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Synucleins Regulate the Kinetics of Synaptic Vesicle

Endocytosis
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Genetic and pathological studies link c-synuclein to the etiology of Parkinson’s disease (PD), but the normal function of this presynaptic
protein remains unknown. a-Synuclein, an acidic lipid binding protein, shares high sequence identity with 3- and y-synuclein. Previous
studies have implicated synucleins in synaptic vesicle (SV) trafficking, although the precise site of synuclein action continues to be
unclear. Here we show, using optical imaging, electron microscopy, and slice electrophysiology, that synucleins are required for the fast
kinetics of SV endocytosis. Slowed endocytosis observed in synuclein null cultures can be rescued by individually expressing mouse -,
-, or y-synuclein, indicating they are functionally redundant. Through comparisons to dynamin knock-out synapses and biochemical
experiments, we suggest that synucleins act at early steps of SV endocytosis. Our results categorize c-synuclein with other familial PD
genes known to regulate SV endocytosis, implicating this pathway in PD.

Key words: AP180; endocytosis; membrane bending; Parkinson’s disease; presynaptic; synaptobrevin

Introduction
Strong genetic evidence links SNCA, the a-synuclein gene, to
familial Parkinson’s disease (PD; Devine et al., 2011; Houlden
and Singleton, 2012). Furthermore, increased expression of
a-synuclein is a risk factor for PD (Devine, 2011). a-Synuclein is
also the main protein in Lewy bodies, the signature pathology of
PD (Spillantini et al., 1997). Hence, a-synuclein is a prime ther-
apeutic target for PD. It is therefore important to elucidate the
physiological function of a-synuclein and understand the conse-
quences of lowering a-synuclein levels for therapeutic purposes.
a-Synuclein along with - and y-synuclein constitute the sy-
nuclein protein family (Chandra, 2009). Synucleins have high
sequence identity, especially in the N-terminal regions that bind
acidic lipids. Synucleins are natively unfolded in solution, but
adopt a-helical conformations on membranes (Chandra et al.,
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2003; Jao et al., 2004; Ferreon et al., 2009). Through these con-
formational changes, synucleins can sense and generate mem-
brane curvature (Varkey et al., 2010; Pranke et al., 2011; Mizuno
etal., 2012; Westphal and Chandra, 2013). Congruent with these
biochemical properties, studies in model organisms have con-
sistently shown that a-synuclein interferes with intracellular
vesicle trafficking (Cooper et al., 2006; Scott and Roy, 2012).
However, the pathways impacted differ in the various systems,
making it difficult to determine the physiological function of
a-synuclein. One possible explanation for these discrepancies
is that these model systems lack endogenous a-synuclein, and
overexpression leads to oligomerization and aberrant subcel-
lular localization.

Synucleins are localized to synaptic vesicles (SVs) at presyn-
aptic termini (Clayton and George, 1999), suggesting that sy-
nucleins may regulate the SV cycle. The major steps of the SV
cycle include docking, priming, SV exocytosis, endocytosis, and
refilling (Sudhof, 2004). Based on their biochemical characteris-
tics, synucleins would be predicted to regulate SV exocytosis or
endocytosis, the two steps that require membrane bending. Re-
cently, the notion that a-synuclein promotes SNARE complex
assembly during exocytosis has gained prominence (Burré et al.,
2010, 2012). However, new biophysical studies question this hy-
pothesis, as native a-synuclein either had no effect on SNARE-
mediated vesicle fusion in vitro or regulated fusion by modulating
properties of the lipid bilayer (Darios et al., 2010; Ninkina et al.,
2012; DeWitt and Rhoades, 2013; Diao et al., 2013). Further-
more, a-synuclein oligomers inhibit SNARE-mediated fusion,
indicating that the a-synuclein-SNARE interaction is possibly
related to the pathological function of a-synuclein (Larsen et al.,
2006; Choi et al., 2013).
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Figure 1.  Synucleins regulate SV endocytosis. a, Average representative traces of spH fluorescence in wild-type and at3y-Syn
AP, and 600 AP) at 20 Hz with an interval of 2 min between each stimulation. Average time constants of decay () for wild-type = 15.65, 13.3 5, 17.8 s, respectively, for ct3y-Syn —

Wildtype opy-Syn

Wildtype ofy-Syn

Wildtype ofy-Syn

=/

~ neurons. Neurons were stimulated three times (100 AP, 300
pa

=36.1s,

35.6's, 27.6 s, respectively; n = 6 neurons/3 independent experiments for wild-type and n = 4 neurons/3 independent experiments for ae3y-Syn /. (Figure legend continues.)
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In addition to SV exocytosis, previous studies have implied a
number of roles for a-synuclein throughout the SV cycle (Bendor
etal., 2013), including endocytosis (Ben Gedalya et al., 2009), SV
pool size (Cabin et al., 2002), SV mobilization (Nemani et al.,
2010), and even trafficking between synapses (Scott and Roy,
2012). Together, the precise synaptic function(s) of synucleins
continues to be unclear. Additionally, several of these studies
were done using overexpression of human a-synuclein, confus-
ing what effects are related to the pathological versus physiolog-
ical functions of a-synuclein. Here, we took a loss-of-function
approach to elucidate the physiological function of synucleins
(Greten-Harrison et al., 2010). We examined SV cycling in sy-
nuclein null neurons and show that synucleins preferentially reg-
ulate SV endocytosis.

Materials and Methods

Mice. Generation and characterization of synuclein null (e8y-Syn /")
and DynDKO mice have been previously described (Ferguson et al.,
2007; Greten-Harrison et al., 2010; Raimondi et al., 2011). DynDKO
were a kind gift from Pietro De Camilli, Yale University. Mice were kept
in accordance with an Institutional Animal Care and Use Committee
approved animal protocol. The breeding strategy for the aBy-Syn '~
mice used in this study is as described previously (Greten-Harrison et al.,
2010). All mice used in this study are on a C57BL/6] background; 2- to
3-month-old mice of either sex were used for the electrophysiology and
biochemical experiments. The numbers of animals used are listed in the
figure legends.

Live imaging. vGlut-pHluorin (spH) was transfected (Amaxa) into
hippocampal neurons prepared from P1 mouse brains at the time of
plating and imaging was done 16-18 d in vitro (DIV). When indicated,
we performed cotransfection with pCAGGS or synuclein-cherry-
pCAGGS.

Imaging was essentially as described previously (Mani et al., 2007).
Neurons were subjected to electrical field stimulation at 20 Hz using a
Chamlide stimulation chamber (Live Cell Instrument) and imaged at
25°C in Tyrode’s buffer (119 mm NaCl, 2.5 mm KCl, 2 mm CaCl,, 2 mm
MgCl,, 25 mm HEPES, pH 7.4, 30 mM glucose, 10 mm CNQX, and 50 mm
APV) with or without 1 um bafilomycin A, using a Nikon Eclipse Ti-E
microscope with a 60X Apo (1.49 NA) objective and an EMCCD iXon
897 (Andor Technologies) camera. For basal recordings, imaging was
performed without stimulation in the absence of CNQX and APV. Im-
ages were analyzed in Image]J (http://rsb.info.nih.gov/ij/) by placing cir-
cular ROIs on synaptic boutons that were stably in focus and responded
throughout all trials. For each individual experiment 50-90 synapses
were analyzed, and their fluorescence was averaged over the time. Flores-
cence was expressed as AF/F0 (the difference from the initial normalized
fluorescence) or as AF/FO/F,,, (normalized to the maximum fluores-
cence after the stimulation). Decay constant (7) was calculated by fitting
a single exponential decay equation using GraphPad Prism.

Cholera toxin labeling. Primary hippocampal neurons grown on cov-
erslips were labeled with cholera toxin-HRP (CT-HRP; 10 ug/ml) in
Tyrode’s buffer for 5 min. Subsequently, the coverslips were (1) fixed
immediately, (2) stimulated for 2 min by adding high K * Tyrode’s buffer
(90 mm KCl) before fixing, or (3) allowed to recover poststimulation in
presence of CT-HRP for 10 min before fixing. All incubations were done

<«

(Figure legend continued.) Inset, The 100 AP, 20 Hz stimulation trace scaled to peak fluorescence,
showing that the decay kinetics is slowed in «3y-Syn /™ neurons mice b, ¢, spH trace of
wild-type and c3y-Syn ~/~ neurons stimulated in the presence (purple) or absence (blue) of
bafilomycin followed by NH,Cl (n = 9 wild-type neurons/4 experimentsand 12 c3y-Syn ~/~
neurons/6 experiments). The variance in the wild-type trace is greater than a3y-Syn '~
post stimulus, therefore, this portion of the trace was not analyzed further. d, e, spH responses
in presence and absence of bafilomycin (bafilo) during the first 5 s of stimulation were sub-
tracted to obtain endocytic rate constant (orange). f, g, The average exocytic (f) and endocytic
(g) rate calculated from d and e. h, Average maximum fluorescence after exposure to 50 mm
NH,CI; *p < 0.05.
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at 37°C. Fixation was performed for 1 h with 1.2% glutaraldehyde in 66
mu sodium cacodylate. CT-HRP labeling was developed by incubating
in 0.1 M ammonium phosphate, pH 7.4, containing 0.4 mg/ml diamino-
benzidine and 0.005% H,O, for 15 min. Postfixation was done for 1 hin
1% OsO, and1% KFe(CN)4—0.1 M sodium cacodylate. Neurons were
stained overnight with 2% uranyl magnesium acetate, then dehydrated in
increasing ethanol concentrations, and embedded in Epon. Samples were
processed for imaging by standard procedures. Pictures were captured
using a Phillip CM10 transmission electron microscope. Synapses (50—
150) were analyzed for each condition and repeated using three indepen-
dent cultures.

Hippocampal electrophysiology. Transverse hippocampal slices (400
pum thick) from 3-month-old mice were cut on a DTK-2000 microslicer
(Dosaka) in ice-cold cutting solution containing the following (in mm):
215 sucrose, 2.5 KCl, 20 glucose, 26 NaHCO;, 1.6 NaH,PO,, 1 CaCl,, 4
MgSO,, and 4 MgCl,. After 10 min of incubation at room temperature,
the cutting solution was exchanged for the artificial CSF (ACSF) contain-
ing 124 NaCl, 2.5 KCl, 10 glucose, 26 NaHCO;, 1 NaH,PO,, 2.5 CaCl,,
and 1.3 MgSO,. Both cutting and ACSF solutions were saturated with
95% O, and 5% CO,, pH 7.4. The slices recovered at room temperature
for at least 1.5 h before recording. All experiments were performed at
25°C. Field EPSPs (fEPSPs) were obtained by placing the recording pi-
pette (which contained 1 M NaCl) and the stimulating pipette (which was
broken to ~10 wm, and contained ACSF) in stratum radiatum, ~200
pm from each other and 150 um from the slice surface. Depletion/
recovery fEPSPs were obtained in the presence of 1.0 Mg*" and 4 mm
Ca*". Depletion and recovery plots (Fig. 4) were generated by normal-
izing responses to the peak amplitude of the fEPSP in the depletion train.
Depletion data were best fit with a double-exponential function. Recov-
ery data were best fit with a logarithmic function, with the equation y =
(In)mx + b, from which a slope (1) was generated for each slice.

Synaptic protein clustering quantification. Hippocampal neurons
14-18 DIV were fixed using 4% sucrose, 4% PFA in PBS, pH 7.4. Fixed
neurons were permeabilized (1% NP40, 0.5% BSA in PBS, 15 min), then
quenched in 50 mm NH,Cl in PBS for 15 min to reduce autofluorescence,
and blocked in 10% FBS, 0.5% BSA in PBS to reduce nonspecific binding.
Primary and secondary antibodies were diluted in blocking buffer and
incubated for 1 h each, at room temperature. Coverslips were washed in
blocking buffer, mounted with Vectashield, and imaged by confocal mi-
croscopy, using the same parameters across genotypes. The clustering
quantification was done using Image] as follows. First, the same thresh-
old intensity was applied to all images and then a mask (area 1 um?) was
used to quantify puncta bigger than 1 um>. After this processing, average
fluorescence puncta size and number in control, DynKO, and afvy-
Syn /"~ neurons were measured.

Clathrin-coated vesicle purification. Clathrin-coated vesicles (CCVs)
were purified through a biochemical fractionation of wild-type mouse
brains (Maycox et al., 1992; Blondeau et al., 2004).

SV purification and proteomic analysis. SVs were purified from wild-
type and afBy-Syn ~/~ mice brains (Huttner et al., 1983) and subject to
quantitative proteomics (iTRAQ) as described previously (Zhang et al.,
2012; Westphal and Chandra, 2013). Proteins whose levels were changed
(= 1.5-fold) in aBy-Syn ~/~ mice brains were considered further.

Immunoprecipitations. Wild-type and aBy-Syn '~ synaptosomes
were resuspended in cytosolic buffer (25 mm HEPES, pH 7.4, 125 mMm
KAc, 2.5 mm MgAc, 1 mm DTT, and dextrose at 1 mg/ml). For un-
stimulated samples, this buffer was supplemented with Phosphatase
Inhibitor Cocktail 3 (Sigma) at 1:100. Samples were stimulated with
90 mMm KCl for 90 s at 37°C as indicated and then lysed with 0.5%
Triton X-100. Samples were immunoprecipitated using standard pro-
cedures. Antibodies used were pre-immune serum and AP180
LP2D11 (Santa Cruz Biotechnology).

Data analysis. All analyses were done blind to genotype. Values shown
are mean * SEM. Statistical analysis was done using GraphPad Prism.
Student’s two-tailed t test was used to determine statistical significance
*p < 0.05, *p < 0.01, and ***p < 0.001.
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Results

Endocytic deficit in synuclein null neurons

As synucleins are SV-associated proteins, we directly monitored
the trafficking of SVs with a pHluorin reporter (spH; Granseth et
al., 2006) in dissociated hippocampal neurons from wild-type
and aBy-Syn '~ mice. Before stimulation, the fluorescence of
spH is quenched due to the acidic pH of the vesicle lumen
(Granseth et al., 2006). Evoking exocytosis by electrical stimula-
tion leads to dequenching of the spH signal upon exposure to the
extracellular medium, followed by a decay in fluorescence due to
ensuing endocytosis and re-acidification of vesicles. First, we
stimulated wild-type neurons with sequential applications of 100
action potentials (APs), 300 AP, and 600 AP at 20 Hz (Fig. 14,
blue trace). The time between stimulation was set to 2 min to
allow wild-type neurons to return to basal levels of fluorescence.
When we used the same protocol to stimulate aBy-Syn '~ neu-
rons (Fig. 1a, green trace), the time interval was not sufficient for
aBy-Syn '~ neurons to reach steady state. We observed slow
spH decay that caused the second and third stimulations to start
at a higher level than that for wild-type neurons. We confirmed
that this is due to slower kinetics of spH decay by normalizing the
peak values of the 100 Hz trace (Fig. 14, inset). We ruled out that
these changes in spH signal are due to altered vesicle re-
acidification by measuring its time course in wild-type and afy-
Syn '~ neurons upon a brief exposure to acidic medium (data
not shown). We also observed that the peak fluorescence is
greater in aBy-Syn "/~ neurons, indicating either enhanced ex-
ocytosis, impaired endocytosis, or both. Thus, even with a stim-
ulation of 100 AP (20 Hz), we clearly observe a deficit in recycling
kinetics in aBy-Syn /" neurons.

We examined if synucleins are regulating SV exocytosis, en-
docytosis, or both processes during this stimulation paradigm
(100 AP, 20 Hz). Since exocytosis and endocytosis occur simul-
taneously during repetitive stimulation, we used the vesicular
H " ATPase blocker, bafilomycin, which inhibits re-acidfication
of SVs (Mani et al., 2007) to separate these processes. In the
presence of bafilomycin, spH imaging monitors exocytosis only,
and the difference in fluorescence intensity in the absence and
presence of bafilomycin reflects the magnitude of endocytosis
during stimulation (Fig. 1b—e). Figure 1, b—c, shows the average
traces of wild-type and aBy-Syn ~/~ neurons in the presence and
absence of bafilomycin. The calculated exocytic rate constant for

~ versus synuclein rescues significant *p << 0.05, **p < 0.01.
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wild-type (0.053 = 0.008 AF/s) and a/By-Syn ~/~ (0.049 = 0.003
AF/s) neurons were similar (Fig. 1d—f). However, the endocytic
rate for aBy-Syn '~ neurons was markedly decreased (0.012 =
0.002 AF/s for aBy-Syn '~ vs 0.024 * 0.006 AF/s for wild-type;
p <0.05; Fig. 1d—e,g). We also measured the total SV pool size by
the total fluorescence reached upon alkalizing with NH,Cl and
determined they were the same for both genotypes (Fig. 1h).
Thus, synucleins regulate endocytosis during repetitive activity.

Post stimulus, fast exocytosis ends but compensatory endocy-
tosis continues until a steady state of exocytosis—endocytosis is
reached, as can be seen for wild-type neurons (Fig. 24, blue sym-
bols). To compare the rate of endocytosis after stimulation, we
normalized the maximum fluorescence upon stimulation. The
average time constant (7) of the poststimulus fluorescence decay
in wild-type neurons was 16.8 = 1.4 s, consistent with previously
published results (Fig. 2a; Granseth et al., 2006; Ferguson et al.,
2007; Mani et al., 2007; Kwon and Chapman, 2011; Raimondi et
al., 2011). However, 7 values in af3y-Syn ~/~ neurons were sig-
nificantly greater (7= 29.4 = 2.7 s; p < 0.001), indicating slower
SV endocytosis (Fig. 2a). A direct comparison of the endocytic
time constants (1) for wild-type and aBy-Syn '~ neurons is
possible given the comparable fluorescence rise constant and the
total SV pool size in both genotypes (Fig. 1f,h). Together, these
findings indicate that endocytosis is impaired both during and
after stimulation in a8y-Syn ~/~ neurons.

Importantly, the observed defect in the rate of endocytosis was
rescued by individually expressing members of the synuclein
family (Fig. 2b; a-Syn 7 = 20.4 * 2.3 5, B-Syn 7 = 20.0 = 1.3 5,
v-Syn T = 21.2 * 2.6 5), suggesting they are functionally redun-
dant, consistent with their high degree of sequence identity.
Therefore, the synuclein protein family is needed to maintain the
proper kinetics of endocytosis indicating that synucleins are reg-
ulatory endocytic proteins.

As an alternate approach to assess SV endocytosis, we labeled
the plasma membrane of hippocampal neurons with CT-HRP
and followed its internalization as a result of SV endocytosis by
electron microscopy (Dedk et al., 2004; Ferguson et al., 2007). An
advantage of this approach is that it can distinguish different
modes of SV endocytosis— clathrin-mediated endocytosis versus
bulk endocytosis. Identification of which of these endocytic path-
ways are regulated by synucleins is informative to pinpoint the
molecular steps regulated by these proteins. Wild-type and aBy-
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Figure3.

(T-HRPlabeling reveals an endocytic deficitin ce/3y-Syn /™ synapses. a, b, Representative electron micrographs of wild-type and ce/3y-Syn ™ hippocampal neurons undergoing

the following stimulation protocol: Tyrode’s buffer for 5 (Rest), 90 mm KCl for 2’ (K ), followed by Tyrode’s buffer for 10" (Recovery) in the constant presence of CT-HRP. Red arrowhead,
(T-HRP-labeled SV and red arrow, endosomes. ¢, d, Fraction of CT-HRP labeled (c) endosomes and (d) SVs in wild-type and ce3y-Syn ~/~ neurons during steps of the stimulation protocol; n =
125-238 synapses (wild-type: Rest = 238, K * = 166, Recovery 173; tf3y-Syn '~ Rest = 176,K ™ = 125, Recovery = 180)/6 experiments. *p << 0.05, ***p << 0.001. Scale bars: b, 400 nm;

b, inset, 200 nm.

Syn '~ hippocampal cultures were treated with CT-HRP and
subjected to the denoted stimulation and recovery protocol (Fig.
3a,b). First, we quantified the number of labeled endosomes as a
measure of bulk endocytosis and found no significant difference
(Fig. 3¢), suggesting that synucleins only affect clathrin-mediated
endocytosis, which has been validated as the physiologically rel-
evant mode of retrieval in hippocampal synapses (Granseth et al.,
2006; Balaji and Ryan, 2007). Ultrastructural quantification con-

firmed that a8y-Syn '~ synapses have fewer CT-HRP-labeled
SVs than wild-type synapses, both during (23.4%; p < 0.05) and
after stimulation (41.8%; p < 0.001; Fig. 3d), consistent with the
spH imaging data (Figs. 1, 2). aBy-Syn /™ synapses also show a
modest, albeit significant, decrease in labeled SVs at rest (wild-
type 5.9 + 0.5 vs affy-Syn '~ 3.5 + 0.35; Fig. 3d). Analyses of
mouse mutants for well established endocytic proteins also show
a similar decrease in CT-HRP-labeled vesicles both at rest and
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the initial and secondary rates of deple-
tion were faster in aBy-Syn '~ than in
wild-type mice (1, = 0.81 = 0.17 vs 1.7 *
0.15sp <0.001; 7, =39 *03v58 =
0.7 s; p < 0.05; Fig. 4a,b). This effect was
small but significant, consistent with our
observations that deletion of synucleins
does not completely block SV endocyto-
sis, but slows the process. To test whether
aBy-Syn '~ neurons also show deficits
inrecovery, the depletion train was imme-
diately followed by a 20 pulse (2 Hz) stim-
ulation paradigm. Here we observed that
the initial rate of return toward baseline
was slower in a8y-Syn /" than wild-type
mice (wild-type, 1.8 = 0.06, aBy-Syn ',
1.3 = 0.04; p < 0.0001; Fig. 4¢,d). The
time constant of the recovery phase was in
aBfy-Syn '~ than in wild-type mice
(6.3 £09svs 1.8 £0.06s; p<0.0001;
Fig. 4¢,d). Thus, as previously reported for
loss-of-function mutants of endophilin,
dynamin, and synaptojanin (Cremona et
al., 1999; Ferguson et al., 2007; Mani et al.,
2007; Milosevic et al., 2011), loss of sy-
nucleins also slows down recovery from
depletion. It is noteworthy that synuclein
single knock-outs (KOs) do not exhibit
synaptic depression or impaired recovery
(Chandra et al., 2004), supporting the
conclusion that synucleins are function-
ally redundant and compensate for each
other in SV endocytosis

Comparison of af3y-Syn KO and
dynamin 1, 3 KO synapses
Clathrin-mediated SV endocytosis is tem-
porally organized into distinct steps—
cargo recruitment by endocytic adaptors,
membrane bending, bud invagination,

afy-Syn ' slices.

upon stimulation (Ferguson et al., 2007; Milosevic et al., 2011),
reinforcing the notion that synucleins share a similar function.
We conclude that synucleins are required for efficient clathrin-
mediated SV endocytosis during as well as after synaptic activity.
This agrees with data from cell lines where a-synuclein was
shown to promote receptor-mediated endocytosis, for example,
of the transferrin receptor (Ben Gedalya et al., 2009; Cheng et al.,
2011; Kisos et al., 2014), a process which shares the same regula-
tory proteins and basic mechanisms of SV endocytosis.

Electrophysiological properties of synuclein null brains

What is the physiological significance of the endocytic defects in
aBy-Syn '~ neurons? To answer this question, we first evalu-
ated the ability of wild-type and a8y-Syn /" neurons to main-
tain neurotransmitter release upon sustained presynaptic activity
(Chandra et al., 2004; Greten-Harrison et al., 2010). In acute
hippocampal slices, Schaffer collateral-CA1l synapses were acti-
vated with a 300 pulse train (15 Hz; see Materials and Methods),
resulting in nominally complete depression of synaptic transmis-
sion, a phenomenon likely due to depletion of SVs (Fig. 4a). Both

bud neck scission by dynamins to gener-

ate a free CCV, and uncoating to release a

nascent SV (Dittman and Ryan, 2009; Sa-
heki and De Camilli, 2012). The sequential recruitment of endo-
cytic proteins allows for vectorial occurrence of these reactions.
Dynamin 1, 3 KO (DynDKO) synapses are arrested at the fission
step and accumulate clathrin pits, many on tree-like membrane
invaginations (Ferguson et al., 2007; Raimondi et al., 2011).
These are detectable by immunofluorescence as clusters of endo-
cytic proteins (Fig. 5a). To determine whether a-synuclein be-
haves similar to well characterized endocytic proteins, we
immunostained control and DynDKO neurons for a-synuclein
and clathrin. In control neurons, a-synuclein is enriched at syn-
apses and has a punctate appearance, while clathrin is dispersed
(Fig. 5a). In DynDKO neurons, a-synuclein puncta colocalize
with clathrin (Fig. 5a) and the a-synuclein puncta size increases
similar to those of clathrin (Fig. 5b). This is in marked contrast to
other peripherally associated SV proteins such as Rab3a and syn-
apsin, which are dispersed in DynDKO synapses due to seques-
tration of SV membranes in endocytic intermediates (Raimondi
et al.,, 2011). These immunocytochemistry results affirm that
a-synuclein behaves like an endocytic protein and is likely to act
before action of dynamins.
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Next we examined the accumulation of endocytic proteins in
wild-type, aBy-Syn ’~, and DynDKO neurons (Raimondi,
2011) by light and electron microscopy. Unlike in DynDKO,
there was no discernible change in the pattern of endocytic pro-
teins tested in aBy-Syn '~ neurons (Fig. 5c—e). This is in line
with our findings that endocytosis is slowed aBy-Syn '~ neu-
rons but not blocked like in DynDKO neurons. We also studied
wild-type and aBy-Syn /" synapses by electron microscopy
and quantitated the number of CCVs at rest, after stimulation
and recovery (Fig. 6a,b). The CCV number between wild-type and
aBy-Syn /= were similar, under the three conditions, with a
tendency for increased CCVs in aBy-Syn '~ synapses upon KCI
stimulation. Regardless, there were 100-fold fewer CCVs in af3y-
Syn ~/~ than reported in the literature for DynDKO neurons and

clathrin pits studded on tree-like invaginations were absent in
aBy-Syn '~ synapses (Fig. 6a,b;Ferguson et al., 2007; Raimondi
et al., 2011). Thus aBy-Syn '~ synapses do not phenocopy the
ultrastructure of DynDKO synapses, but are similar to KOs of
early endocytic proteins such as amphiphysin (Di Paolo et al.,
2002).

PI(4,5)P, levels are dramatically altered in late stage CCV un-
coating mutants (Cremona et al., 1999; Yim et al., 2010). We
measured PI(4,5)P, levels in wild-type and aBy-Syn '~ syn-
apses and found no differences between the two genotypes (Fig.
6e), affirming that synucleins do not act at late stages of SV en-
docytosis. Furthermore, biochemical purification of CCVs re-
vealed that synucleins are not enriched in this fraction (Fig.
6¢,d).Taken together, synucleins are likely to act before dynamin.
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Biochemical analysis of endocytic function of synucleins from wild-type and aBy-Syn /" brains (Fig. 6¢). We did not see
To obtain a biochemical understanding of how synucleins could  any changes for the exocytic proteins tested, similar to our pub-
participate in SV endocytosis, we examined the levels of promi-  lished results for total brain proteins (Greten-Harrison et al.,

nent exocytic and endocytic proteins in synaptosomes derived ~ 2010). However, we observed increased levels for the heavy and
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light chains of clathrin and endophilins. The select increase in
endophilins, but not FCHO, is consistent with our previous pro-
teomic analysis of these mice (Westphal and Chandra, 2013). The
increased levels of clathrin and endophilins may be compensa-
tory for the slow endocytic rate in a8y-Syn /. Intriguingly, we
also observed decreased levels of AP180, a neuronal endocytic
adaptor for the v-SNARE synaptobrevin 2 (Koo et al., 2011).
AP180 was previously identified, along with AP2, as modifiers of
a-synuclein function in an unbiased RNAIi screen in Caenorhab-
ditis elegans (Kuwahara et al., 2008).

As AP180 acts early in SV endocytosis before the action of
dynamins, our quantitative immunoblotting results prompted us
to test if AP180 binds synucleins (Fig. 6d,e). We performed im-
munoprecipitations from wild-type and a8y-Syn '~ synapto-
somes at rest or after high K™ stimulation to increase
endocytosis. We observed that AP180 interacts with a-synuclein
weakly at rest and that binding was promoted by stimulation (Fig.
6d,e). This interaction was not direct, as recombinantly purified
AP180 and a-synucleins did not bind each other (data not
shown). Therefore, we tested if this interaction is mediated by
synaptobrevin 2, which has been shown to bind both proteins
(Burré et al., 2010; Koo et al., 2011). Interestingly, AP180, synap-
tobrevin 2 and a-synuclein can be immunoprecipitated together
(Fig. 6d). The binding of synaptobrevin 2 to AP180 was indepen-
dent of its interaction with a-synuclein, consistent with earlier
studies that showed distinct regions on synaptobrevin 2 bind
AP180 (31— 68 aa of Syb2; (Koo et al., 2011) and a-synuclein
(1-29 aa of Syb2; Burré et al., 2010). We next tested if sorting
of synaptobrevin 2 is altered in a8y-Syn '~ synapses. Wild-
type and aBy-Syn '~ brains were fractionated to purify SVs
(Fig. 7b), and the SV proteomes were compared using unbi-
ased quantitative proteomics (Westphal and Chandra, 2013).
We observed that synaptobrevin 2 was significantly decreased
in aBy-Syn '~ SVs (Fig. 7b; afy-Syn '~ = 0.67 * 0.05;
wild-type = 1.00; p < 0.05, n = 3 experiments), though overall
levels in synapses were unchanged (Fig. 7a). Altogether, these
biochemical experiments suggest that synucleins may act tran-
siently in membrane bending and cargo selection steps of SV
endocytosis (Fig. 8).

Discussion

In this study, we directly demonstrate that synucleins are re-
quired for rapid and efficient clathrin-mediated SV endocytosis
at the presynaptic terminal. f8y-Syn ~/~ neurons showed defec-
tive SV endocytosis both during and after neuronal activity (Figs.
1-3). The slower endocytosis observed in aBy-Syn ’~ neurons

could be rescued by individually expressing a-, 8-, or y-synuclein
(Fig. 2b), underscoring that regulation of SV endocytosis is a
conserved function of the synuclein protein family. The endo-
cytic deficits of aBy-Syn ~/~ neurons have marked physiological
consequences, which result in faster synaptic depression and a
slow recovery of neurotransmission (Fig. 4). a-Synuclein local-
izes to endocytic clusters observed in DynDKO neurons (Fergu-
son et al., 2007; Raimondi et al., 2011; Fig. 5a), suggesting that
synucleins act temporally before dynamins. Our biochemical ex-
periments support this interpretation (Fig. 6) and indicate that
synucleins act transiently to regulate the assembly of the synaptic
endocytic machinery.

Biochemical and genetic interactions support an endocytic
function for synucleins

The biochemical properties and interactions of synucleins are
well suited to fulfill an early endocytic function. Synucleins, via
their conserved N termini, bind acidic lipids, in particular
PI(4,5)P, (Narayanan and Scarlata, 2001), a property shared by
many endocytic proteins (Di Paolo et al., 2002; Milosevic et al.,
2011). Significantly, synucleins can sense/generate membrane
curvature (Jensen et al., 2011; Westphal and Chandra, 2013) and
the width of the membrane tubules generated by synucleins is
consistent with the neck of clathrin-coated buds (Westphal and
Chandra, 2013). Consequently synucleins, through their interac-
tions with acidic lipids and AP180 (Fig. 7¢,d), may be involved in
coordination of membrane bending to initiate SV endocytosis.
Previous studies on a-synuclein protein interactions also corrob-
orate an endocytic role. In searches for potential a-synuclein
interactors, binding to several early acting endocytic proteins
have been reported. AP-2, AP-1, and clathrin were pulled down
with a C-terminal construct of a-synuclein (Li et al., 2002) and
clathrin was also pulled down with full-length a-synuclein (Jin et
al., 2007). However, many additional synuclein protein interac-
tors have been identified in different systems (Payton et al., 2001;
Woods et al., 2007).

The genetic interactions of synucleins are also consistent with
an endocytic function for synucleins. Transgenic overexpression
of a-synuclein completely rescues the neurodegeneration and
early lethality of CSPa KO, while deletion of synucleins exacer-
bates these phenotypes (Chandra et al., 2005). CSPa is a presyn-
aptic co-chaperone for Hsc70. The CSPa/Hsc70 complex acts on
SNAP-25 and dynamin 1 to facilitate the SV cycle (Sharma et al.,
2011; Zhang et al., 2012), and CSPa KO neurons show both
impaired SV exocytosis and endocytosis (Rozas et al., 2012). The
CSPa KO/a-synuclein crosses indicate that a-synuclein is likely
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to act in either a SNAP-25-related (exocytic) or dynamin 1
(endocytic)-related pathway. The endocytic phenotypes of af3y-
Syn /" neurons are congruent with the fact that CSPa regulates
SV endocytosis via dynamin (Zhang et al., 2012). As previously
noted, further support of an endocytic function for synucleins
comes from a genetic modifier screen for a-synuclein function in
C. elegans, which identified that SV endocytosis is the main path-
way impacted and modifiers included AP180 and AP2 (Kuwa-
hara et al., 2008).

Does a-synuclein work in SV endocytosis only?

While our data strongly suggest that synucleins are regulatory
endocytic proteins, they do not rule out a role of synucleins in SV
exocytosis. Deletion of synucleins does improve basal neu-
rotransmission in young mice (Greten-Harrison et al., 2010; An-
war et al,, 2011). Conversely, overexpression of a-synuclein
across many systems consistently decreased neurotransmission
(Larsen et al., 2006; Nemani et al., 2010). Therefore it is possible
that a-synuclein works in both exocytosis and endocytosis. Par-
adoxically, the increase in basal synaptic transmission in af3y-
Syn /" mice was not accompanied by an increase in release
probability (Greten-Harrison et al., 2010). Based on these previ-
ous and present findings, we hypothesize two possible scenarios
after considering the pathological and physiological functions of
synucleins: (1) toxic a-synuclein oligomers (in both wild-type
and transgenic overexpression) inhibit SNARE complex forma-
tion (Choi et al., 2013) and thus SV exocytosis, while native sy-
nucleins function in the endocytic arm of the SV cycle to facilitate
endocytosis and (2) native synucleins, through their membrane
bending properties and AP180/synaptobrevin 2 binding, are
involved in exo—endo coupling. Both of these scenarios are
consistent with the fact the genetic interaction of a-synuclein
with CSPa, as CSPa binds both SNAP-25 and dynamin and
facilitates exo—endo coupling. The findings that VAMP/syn-
aptobrevin 2 is essential for fast synaptic-vesicle endocytosis
(Dedk et al., 2004) and that AP180 is an endocytic adaptor for
sorting of SNAREs (Koo et al., 2011) also support these hy-
potheses. Further detailed genetic and biochemical experi-
ments are needed to distinguish between these possibilities.
Regardless, these data point to synucleins acting at the earliest
steps of the endocytic process.

Endocytic pathway and PD

Our findings categorize a-synuclein with other familial PD genes
such as LRRK2 (Matta et al., 2012) and Parkin (Trempe et al.,
2009), which regulate SV endocytosis. Recently, mutations in
endocytic proteins such as auxilin (Edvardson et al., 2012), syn-
aptojanin (Krebs et al., 2013), and sequence variants in GAK
(Nalls et al., 2011; Lill et al., 2012) have been linked to PD. Col-
lectively, these results strongly implicate the SV endocytic path-
way in the etiology of PD. Finally, as all members of the synuclein
family are functionally redundant for SV endocytosis, selective
lowering of a-synuclein levels may be a suitable therapeutic ap-
proach for PD.
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