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Mapping Your Every Move 

By Edvard Moser, Ph.D., and May-Britt Moser, Ph.D. 

 

 

 

 

 

Editor’s Note: In 2005, our authors discovered grid cells, which are types of neurons that are 

central to how the brain calculates location and navigation. Since that time, they have 

worked to learn how grid cells communicate with other types of neurons—place cells, border 

cells, and head direction cells—to affect spatial awareness, memory, and decision-making. 

Because the entorhinal cortex, which contains the grid-cell navigation system, is often 

damaged in the early stages of Alzheimer’s disease, future research to better understand how 

cognitive ability and memory are lost has great potential significance for the treatment of 

Alzheimer’s and other neurological disorders.   
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The most advanced surveillance system you will ever find is built into your own brain and 

nurtured by evolution. It comes equipped with a coding system that stockpiles and maps your 

lifetime of events in high definition. Through new research tools and insights, scientists are 

gradually coming to understand this coding system and its intrinsic mathematical principles. 

 

Researchers have long known that different kinds of neurons play different roles in the brain, 

but only in the past few decades have scientists had access to the imaging and measurement 

tools they need to see how different neurons react when the brain is challenged with different 

tasks. We have focused on understanding how the brain helps us navigate in the environment, 

both because it is intrinsically interesting and because it turns out that navigation—finding our 

way—is linked to the way we store memories.  

 

We now know that this coding system works like your own air traffic controller—monitoring 

every movement you make, knowing every step you ever made, and creating links to every 

event and experience you have had. Essentially, while your brain is making mental maps to help 

you navigate, it is also overlaying memories—experiences, smells—onto those maps.   

 

From Map to Memories 

This ability of the brain to overlay recollections creates a cognitive map—a multilayered 

collection of memories—rather than a mere cartographic map. It also means that learning how 

the brain computes navigation is a step toward understanding how networks are built up in the 

cerebral cortex, the part of the brain that is responsible for imagination, reasoning, and 

planning—thought processes that make us human.  

 

Further insight into how the brain builds networks in the cerebral cortex can potentially lead to 

interventions that spare millions of people from the debilitating effects of brain disorders and 

diseases. The economic consequences are already significant. One study attributes an estimated 

35 percent of all burden of disease in Europe to brain disorders.1 Another study put the total 

cost of treatment for brain disorders in 2010 at roughly $1.09 trillion.2 Partly due to economic 

forecasts, the Obama administration has recognized the importance of funding basic 

neuroscience research by establishing the National Institutes of Health’s Brain Research through 

Advancing Innovative Neurotechnologies (BRAIN) Initiative.  
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All of these factors underscore why developing insights into the detailed workings of the brain is 

pivotal for both preventing and treating disorders of memory, and why focusing on the workings 

of the mammalian spatial-navigation system is so crucial. While what we do is basic research, 

our work nevertheless examines the very same system that collapses in the case of dementias 

such as Alzheimer’s disease. Every new piece of knowledge that researchers gather contributes 

to understanding the puzzle posed by the brain. And we are only just beginning to see the 

bigger picture.  

  

Encoding Experience on a Map 

For a long time psychologists have studied how animals move in and relate to space as a way to 

understand the larger rules governing how and why we do what we do. Initially, most scholars 

thought that behavior was simply a matter of stimuli triggering responses. But in 1948, cognitive 

physiologist Edward C. Tolman suggested a new way to view behavior. The brains of humans 

and other animals, Tolman said, have a kind of map of their spatial environment, and they 

encode experience on top of that map.3 This idea led to the introduction of the cognitive map.  

 

Tolman’s idea was debated but not fully accepted until 1971, when John O’Keefe and John 

Dostrovsky discovered place cells.4 Place cells, which fire when an animal is in a specific place, 

are located in the hippocampus, a paired structure deep inside the brain underneath the 

cerebral cortex. In experiments, these cells “fired” whenever a rat was in a certain place in its 

local environment—an indication that there was suddenly something in the brain that actually 

looked like a map. This finding also helped demonstrate that humans and other animals could 

make mental maps rather than simply relying on landmarks. 

 

In 1978, O’Keefe and Lynn Nadel took this one step further, proposing that place cells provide 

animals with a dynamic, continuously updated representation of space and the animal’s position 

in space.5 Tolman, it seemed, was right after all. 

 

Discovering Grid Cells  

The discoveries of the 1970s gave scientists more clues about what to look for and where to find 

it. So they looked—and found. One key discovery was head direction cells, which fire when 

animals face in a certain direction, regardless of the animal’s position.6,7  
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In 2005, our laboratory discovered another kind of cell, called the grid cell, which is located in 

the entorhinal cortex, right next to the hippocampus.8 As its name suggests, grid cells create a 

regular, triangular grid by firing when an animal passes over equally spaced locations. The grid 

looks very much like the pattern on a Chinese checkers board.  

 

Three years later, our lab and another lab simultaneously reported the existence of yet another 

type of cell, called a border cell, which fires when an animal is near its environment’s border, 

such as a wall or an edge.9,10 

 

The collective significance of these findings is that the reactions of the neurons can be matched 

to what is found in the external world. It is still too difficult to trace other types of complex 

thinking to their sensory origins. Where information is combined across sensory systems, the 

firing patterns of the neurons involved are too diffuse for us to detect patterns and relationships 

to what is happening in the external world. 

 

HM’s Legacy 

We know the hippocampus is critical in forming memories, in part because of the unfortunate 

experiences of an American patient known as HM, who had surgery in 1953 to remove most of 

his hippocampus as a cure for his extreme epilepsy. The surgery succeeded on one level by 

reducing his epileptic seizures, but it left him unable to make new memories.  

 

HM is not the only patient whose experiences have illuminated the workings of memory. Many 

others who suffered injuries to the hippocampus have helped underscore the important 

connection between this part of the brain and memory formation. We know that one of the first 

symptoms of Alzheimer’s disease is that patients get lost—and that the first place where a 

patient’s brain cells begin to die is in the entorhinal cortex. 

 

Essentially, if you have lesions in these areas of the brain, you lose your ability to find your 

way—and your ability to recall all other types of memories. Memory is deeply and physically 

connected to our perception and encoding of space. Thus, a detailed understanding of this 

region of the brain and the operations of its neurons may have the additional benefit of 

illuminating the mechanisms behind Alzheimer’s disease and related dementias. 
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New Technologies 

As young researchers, what we most wanted to understand was behavior, as well as the origins 

of complex psychological functions. It’s a question that will take many lifetimes to answer. So by 

focusing on something more accessible, such as the way space is represented in the brain, we 

can begin to understand how the brain computes itself, and how external inputs from the 

senses get into the primary sensory cortex. 

 

Finding these cells required us to use microelectrodes, tiny wires that are thinner than a human 

hair. They must be correctly placed close to individual neurons in the brains of rats to allow the 

firing of the neurons to be recorded.  

 

A rat’s brain is the size of a grape. Inside there are about 200 million neurons, each of which has 

direct contact with approximately 10,000 other neurons. Inside each side of the rat’s grape-size 

brain are areas that are smaller than a grape seed—collectively, the hippocampus—where 

memory and the sense of location reside. This is also where we find the place cells—neurons 

that respond to specific places. But from which cells do these place cells get information? 

 The answer is to look “upstream” of the hippocampus, to the entorhinal cortex, which feeds 

information to the hippocampus.  

 

“Listening In” to Neurons 

Microelectrodes allow us to listen in on the electrical activity of the cells inside the entorhinal 

cortex. We have advanced this technique to a level at which we can listen to several hundred 

cells inside a single rat’s entorhinal cortex. Listening to many hundreds of cells has allowed us to 

discover that the brain has a number of modules dedicated to self-location.11 Each module 

contains its own internal, GPS-like mapping system that keeps track of movement, as well as 

other characteristics that distinguish it from other modules. 

 

Different modules react differently to changes in the environment. For instance, some scale the 

brain’s inner map to the animal’s surroundings, while others do not. And the modules operate 

independently in several ways. The brain can use this independence to create new and varied 

combinations—a very useful tool for memory formation. 

 

This finding suggests that the ability to make a mental map of the environment arose very early 
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in evolution. All species need to navigate, so that some types of memory may have arisen from 

brain systems that were initially developed for the brain’s sense of location. 

 

The grid cells in each of the brain’s modules send signals to the place cells in the hippocampus. 

The combined effect of this grid cell activity creates an activity field in the hippocampus, the 

place field. This signaling, in a way, is the next step in the progression of signals in the brain. 

When the environment changes, the different grid modules react differently to the change— 

firing at new positions in the environment, and the linear summation activates different place 

cells in the hippocampus. 

 

In practice, this means that the grid cells send a different combinatorial code into the 

hippocampus in response to the slightest change in the environment. So every tiny change 

results in a new combination of active cells—cell ensembles that can be used to encode a new 

memory, and that, with input from the environment, becomes what we call memories. 

 

Neurons Talking 

Recent advances in technology have given us opportunities that we could barely dream of only a 

few years ago. One is the ability to create detailed functional maps that show which neurons 

talk to each other. We are particularly interested in how grid cells and place cells communicate. 

The answer to this question will allow us to understand how the deepest parts of the brain are 

wired together.  

 

When neurons send signals to each other, they share many similarities with electric cables. They 

send an electric current in one direction—from the “body” of the neuron and down a long arm, 

called the axon, which extends to the branched arms, or dendrites, of the nerve cell next in line. 

Brain cells thus get their small electric signals from a whole series of such connections. 

 

A recent technique in our lab involves using a highly modified adeno-associated virus (AAV) as a 

biological transport system within neurons to better understand which neurons talk to place 

cells in the hippocampus. The virus is d modified so that it can enter specific neurons and travel 

upstream through the axon and into the dendrites. We attach a light-sensitive gene to this viral 

transportation system. This gene integrates itself into the neuron’s DNA and makes the neuron 

light sensitive. Normally, of course, the neuron is tucked away in the deepest recesses of the 
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brain, in the dark. So this process allows us to install the equivalent of a light switch in a 

neuronal network.  

 

We used this technique to insert light switches into place cells. Then we inserted optical fibers 

into a rat’s brain, which enabled us to transmit light to the place cells that had light switches in 

them. We also implanted thin microelectrodes between the cells to detect the signals sent 

through the axons every time the light from the optical fiber was turned on. This allowed us to 

see exactly how the cell-to-cell communication was wired and to map small and large networks 

within the navigational computation system of the brain. 

 

Mysteries Remain 

When we put together all the information, we saw that there is a whole range of differently 

specialized cells that together provide place cells with their information.12 The brain’s GPS—its 

sense of place—is created by signals from place cells to head direction cells, border cells, grid 

cells, and cells that have no known function in creating location points. Place cells not only 

receive information about a rat’s surroundings and landmarks, but also continuously update 

their own movement—an activity that is actually independent of sensory input. 

 

We were surprised to find that cells that have no role in our sense of location actually send 

signals to place cells, because until now, the specific kinds of brain cells found to be involved in 

navigation—place cells, head direction cells, and grid cells—all have specific jobs. What is the 

role of the cells that are not actually part of the sense of direction? They send signals to place 

cells, but what do they actually do? This remains a mystery. 

 

We also wonder how the cells in the hippocampus are able to sort out the various signals they 

receive. Do they “listen” to all of the cells equally effectively all the time, or are there some cells 

that get more time than others to “talk” to place cells? 

 

Speed Cells and Decision-Making 

It is easy to forget, as we move effortlessly from home to job, or from job to supermarket to 

home, the enormous number of processes and steps that make up our ability to navigate. We 

are now working our way through different aspects of the brain’s navigational system to better 

understand how all these pieces fit together. 



Cerebrum, March 2014 
 

8 
 

 

At the moment we are studying what we have dubbed speed cells—cells that react exclusively 

to the speed of an animal’s movement—and how these types of cells factor in to the 

navigational equation.  

 

We’re also looking at decision-making. As an animal moves through a labyrinth, it must choose 

which way to go or what turn to make next. The neurons involved in this decision-making can be 

found in the prefrontal cortex, which connects to the hippocampus via a small nucleus in the 

thalamus.  

 

Slowly but surely, we and other researchers are expanding our understanding of other parts of 

the brain to figure out how everything is connected. And because everything is connected, we 

are hopeful that as we and others make ever more detailed maps of neural networks, we 

become more and more likely to find clues that will help prevent and cure brain diseases in the 

future. 
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