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Statistical Learning of Serial Visual Transitions by Neurons
in Monkey Inferotemporal Cortex
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If monkeys repeatedly, over the course of weeks, view displays in which two images appear in fixed sequence, then neurons of inferotem-
poral cortex (ITC) come to exhibit prediction suppression. The response to the trailing image is weaker if it follows the leading image with
which it was paired during training than if it follows some other leading image. Prediction suppression is a plausible neural mechanism
for statistical learning of visual transitions such as has been demonstrated in behavioral studies of human infants and adults. However,
in the human studies, subjects are exposed to continuous sequences in which the same image can be both predicted and predicting and
statistical dependency can exist between nonadjacent items. The aim of the present study was to investigate whether prediction suppres-
sion in ITC develops under such circumstances. To resolve this issue, we exposed monkeys repeatedly to triplets of images presented in
fixed order. The results indicate that prediction suppression can be induced by training not only with pairs of images but also with longer
sequences.
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Introduction
Human infants and adults are able to learn rapidly through pas-
sive experience the statistical relations governing the transitions
from one element to the next in a structured stream of visual
stimuli (Fiser and Aslin, 2002; Kirkham et al., 2002; Turk-Browne
et al., 2005, 2008; Howard et al., 2008; Kim et al., 2009; Bulf et al.,
2011) or auditory stimuli (Saffran et al., 1996; Gómez, 2002; Creel
et al., 2004; Newport and Aslin, 2004; Onnis et al., 2005; Gebhart
et al., 2009; Pelucchi et al., 2009; Romberg and Saffran, 2010).
The neuronal mechanisms underlying this capacity are not yet
well understood (Summerfield and Egner, 2009; Meyer and Ol-
son, 2011; Wacongne et al., 2012; Gavornik and Bear, 2014).

Inferotemporal cortex (ITC) is a plausible candidate as the site
for the learning of visual transitional statistics. ITC is the termi-
nus of the ventral stream of visual areas. As such, it plays a critical
role in object vision. Furthermore, neurons in ITC exhibit statis-
tical learning. Repeated viewing of a single image leads to famil-
iarity suppression: the experienced image elicits comparatively
weak responses (Freedman et al., 2006; Mruczek and Sheinberg,
2007; Meyer and Olson, 2014). Repeated viewing of two images
close together in time leads to pair coding: neurons responsive to

one image tend to respond to the other (Miyashita, 1988; Erick-
son and Desimone, 1999; Li and DiCarlo, 2008). Finally, and
critically, repeated viewing of two images in fixed sequence, so
that the leading image becomes a strong predictor for the trailing
image, leads to prediction suppression: the trailing image, when
presented in the trained context, elicits only a weak response
(Meyer and Olson, 2011).

Prediction suppression is a plausible mechanism for sensitiv-
ity to transitional statistics at the behavioral level. However, there
is a difference between the circumstances under which prediction
suppression has been demonstrated–presentation of two images
in sequence–and circumstances under which statistical learning
is studied in humans–presentation of long strings of images.
Long sequences possess two distinctive properties. First, each im-
age can play a dual role, not only confirming or violating a pre-
diction conveyed by a preceding image but also conveying a
prediction about a subsequent image. Second, each image can
condition the probability not only of the immediately succeeding
image but also of later images. The aim of the present study was to
determine whether prediction suppression is induced by training
with sequences possessing these properties.

Materials and Methods
Subjects. We studied two adult rhesus macaque monkeys (monkey 1,
male, laboratory designation Tu, and monkey 2, female, laboratory des-
ignation Ec). All experimental procedures were approved by the Carne-
gie Mellon University Institutional Animal Care and Use Committee and
were in compliance with the guidelines set forth in the USPHS Guide for
the Care and Use of Laboratory Animals.

Images. All stimuli were digitized images of background-free objects.
When presented at fixation 32 cm from the monkey’s eyes, each image
subtended 4° of visual angle along whichever axis, vertical or horizon-
tal, was longer. Eighteen images were used for training each monkey.
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The image sets used for monkeys 1 and 2 contained no items in
common.

Training. Each monkey received repeated exposure to six triplets of
images. The images in each triplet were always presented in the same
sequence. The succession of events in each trial was as follows: fixation
spot (300 ms), first image at screen center (503 ms), an 18 ms delay,
second image at screen center (503 ms), an 18 ms delay, third image at
screen center (503 ms), an 18 ms delay, fixation spot (300 ms), and
reward delivery. A trial was aborted without reward if the monkey broke
central fixation at any time. On each training day, the monkey completed
one or more runs. During a run, each triplet was presented 10 times for a
total of 60 trials. The sequence of trials within a run was random with the
exception that during each block of six successfully completed trials each
triplet must be presented once. Monkey 1 viewed each triplet 1090 times
over the course of 32 d. Monkey 2 viewed each triplet 830 times over the
course of 40 d.

Testing. During neuronal data collection, the monkeys performed a
task identical to the one used during training with the sole exception that
images were presented not only in trained sequences but also in se-
quences created by substitution of an item occupying the first or second
position in another trained triplet. This was the smallest set of sequences
required to ensure that the prediction status of an image was fully coun-
terbalanced against other factors likely to influence neuronal firing.
These factors included the identity of the preceding image, the identity of
the current image and general effects carried over from earlier in the trial,
such as adaptation or an off-response. Other potentially informative
sequences, for example, presentation of the images as singletons, were
omitted to minimize the danger that exposure to untrained sequences

would attenuate the training effect. There was a
trend toward attenuation of the effect over the
course of the recording sessions, but the trend
did not achieve significance and the effect re-
mained robust even during late sessions.

Recording. The electrode was introduced
through a vertical guide tube into left (monkey
1) or right (monkey 2) ITC. Recording sites,
identified by extrapolation from MRI-visible
fiducial markers within the chamber, occupied
the ventral bank of the superior temporal sul-
cus and the inferior temporal gyrus lateral to
the rhinal sulcus at levels anterior to the inter-
aural plane by 16 –19 mm in monkey 1 and
13–16 mm in monkey 2.

Database. We recorded from 52 sites (27 and
25 in monkeys 1 and 2). Low-pass filtered
traces from these sites formed the LFP data-
base. Neurons characterized during a complete
test run numbered 112 (67 from monkey 1 and
45 from monkey 2). We classified a neuron as
visually responsive if the postimage-onset fir-
ing rate (50 –550 ms) differed significantly
(paired t test, � � 0.05) from the pre-image-
onset firing rate (�300 to �50 ms). The neu-
ronal database consisted of 75 visually
responsive neurons (39 from monkey 1 and 36
from monkey 2).

Statistical analysis. To demarcate periods
during the trial when the population firing rate
was different for untrained sequences and
trained sequences, we compared the instanta-
neous difference signal (untrained firing rate
minus trained firing rate) to an instantaneous
statistical threshold based on a Monte Carlo
analysis. We applied this procedure indepen-
dently to untrained sequences containing a
misfit first image and those containing a misfit
second image. For each neuron, we considered
all 30 trained-sequence trials and all 30
untrained-sequence trials. Working with data
at 1 ms resolution, we converted the discrete

spike events in each trial to a spike-density function by convolution with
a 10 ms Gaussian kernel. Then, over 1000 iterations, we labeled 30 ran-
domly selected trials from each neuron as “pseudo-trained,” labeled the
30 remaining trials from each neuron as “pseudo-untrained” and com-
puted, for each 1 ms bin, the mean across all neurons of the signed
difference between pseudo-trained and pseudo-untrained trials. Upon
completion of the iterative procedure, we computed the SD of the 1000
values in each 1 ms bin. We defined �2.58 and �2.58 SDs as the upper
and lower confidence limits at that point in time. For the observed signal
to cross either of these limits implied a likelihood of p � 0.01 that it
would have occurred through random shuffling. We applied an identical
procedure, including smoothing with a 10 ms Gaussian kernel, to the LFP
data.

Results
We exposed monkeys during a training period extending over
several weeks to triplets of images presented in fixed back-to-
back sequence for half a second each (Fig. 1A). The monkeys were
rewarded at the end of each trial if they had maintained central
fixation throughout the display. Each monkey viewed each of the
six triplets �800 times during training (Fig. 1B). In ensuing mi-
croelectrode recording sessions, we measured neuronal re-
sponses elicited in anterior ITC not only by the trained triplets
but also by untrained triplets created through substitution in a
trained sequence of one element from another sequence. For each
trained triplet, we created five untrained variants by replacing the

Figure 1. A, Timing of events in each trial conducted during training and testing. B, Six triplets used in training monkey 1. The
triplets used in training monkey 2 were formed from different images. C–E, Mean firing rate of a typical neuron in response to (C)
trained sequences, (D) untrained sequences in which the first stimulus had been replaced with the first item from another training
triplet, and (E) untrained sequences in which the second stimulus had been replaced with the second item from another triplet.
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first image with the first image from another trained sequence
and five untrained variants by replacing the trained second image
with the second image from another trained sequence. During a
recording session, each of the 6 trained triplets was presented
five times and each of the 60 untrained triplets was presented
once for a total of 90 trials. Using this procedure, we collected
data from 75 visually responsive neurons (39 in monkey 1 and
36 in monkey 2).

The responses of a typical neuron are displayed in Figure
1C–E. Presented with a trained sequence, this neuron responded
strongly to the first image but weakly to the subsequent two im-
ages (Fig. 1C). This outcome can be explained as a consequence of
prediction suppression arising from adjacent dependencies: the
second image confirmed a prediction conveyed by the first image
and the third image confirmed a prediction conveyed by the sec-
ond image. Presented with an untrained sequence containing a
misfit first image, the neuron responded weakly to the third im-
age (Fig. 1D). This outcome can also be explained in terms of
adjacent dependencies: the second image violated a prediction
based on the first image whereas the third image confirmed a

prediction based on the second image. Presented with an un-
trained sequence containing a misfit second image, the neuron
responded strongly to both the second and the third image (Fig.
1E). This outcome likewise allows an explanation based on adja-
cent dependencies: the second image violated a prediction based
on the first image and the third image violated a prediction based
on the second image.

To determine whether the activity of the neuronal population
as a whole conformed to this pattern, we performed a paired t test
(n � 75) on the firing rate 50 –500 ms following presentation of
each image. Introduction of a misfit first image enhanced the
response to the second image (p � 1.5 e– 6) but not the third
image (p � 0.93). Introduction of a misfit second image en-
hanced the responses to both the second image (p � 3.2 e– 6) and
the third image (p � 6.4 e–5). These results were present and
significant (� � 0.05) in each monkey considered individually.
To examine the time course of the effect, we constructed curves
representing mean population firing rate as a function of time
during the trial under all three conditions. When the first image
was a misfit, the response to the second image was enhanced

Figure 2. A, Population firing rate elicited by trained sequences (blue curve) and by untrained sequences with a misfit first image (red curve). Red fill indicates the period during which the
response to the untrained sequence was greater than the response to the trained sequence. B, The difference between the two population firing rates. Green curves represent confidence limits ( p �
0.01) based on a Monte Carlo shuffling test. Red fill indicates the period during which the response to the untrained sequence was significantly greater than the response to the trained sequence.
C, D, These plots compare the population firing rate elicited by trained sequences (blue curve) to the population firing rate elicited by untrained sequences with a misfit second image (red curve).
Conventions as in A and B. Arrows are discussed in text. The dashed lines, each marking a point in time 125 ms after stimulus onset, are included to facilitate visual estimation of effect latency. The
biphasic response pattern is common (Rollenhagen and Olson, 2005) although not universal (Fig. 1) among neurons in ITC when responding to familiar images.
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relative to trained-sequence baseline (Fig. 2A, red fill). When the
second image was a misfit, the responses to the second and third
images were visibly enhanced (Fig. 2C, red fill). To analyze the
timing of the effect, we computed the instantaneous difference in
firing rate between untrained and trained sequences (Fig. 2B,D,
red curves) and determined when it crossed a confidence limit
(p � 0.01) established by a Monte Carlo procedure (Fig. 2B,D,
green curves). On average, across the three instances in which an
image was unpredicted by the item immediately preceding it,
enhancement became significant 131 ms after image onset. Fur-
ther incidental observations conform to prior report based on
two-item sequences: responses became weaker and occurred at
longer latency as the sequence progressed, the response to an
image was unaffected by the strength of the response to the pre-
ceding image, and the response to an unpredicted image was
scaled up multiplicatively from the response elicited by the same
image when predicted (Meyer and Olson, 2011). We do not yet
know whether the mechanism of the prediction effect is “surprise
enhancement” or “prediction suppression,” because neither the
original experiment nor this one contained a prediction-neutral
control.

The LFP responses recorded at all 52 sites (27 in monkey 1 and
25 in monkey 2) depended in a similar fashion on the prediction
status of each image. The response to each unpredicted image
deviated from the response to the same image in a trained triplet
by coursing first more negatively (Fig. 3, blue fill) and then more
positively (Fig. 3, red fill). Each effect achieved statistical signifi-
cance (� � 0.01) as indicated by its exceeding Monte Carlo-based
confidence limits (Fig. 3B,D, green curves). The fact that the
untrained sequences contained three images violating a predic-
tion conveyed by the immediately preceding item allowed us to
judge which features of the prediction effect were consistently
present. Of particular note is the negative deflection that achieved
brief significance shortly after image onset (all three instances are
marked by asterisks in Fig. 3B and D). Although this event was of
low amplitude, it was absolutely consistent. The average time of
attainment of significance across three conditions was 121 ms.
This was 10 ms earlier than the onset of the spiking effect. On the
assumption that the earliest phase of the LFP is generated by
bottom-up synaptic input to ITC, this observation raises the pos-
sibility that neurons afferent to ITC are sensitive to the prediction
status of an image.

Figure 3. A, Mean LFP response elicited by trained sequences (blue curve) and by untrained sequences with a misfit first image (red curve). Blue (red) fill indicates periods during which the
response to the untrained sequence was more negative (positive) than the response to the trained sequence. B, The difference between the two LFP responses. Blue (red) fill indicates periods during
which the response to the untrained sequence was significantly more negative (positive) than the response to the trained sequence. C, D, These plots compare the mean LFP response elicited by
trained sequences (blue curve) to the mean LFP response elicited by untrained sequences with a misfit second image (red curve). Asterisks and arrows indicate events discussed in the main text. Other
conventions as in Figure 2.
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The effects described up to this point can be explained entirely
in terms of adjacent dependencies. The response to each image
was strong if it violated a prediction conveyed by the immediately
preceding image and weak otherwise. Nonadjacent dependencies
could, however, have exerted a superadded effect on neural ac-
tivity because the first image in each triplet strongly predicted the
final image. There are trends in the data suggesting that the re-
sponse to the third image was indeed affected by its violating or
confirming a prediction conveyed by the first image. In sequences
containing a misfit first image, the LFP evoked by the third image
exhibited a small but significant negative deflection (Fig. 3B, ar-
row). The effect occurred in both monkeys. It is consistent with
an interpretation based on the third image violating a prediction
conveyed by the first image. In sequences containing a misfit
second image, the second image violated a prediction conveyed
by the first image and the third image violated a prediction con-
veyed by the second image. Nevertheless, the prediction effect
was weaker for the third than for the second image both at the
level of spiking activity (Fig. 2D, double arrow) and at the level of
the positive deflection of the LFP (Fig. 3D, double arrow). The
difference fell short of statistical significance in the case of spiking
activity (p � 0.70; paired t test; unpredicted minus predicted
firing rate 150 –500 ms after stimulus onset; n � 75) but did
achieve significance in the case of the LFP (p � 0.014; paired t test
on unpredicted minus predicted voltage 450 – 650 ms after stim-
ulus onset; n � 52). The effect occurred and achieved significance
(� � 0.05) in each monkey considered individually. It is consis-
tent with an interpretation based on the third image’s confirming
a prediction conveyed by the first image.

Discussion
The stream of experience is far from random. Events that have
just occurred carry with them dependable predictions about
events that will occur next. Some predictions are based on phys-
ical principles so fundamental that they may possess a hard-wired
representation in the brain (Alink et al., 2010). Other predictions
must be learned, such as in music and language. The brain of an
acculturated listener listening to a melody or a sentence is sensi-
tive to how it will probably unfold. This is manifest in the fact that
events violating reasonable expectation elicit strong neural re-
sponses (Dien et al., 2003; James et al., 2008; Vuust et al., 2009;
Pearce et al., 2010; Kim et al., 2011). The ability of the brain to
detect and respond to improbable events is thought to depend
not only on mastery of complex rules that govern the event
stream but also on the encoding of simple statistical relations
(Aslin and Newport, 2012). Melodies and sentences exhibit
tonotactic and phonotactic regularities: the value of an upcoming
note or phoneme is probabilistically related to the values of at
least the two preceding elements (Pearce and Wiggins, 2004;
Gonzalez-Gomez and Nazzi, 2013). Human infants and adults
are able to learn rapidly, during passive listening, the statistical
relations between immediately adjacent items in a structured au-
ditory stream (Saffran et al., 1996; Pelucchi et al., 2009; Romberg
and Saffran, 2010). They are also able, under favorable circum-
stances, to learn nonadjacent dependencies between events sep-
arated by an intervening item (Gómez, 2002; Creel et al., 2004;
Newport and Aslin, 2004; Onnis et al., 2005; Gebhart et al., 2009).
The capacity for the learning of transitional statistics, although
most studied in the auditory domain, extends to visual sequences
as well (Fiser and Aslin, 2002; Kirkham et al., 2002; Turk-Browne
et al., 2005, 2008; Howard et al., 2008; Kim et al., 2009; Bulf et al.,
2011).

Prediction suppression, as observed in ITC, is a plausible
mechanism for behavioral sensitivity to visual transitional statis-
tics, as demonstrated in the human studies. However, for it to
serve this role would require that it develop in the context of
multi-item image sequences or, in other words, under conditions
in which the same image can be both predicted and predicting
and in which the potential for nonadjacent predictions exists. The
key observation of this study is that prediction suppression does
indeed occur under these conditions.

The fact that prediction suppression occurred under circum-
stances in which the second image was both predicted and pre-
dicting casts light on the nature of neuronal mechanisms
mediating suppression. In the simplest possible model of the phe-
nomenon, ITC neurons responsive to a given leading image in-
duce a state of suppression among neurons responsive to the
predicted trailing image. In this framework, the rate of firing of
neurons representing the leading image could reasonably be ex-
pected to determine the degree of suppression of the response to
the trailing image. However, it did not. Regardless of whether the
second image confirmed a prediction and elicited a weak re-
sponse or violated a prediction and elicited a strong response, the
response to the predicted third image was the same (Fig. 2A, red
vs blue).

The occurrence of subtle effects apparently dependent on
whether the third image violated or confirmed a prediction con-
veyed by the first image is consistent with findings indicating that
human observers learn nonadjacent dependencies (Gómez, 2002;
Creel et al., 2004; Newport and Aslin, 2004; Onnis et al., 2005;
Gebhart et al., 2009). However, it is surprising in light of the fact
that learning of nonadjacent statistics by human observers de-
pends on use of a training display that emphasizes relations be-
tween nonadjacent items, either by making them physically
similar (Creel et al., 2004; Onnis et al., 2005; Gebhart et al., 2009)
or by randomizing the identity of the intervening element (Gó-
mez, 2002; Newport and Aslin, 2004). The use of prolonged train-
ing in our study may have allowed nonadjacent dependencies to
exert an effect even without these manipulations. This interpre-
tation fits with the observation that humans are sensitive to non-
adjacent dependencies after prolonged natural exposure (Pearce
and Wiggins, 2004; Gonzalez-Gomez and Nazzi, 2013).
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