly, sample-specific measurement errors. Ignoring these systematic errors,

especially when pronounced, may misguide high-stake decisions on advancement of vaccine

candidates from early to late stage clinical trials or on identification of immune correlates of

protection in efficacy trials. While we use the vaccine evaluation as an illustrative example

throughout, the discussion also pertains to other biomedical fields where interest lies in

comparing or combining data collected from multiple sources.

Many other researchers have tackled the problem of correction for measurement error by

using external or internal validation studies (e.g., [1] and [2]). These methods often assume

that the true underlying responses, X, are measured in the validation studies and hence

parameters in the measurement error models for the error-prone measurement, W, are

identifiable. In addition, issues with data from multiple sources are usually not explicitly

considered. In vaccine immunology, however, not only may data come from different

sources, the accuracy of many of the immune responses, especially cellular responses cannot

be evaluated due to the lack of human cell standards with known X values. Fortunately, the

information or extra data needed to correct for inter-laboratory measurement error in W may

be available. With the increasing awareness and willingness for collaboration across

institutions or laboratories, considerable efforts have been devoted to assess the

comparability of assays performed by different laboratories based on a common set of

biological specimens. For example, the Association for Immunotherapy of Cancer (CIMT)

generated large inter-laboratory immunological assay data from centrally prepared

specimens by multiple laboratories under the CIMT Immunoguiding Program (CIP) ([3] and

[4]); the Comprehensive T Cell Vaccine Immune Monitoring Consortium (CTC-VIMC)

under the Bill & Melinda Gates Foundation funded Collaboration for AIDS Vaccine

Discovery (CAVD) conducted several studies (e.g., [5] and [6]) to assess the comparability

of both cellular and antibody-based assays across its clinical immunogenicity testing

laboratories. Because the same specimen is usually divided equally and tested by each

laboratory, these studies are hereafter referred to as the “Paired-sample” or “Assay-

comparison” studies.

In this paper, we describe and evaluate methods to correct for measurement error in the

Main study via integration of data from the Assay-comparison study. Specifically, in Section

2, we introduce methods to 1) normalize or calibrate individual level data in the Main study,

2) estimate and test mean differences in the Main study, and 3) calculate sample sizes for the

Assay-comparison study. In Section 3, we study the characteristics and performance of the
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proposed methods based on simulation studies. In Section 4, we illustrate the proposed

methods using a real data example. A discussion is provided in Section 5.

2 Methods

We first describe the notations for the two types of studies. Without explicit indication of

replicates, noted observable variables in the following refer to either the average of

replicates or a single measurement. In the Assay-comparison study, let X1, …, Xn denote a

size n random sample from some population of true immune response levels. Two

laboratories, lab 1 and lab 2, measure all n specimens separately. That is, for a given Xi = xi,

i = 1, …, n, readouts from the two labs,  and , i = 1, …, n, are independent. Xi, i = 1,

…, n, are identical and independently distributed (i.i.d) with mean μ and variance , but are

unobserved. Realizations of  and , i = 1, …, n, carrying measurement error are

observed from labs 1 and 2, respectively.

We assume an additive error model for V(1) and V(2) as

(1)

where  and  for j = 1, 2 and i = 1, …, n, with |xi denoting

“given Xi = xi”. u(1) and u(2) represent lab-specific measurement error from labs 1 and 2 in a

broad sense because they may be error related to measurement, instrument or sampling

design. In the following, when the superscripts are dropped, V refers to either V(1) or V(2),

and u refers to either u(1) or u(2).

Of note, the classical measurement error model often requires  (e.g., [7] and

[8]). Here, such a strict assumption is not necessary because our goal is not to estimate the

true mean, μ, unbiasedly but to bring data from multiple laboratories to the same scale.

Instead, we have a more general assumption that  is equal to a constant (i.e., δj),

which may or may not equal to 0. Such an assumption is more realistic in our situation

because data from different laboratories may have different levels of nonzero mean shift. In

addition, as long as the constant, δj, is not related to the specific sample or its value, but only

to a specific lab, such an assumption has two important implications:

i. , using double expectation, and

ii. Cov(u, X) = 0, since

Cov(u, X) = E(Cov(u|X, X|X)) + Cov(E(u|X), E(X|X)) = E(0) + Cov(δ, X).

Interestingly, as pointed out by [9] this holds true even if var(u|x) is a function of x.

Often times the Assay-comparison study includes mi replicate values Vi1, …, Vimi
for each sample i. Besides the constant assumption on the unconditional mean, as

shown in Remark 1 of [9], the unconditional variance of Vi is also constant for all i

as long as mi is not a random variable, even when the conditional variance of ui
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may depend on xi or on any inherent variation associated with the unit i. That is, for

all i:

iii. , where τ2 = E(var(ui|xi)).

Implication (iii) holds true when the sampling design on replicates is a) associated

with the unit (Definition 4 in [10]), b) fixed with each mi = m, or c) identically

distributed for each selected unit. Because of this, without loss of generality, in this

paper we demonstrate our methods by assuming that the conditional variance of ui

is not related to the specific sample or its value, but only to a specific lab, i.e.,

 for all i = 1, …, n and j = 1, 2. Consequently, let Δ = V(2) −

V(1), we then have the mean and variance of Δ as E(Δ) = μΔ = δ2 − δ1 and

.

In the Main study, let , …,  and , …,  denote two independent random

samples of sizes n1 and n2 from a “population” of true immune response levels that are,

respectively, measured by the same two laboratories, labs 1 and 2. , i = 1, …, n and j =

1, 2, are i.i.d with mean μj and variance . Instead of realizations of X(1) and X(2),

realizations of W(1) and W(2) carrying lab-specific measurement error are observed from labs

1 and 2, respectively. Of note, the two independent samples may or may not be measured

under the same study conditions, e.g., treatment or disease status.

Again, we assume an additive error for W(1) and W(2) as for V(1) and V(2). In addition, we

assume the measurement error terms, u(1) and u(2) are transportable from the Assay

comparison Study to the Main study. That is,

Consequently, the variance of the observable W(1) and W(2) are  and

, respectively.

2.1 Normalization of individual level data in the Main study

In the Main study, one may desire to understand the underlying responses X(1) and X(2), for

example by studying their association with other study data, such as clinical outcomes or

subject-specific characteristics. We propose to “normalize” or “calibrate” the observed, but

error-prone individual level data to a common scale and use the normalized values for

across-lab data inferences. Since it is often infeasible to have external validation data to

estimate the distribution of the individual measurement error with unknown standards, we

do not intend to estimate the absolute values of the X′s unbiasedly.
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Without loss of generality, we choose lab 1 as the reference lab and carry out such a

normalization process on the scale of lab 1 by assuming δ1 = 0. We assume the ( , )

pairs follow a bivariate normal distribution: (X(1), W(1))′ ∼ N ((μ1, μ1 + δ1)′, Σ) where

As shown earlier, X(1) and u(1) are uncorrelated regardless of the form of the measurement

error variance. Therefore, we have

. Then, the conditional

distribution is as follows:

(2)

where μ1 and  are the population mean and variance of X(1),  is the variance of

W(1), δ1 and  are the unconditional mean and variance of u(1).

We construct individual level data x(1) as x̃(1) via its conditional distribution mean, E(X(1)|

(W(1) = w(1))). We then substitute the sample counterparts for μ1 (= μ1 + δ1 because δ1 = 0),

, and .

Let  and  denote the sample mean

and variance, respectively, of . Under the aforementioned assumptions on the X′s and on

the conditional mean and variance of u, it can be shown that E(w̅(j)) = μj + δj and

 (result 1 of [10] where E(u|x) = 0 is substituted by E(u|x) = δj in their

proof), regardless of the type of heteroscedasticity of ui. Specifically, we can replace both μ1

and μ1 + δ1 with w̅(1),  with  and  with lab 1 measurement error variance

estimated via replicates from the Main study, the Assay comparison study or historical

studies of the same assay from the same lab.

Similarly, we construct x(2) as x̃(2) by a sample estimator of the conditional mean,

, where we replace μ2 + δ2 with the sample mean of w(2), δ2

with the sample counterpart of E(Δ), i.e., the sample average of (v(2) − v(1)) from the Assay

comparison study,  with  and τ2 with measurement error variance estimated

via replicates as for lab 1 data. After accounting for inter-lab measurement error in this

normalization step, these individual level data estimates can then be directly used for across-

lab inferences.
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2.2 Estimation and testing of the mean difference in the Main study

Next, we estimate the mean difference, μ2 − μ1 of the true underlying responses in the Main

study. Some simple derivations lead to an unbiased estimate of the mean difference without

any assumption on the joint distribution of X and W. Specifically, because

taking expectation on both sides, we have

The mean difference, ε = μ2 − μ1 = E(X(2) − X(1)), can hence be expressed as

(3)

where W(1), W(2) and Δ are mutually independent. An unbiased estimate for ε is given by

(4)

where w̅(2) − w̅(1) and Δ̅ can be estimated from the observed Main study data and the Assay-

comparison study data, respectively. The variance of ε̂ is expressed as

(5)

Because of equation (3), to test whether the mean difference is different from zero, i.e., H0 :

μ1 − μ2 = 0 versus Hα : μ1 − μ2 ≠ 0, it is equivalent to testing H0 : E(W(2)) − E(W(1)) − E(V(2)

− V(1)) = 0 versus Hα : E(W(2)) − E(W(1)) − E(V(2) − V(1)) ≠ 0. Under large sample theory, ε̂

follows a normal distribution with mean ε and variance . Therefore, the null hypothesis is

rejected at the α level of significance if

(6)

where zα/2 is the upper (α/2)th quantile of the standard normal distribution.

2.3 Sample size requirement for the Assay-comparison study

When the Main study data are collected from different sources that may carry varying

measurement error, it is often desirable to conduct an external study to assess the

comparability of measurements between the data sources. Paired samples are mostly used in

such comparison studies to minimize possible confounding factors and to increase efficiency
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of comparisons. It is important to plan for an appropriate sample size for such comparison

studies in order to achieve satisfactory power for the Main study objectives.

Suppose the hypotheses of interest for the Main study are

Based on equations (5) and (6), under the alternative hypothesis that ε ≠ 0, the power of the

above test is given by

(7)

after ignoring a small term of value ≤ α/2, where Φ is the cumulative standard normal

distribution function. As a result, the sample size needed to achieve power 1 − β in the Main

study can be obtained by solving the following equation

This leads to the folllowing sample size for the Assay comparison study:

(8)

Note that similar calculations can be made for a one-sided test.

3 Simulations

We assess the performance of our proposed methods in two separate simulation studies in

the following two subsections.

3.1 Effect of individual-level data normalization

Main study—We consider case-control studies where biomarkers (e.g., vaccine-induced

immune responses) are ascertained after the occurrence of the studied condition (e.g., HIV

infection) on stored specimens from subjects with the condition (i.e., cases, D = 1) and those

without the condition (i.e., controls, D = 0). Biomarker data, X(1) or X(2), from cases and

controls (ratio=1:4) are associated with D in a logistic form:
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where β0 = −2.9, β1 = log(2.0) or log(5.0); X|D = 0 are normally distributed with mean 5.0

and standard deviation 1.0 and X|D = 1 are normally distributed with mean (5.0 + β1) and

standard deviation 1.0. A total of n1 + n2 = 250 (50 cases vs. 200 controls) or 1500 (300

cases vs. 1200 controls) are simulated with equal number of cases and controls measured by

two laboratories, Lab 1 and Lab 2. The measurements follow an additive measurement error

model, , i = 1, …, nj, j = 1, 2, where u(j) are normally distributed with

mean δj = 0, 0.5 or 1.0 and standard deviation , 0.5 or 1.0.

Assay Comparison study—We assume X follows a normal distribution with mean of

5.0 and standard deviation of 1.0. The error-prone data, V(j) are collected from Lab 1 and

Lab 2 on a common set of n = 100 or 500 specimens. These specimens are measured in

triplicates from Lab 1 and Lab 2 following the additive error model, , i = 1, …,

n, m = 1, 2, 3, j = 1, 2.

For each scenario, 1000 Monte Carlo simulations were performed. Tables 1 and 2 display

the simulation results for n1 + n2 = 250 and 1500, respectively. Characteristics of the

estimator for β1 including bias, mean standard error (MSE) and coverage of the 95%

confidence intervals are reported from three models: regressing D on the underlying X

(True), the normalized X̃ (Regression Calibration or RC) and the raw error-prone W (Naïve).

The standard error of β̂
1 from the RC models were estimated by bootstrap method of 1000

re-samplings stratified by lab. In Table 1 with n1 + n2 = 250, we observe that there is almost

an uniform attenuation of the βl effect due to measurement error shown as a negative bias of

β̂
1 for the RC and the Naïve models, except when the measurement error is small (i.e., = 0.1)

in few scenarios for the RC model. While the bias of the Naïve model can get seriously large

when the measurement error is non-ignorable with sizable variance or mean-shift, the bias of

β̂
1 of the RC models is considerably lower than that from the Naïve model under all studied

scenarios. Satisfactory performance of the RC model and improvement of the RC model

over the (Naïve) model are also demonstrated based on the MSE quantities and the coverage

of the estimates. Similar patterns are observed in Table 2 with n1 + n2 = 1500, where the

finite sample performance of our method is improved over increased sample size with

smaller Monte Carlo run errors. The performance of the RC method also improves slightly

when we increased the size of the Assay-comparison study to n = 500 (results not shown).

3.2 Estimation and testing of mean difference

We assume that X from the Assay-comparison study, X(1) and X(2) from the Main study for

comparison, and the measurement error terms, u(1) and u(2) all follow normal distributions.

We assume μ = 5, , δ1 = 0, . Based on these parameter

values, similar to the previous simulation study, the same additive measurement error

models were used to simulate V(j) in the Assay-comparison study and W(j) in the Main study.

For different values of τ2 = 0.1, 0.5 or 1.0, δ2 = 0, 0.5, 1.0 or 2.0, Table 3 presents the

probability of rejecting H0 : μ1 = μ2 under the null when μ1 = μ2 = 5.0 for n = 50, n = 100

and n = 200. Results from the following three methods are reported: comparing the observed

data W(1) vs. W(2) in the Main study without any adjustment (“Raw”), comparing the

observed data W(1) vs. W(2) with adjustment discussed in section 2.2 (“Adj”), and comparing
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the simulated unobservable values of X(1) vs. X(2) (“True”). We can see that the type I errors

are well preserved in the true method, as expected. Type I errors from the Raw method are

seriously off especially when the measurement error variance and/or mean shift becomes

large. The Adj method provides satisfactory control of type I errors in all the studied

scenarios, even when the sample size of the Assay-comparison study is as small as n = 50

and the sample size of the Main study is as small as n1 = n2 = 50.

Figure 1 presents the probability of rejecting H0 based on the Main study data under H0

(right panels) and under the alternatives when (μ1 = 5, μ2 = 5.25) and (μ1 = 5, μ2 = 5.5) (left

panels) as the sample size of the Assay-comparison study increases from n = 50 to 200.

Results from the True and the Adj methods are included; the Raw method is excluded

because the type I error was not preserved as shown in Table 3. On the left panels, we can

see that the adjusted power for the Main study increases with the sample size of the Assay-

comparison study because the precision of the measurement error estimates increases as the

sample size of the Assay-comparison study increases. We also see that the adjusted power

decreases as the variance of the measurement error increases from τ2 = 0.1 to τ2 = 1.0, but

the power does not change when the measurement error mean shift changes from δ2 = 0 to

δ2 = 0.5 (data not shown). This is expected because the power of the adjusted method is

inversely related to σε but does not depend on δ2 as shown in equation (7). In addition, we

observe that, when μ2 = 5.25 the adjusted power (solid black line) rests at low levels because

it is limited by the sample size of the main study, the sample variance and the assumed small

effect size, as much as is shown for the true power (solid red line). On the right panels, we

observe that the Type I error is maintained for all the sample sizes.

4 Examples

We illustrate our methods of individual-level data normalization and testing of mean

difference using real data collected from two HIV vaccine laboratories: the HIV Vaccine

Trial Network (HVTN) Central Laboratory (Lab 1) and the Merck Co. Research Laboratory

(Lab 2) in a Phase IIB HIV vaccine clinical trial as described previously ([11] and [12]).

Although responses were measured from both vaccine and placebo recipients against

multiple HIV peptide pools, for illustration we restrict both the Assay-comparison study and

the Main study data to post-immunization ELISpot assay measurements only from vaccine

recipients against the HIV Gag peptide pool. The assay readout is the number of spot

forming cells (SFC) per million peripheral blood mononuclear cells (PBMCs). All responses

were natural log transformed.

In the Assay comparison study, n = 234 specimens from vaccine recipients collected at 30

weeks after the first immunization were tested by both labs. In Figure 2, the upper panels

show data from the Assay-comparison study of n = 234 samples: boxplots (panel A) of the

average HIV Gag antigen stimulated responses over three replicates and a scatter plot (panel

B) of these responses with an identity line (Y = X). These data have a mean of 5.36 and

standard deviation of 1.02 from Lab 1 and mean of 5.52 and standard deviation of 0.87 from

Lab 2. We assume δ1 = 0, and δ2 was hence estimated to be 0.16. τ1 and τ2 were estimated

to be 0.17 based on triplicates available from Lab 1. No replicate data from Lab 2 was
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available. We can see that although measured on the same set of samples, Lab 2

measurements are noticeably higher than those from Lab 1.

In the Main study, n1 = 602 and n2 = 438 specimens from vaccine recipients collected at the

primary immunogenicity time-point, 8 weeks after the first immunization, were tested by

Lab 1 and Lab 2, respectively. Among these, 26 specimens were measured by both labs.

These 26 pairs of data from the Main study will be used as a small validation data set

(referred as paired subset) to assess the performance of our proposed method for individual

level data normalization.

First, we applied our method described in section 2.1 to normalize the data from the Main

study, including the paired subset. Since the 26 data pairs were from the same set of

specimens, we expect the “true” values after normalization to be similar. We can see that our

proposed method did help to bring the measurements to a similar scale for the paired subset

data (Figure 2 Panel C). Specifically, before normalization, the means were 5.81 and 6.03

from Lab 1 and Lab 2, respectively (paired t-test p-value= 0.03). Based on the normalized

values, however, the means were 5.80 and 5.85, respectively (paired t-test p-value = 0.63).

In Panel D, values before and after normalization from all samples in the Main study are

displayed. Specifically, before normalization, the means were 5.30 and 5.35 from Lab 1 and

Lab 2, respectively; after the normalization, the means were 5.30 and 5.18, respectively.

These normalized values from Lab 1 and Lab 2 can then be pooled and used as either a

covariate or outcome variable in subsequent analyses.

Second, assume in a Main study we are interested in comparing ELISpot immune responses

induced by two vaccine candidates separately evaluated on n1 and n2 samples by Lab 1 and

Lab 2, respectively. We applied the sample size calculation formula in (8) with

,  and  as estimated from the data presented above for

illustration. With n1 = n2 = 150, it turns out that n = 24 samples are needed in the Assay-

comparison study in order to have least 90% (i.e., β = 0.1) power in the Main study to detect

a half log change (i.e., ε = 0.5) in ELISpot responses between the two vaccine candidates at

a two-sided type I error rate of α = 0.05.

5 Discussion

As the biomedical field and information technologies advance, it is increasingly desirable

and feasible to collaborate across multiple entities and to consolidate data collected from

multiple sources for comparison or merging purposes. However, if not handled

appropriately, variation across data sources may pose serious problems to the validity of

such combined data. We proposed a method for individual-level data normalization so that

data from multiple sources are calibrated to the same scale for appropriate comparison or

merging. This approach is often used in calibrating error-prone covariates in regression

settings (e.g., [13], [14] and [15]). We extended this popular method to our context where

data come from two sources bearing possibly different measurement error terms, and the

true values of the error-prone measurements are never observed. We assumed a bivariate

normal distribution for the true and observed variables, however, other context-driven

distributions can be explored and the corresponding conditional mean can be used for
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calibration similarly. Of note, mixture distributions or a separate normalization for each

condition can be considered when there is a mixture of responses collected under multiple

conditions (e.g., treatment and control) from both the Assay Comparison study and the Main

study. We also proposed a method for comparing data from multiple sources accounting for

possible inter-source measurement error without assumptions on the joint distribution of the

true and observed values. Unlike traditional methods for measurement error correction, our

proposed methods do not require internal or external validation data where the true values

for the error-prone measurements are observed. Instead, paired sample data, for example, of

an Assay-comparison study collected from the same sources, are used to carry out the

adjustment described in our methods. In addition, we provided sample size calculations for

the Assay-comparison study in order to achieve desirable power for comparing samples

between labs in the Main study. This is useful for researchers to consider before planning to

compare data from multiple sources.

Besides using the conditional expectation of X|w for individual-level data normalization,

alternatively, W1 and W2 can be re-scaled using inverse cumulative density functions (cdf).

Let  and  denote the cdf of V1 and V2 from the paired-sample data. We could consider

transforming W1 and W2 onto  and  so that they are comparable. More

research is needed to better understand this approach.

Other issues remain to be addressed for comparing and combining data across multiple

sources. For example, some bioassays have certain limit of detection where a mixture

distribution may need to be considered for the error-prone measurements; such limit of

detection may vary between data sources. In addition, the verification of the assumed

transportability of the measurement error term may require using a subset of the same

biomarker targets in both the Assay-comparison study and the Main study.
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Figure 1.
Simulation results: Empirical power of rejecting H0 : μ1 = μ2 under scenarios of (μ1 = 5.0, μ2

= 5.25) and (μ1 = 5.0, μ2 = 5.5) (left panels) and empirical type I error rate under H0 (right

panels) in the Main study, as a function of the sample size of the Assay-comparison study.

Huang et al. Page 13

Stat Med. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. ELISpot assay immune responses measured by two labs from a Phase IIB HIV vaccine
clinical trial: distribution of the Assay-comparison study data (Panel A & B) and distribution of
the Main study data before and after normalization (Panel C & D)
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