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Huntington’s disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin
(Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD.
However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic
problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity
was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing
mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated
pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration
of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss.
To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic
connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found
excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings
reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost
when the mutant Htt is present.
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Introduction
Huntington’s disease (HD) is a fatal neurodegenerative disease
caused by a mutation that introduces an expanded poly-
glutamine stretch (poly-Q�39) into the huntingtin (Htt) protein
(Huntington’s Disease Collaborative Research Group, 1993).
Motor dysfunction in HD usually manifests during the fourth
decade of life and is associated with striatal cell death (Vonsattel
et al., 1985). Many cell types in the brain express Htt, but striatal
medium spiny neurons (MSNs) are particularly vulnerable in
HD (Eidelberg and Surmeier, 2011). These GABAergic neurons

have extensive dendritic trees that are packed with numerous
spines. MSNs receive excitatory synaptic inputs exclusively from
outside of the striatum, predominantly from the cortex and thal-
amus (Gerfen and Surmeier, 2011).

Mutant Htt has been proposed to cause HD through a toxic
gain-of-function mechanism that triggers MSN death (Davies et
al., 1997). However, recent studies in humans and HD mouse
models show that problems in cortical and striatal synaptic con-
nectivity precede neurodegeneration (Crook and Housman,
2011; Raymond et al., 2011; Unschuld et al., 2012). This has led to
the alternative hypothesis that excitotoxicity generated by circuit
dysfunction is the primary trigger for MSN loss (Milnerwood and
Raymond, 2010; Milnerwood et al., 2010). Moreover, data from
multiple studies provide evidence that point toward a loss-of-
function effect of the poly-Q mutation in Htt protein biology
(Cattaneo et al., 2005). Significantly, deletion of wild-type (WT)
Htt in the postnatal mouse CNS causes progressive neurodegen-
eration (Dragatsis et al., 2000), suggesting that loss of normal Htt
function plays key roles in HD pathogenesis.

Htt normally localizes along microtubules and participates in
the transport of a variety of cargo, including mRNAs, proteins,
vesicles, and organelles, such as mitochondria (DiFiglia et al.,
1995; Li et al., 2009; Ma et al., 2011; Reddy and Shirendeb, 2012;
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Zala et al., 2013). Notably, Htt is present in excitatory synapses
where it associates with synaptic vesicles in the presynaptic ter-
minal and facilitates neurotransmitter release (DiFiglia et al.,
1995; Rozas et al., 2011). In the postsynaptic density, Htt is asso-
ciated with the postsynaptic scaffolding protein PSD95, and this
interaction is diminished by the poly-Q expansion (Sun et al.,
2001; Marcora and Kennedy, 2010).

Because of the close association of Htt with synapses and the
presence of synaptic dysfunction with HD, we postulated that Htt
plays a critical role in synaptic connectivity. To investigate
whether Htt is required for the establishment and maintenance of
cortical and striatal synapses in the mouse CNS, we conditionally
silenced Htt expression in the developing mouse cortex. In addi-
tion, we studied synaptic development in a full-length mutant
Htt knock-in (KI) mouse model of HD, the zQ175 mouse. Our
findings show that loss of Htt in the cortex leads to the exuberant
formation of cortical and striatal excitatory synapses, which can-
not maintain long-term functionality. Our findings also show
that the presence of mutant Htt impairs cortical synaptic connec-
tivity in a similar manner to the conditional deletion of the gene.
This provides strong evidence that the presence of mutant Htt
leads to a loss of normal Htt function in synaptic connectivity.

Materials and Methods
Mice. To conditionally inactivate the Huntingtin gene in mice (Htt, pre-
viously Hdh), we used previously described alleles of Htt: a floxed allele
Htt tm2Szi (hereafter will be referred to as Htt flox, RRID:MGI_ MGI:
2177755) and a null allele Htt � (Dragatsis et al., 2000) (see Fig. 1A). To
conditionally silence Htt in the developing mouse cortex, we used the
B6.129S2-Emx1tm1(cre)Krj/J mouse line developed by Kevin Jones (here-
after, Emx1-Cre(Tg) mice, RRID:IMSR_JAX:005628) (Gorski et al., 2002).
We chose this Cre line because it has been shown to successfully induce
recombination and inactivation of floxed alleles in the mouse cortex
(Gorski et al., 2002). Emx1-Cre was transmitted only though females in
our experiments. Experimental breeding pairs were as follows: Htt (�/�);
Emx1-cre (Tg/Tg) � Htt(flox/flox). Control mice were Htt( flox/�);Emx1-
Cre(Tg/0), and cortical conditional deletion mice (hereafter, Htt cKOs) were
Htt( flox/�);Emx1-Cre (Tg/0). The Control mice have a single copy of Htt
gene in the cortex but a double copy elsewhere in the brain. In Htt cKOs,
both copies of the Htt gene are deleted in the cortex, but they are
heterozygous elsewhere in the brain. Thus, littermate gender-matched
Htt( flox/�) and Htt( flox/�) mice (hereafter Htt(fl/�) and Htt(f/�), re-
spectively) were used to control for possible effects of Htt heterozygosity
in the Htt cKOs. To identify Cre-expressing cells, we crossed the Emx1-
Cre mice to the Gt(ROSA)26Sor tm2(CAG-tdTomato)Fawa mouse line (a kind
gift from Dr. Fan Wang of Duke University, RRID:MGI_ MGI:5305341)
that expresses tdTomato upon Cre recombination. All the mice used in
this part of the analyses (Control, Htt cKO, Htt(f/�) and Htt(f/�)) were
in a mixed C57BL/6,129 background. For all our analyses, we compared
littermate gender-matched Control and Htt cKO mice or Htt(f/�) and
Htt(f/�) mice.

For our analyses on the effect of the HD mutation on synapse devel-
opment, we used a recently developed full-length KI mouse model of HD
known as zQ175 (Menalled et al., 2012). These mice originated by a
spontaneous expansion of the CAG repeats in the Q140 KI mutant allele,
and they are held in C57BL/6 background (Menalled et al., 2003) (RRID:
MGI_ MGI:2675580). In zQ175, the first exon of Htt is a chimera be-
tween the mouse exon sequences and human sequence containing the
sequence encoding the expanded poly-Q stretch and adjacent proline-
rich region. The size of the poly-Q stretch ranges between 175 and 200.
For our experiments, male mice with the Htt (zQ175/�) genotype were
crossed with Htt (�/�) (hereafter referred to as WT) females. The off-
spring of these breeding pairs yielded littermate pairings for our analyses
(mice of either sex were used). WT group: Htt( �/�) and heterozygous KI
group (hereafter referred to as zQ175): Htt( zQ175/�).

Western blot. Brains from P21 Htt(f/�), Control, Htt(f/�), and Htt
cKO mice (3 animals per genotype) were isolated. Motor and somato-

sensory cortices and striata were dissected out and homogenized in ice-
cold solubilization buffer (25 mM Tris, pH 7.2, 150 mM NaCl, 1 mM

CaCl2, 1 mM MgCl2) containing 0.5% NP-40 (Thermo Scientific) and
protease inhibitors (Complete EDTA free, Roche). Protein concentra-
tions of the lysates were determined using micro BCA protein assay kit
(Pierce). A total of 75 �g of total protein/well in SDS-PAGE buffer
(Pierce) was loaded into 4%–15% polyacrylamide gels (Bio-Rad), re-
solved by SDS-PAGE, and transferred onto an Immobilon-FL PVDF
membrane (Millipore).

Blots were blocked in 50% blocking buffer (Rockland MB-070) in PBS
containing 0.01% Tween 20 for 1 h at room temperature before incubat-
ing with primary antibody dilutions in blocking buffer (mouse anti-Htt
1:1000 (Millipore 2166, RRID:AB_2123255), rabbit anti-�-tubulin
1:1000 (Li-Cor 926 – 42211, RRID:AB_1850029)) overnight at 4°C. Fluo-
rescently labeled secondary antibodies (Li-Cor) were diluted (1:5000) in
the same buffer as primary antibodies, and Western blots were incubated
with secondary antibodies for 2 h at room temperature in the dark.
Detection was performed using the Li-Cor Odyssey System. Four sets of
lysates (Htt(f/�), Control, Htt(f/�), and Htt cKO mice) corresponding
to 3 animals per genotype per brain region were used. Each sample was
run in triplicates. The intensities of protein bands were quantified using
ImageJ. Htt band intensities in each well were normalized to the levels of
the loading control, �-tubulin, in that sample. The quantified relative
intensities were divided to that of the Htt(f/�) brain lysates. Statistical
differences in protein levels in cKOs compared with other genotypes
were calculated using a one-tailed Student’s t test.

Immunohistochemistry. Mice of either sex were perfused intracardially
with TBS (25 mM Tris-base, 135 mM NaCl, 3 mM KCl, pH 7.6) supple-
mented with 7.5 �M heparin followed with 4% PFA in TBS. The brains
were removed and fixed with 4% PFA in TBS at 4°C overnight. The brains
were cryoprotected with 30% sucrose in TBS overnight and then embed-
ded in a 2:1 mixture of 30% sucrose in TBS:OCT (Tissue-Tek). Brains
were cryosectioned at 20 �m using a Leica CM3050S. Sections were
washed and permeabilized in TBS with 0.2% Triton X-100 (TBST). Sec-
tions were then blocked in 5% normal goat serum (NGS) in TBST for 1 h
at room temperature. Primary antibodies were diluted in 5% NGS in
TBST: rabbit anti-RFP 1:2000 (Rockland Immunochemicals 600-401-
379, RRID:AB_2209751), mouse anti-DARPP32 1:500 (BD Biosciences
611520, RRID:AB_398980), mouse anti-GFAP 1:1000 (Sigma-Aldrich
G3893, RRID:AB_477010), and rabbit anti-Iba1 (ionized calcium bind-
ing adapter molecule 1) 1:7500 (Wako 019-19741, RRID:AB_839504),
rabbit anti-ER81 1:6000 (Abcam ab36788, AB_732196), rat anti-CD68
1:500 (BioLegend 137001, RRID:AB_2044003), mouse anti-NeuN
1:1000 (Millipore MAB377, RRID:AB_2298772), rabbit anti-Caspase-3
1:600 (Cell Signaling Technology 9661, RRID:AB_2314091), guinea pig
anti-VGLUT2 1:7500 (Millipore AB2251, RRID:AB_1587626), guinea
pig anti-VGLUT1 1:2500 (Millipore AB5905, RRID:AB_2301751), and
rabbit anti-PSD95 1:350 (Invitrogen 51-6900, RRID:AB_87705). Sec-
tions were incubated overnight at 4°C with primary antibodies. Second-
ary Alexa-fluorophore-conjugated antibodies (Invitrogen) were added
(1:200 in TBST with 5% NGS) for 2 h at room temperature. Slides were
mounted in Vectashield with DAPI (Vector Laboratories), and images
were acquired on confocal laser-scanning microscopes (Leica SP5, Leica
SP8, or Zeiss LSM 710).

Cell number quantification. Coronal brain sections from P21 or
5-week-old littermate Control and Htt cKO brains that contained the
motor (M1) cortex and dorsal striatum regions (bregma 0.5–1.1 mm)
(Franklin and Paxinos, 2001) were stained with nuclear stain DAPI or
cell-type-specific markers (NeuN for neurons, GFAP for reactive astro-
cytes, Iba1 for microglia) as described above. The motor cortex was im-
aged at 40� magnification on a Leica SP8 as a series of images from the
pia to the striatum with 30% overlap. The images were stitched together
using the Fiji image processing package based on ImageJ (Schindelin et
al., 2012). The stitched images of the cortices were divided into 12 equal
parts (identical dimensions in all images) encompassing the distance
between the pia and the corpus callosum. The number of DAPI-positive
nuclei, GFAP-positive reactive astrocytes, NeuN-positive neurons, and
Iba1-positive microglia were counted using the Cell Counter Plugin for
ImageJ (Schneider et al., 2012) in the tiled images. Three independent
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brain sections from 3 animals/genotype/age were analyzed in this man-
ner (i.e., each data point corresponds to 9 separate image tiles).

For thalamic cell quantification, coronal brain sections from 5-week-
old Control and Htt cKO brains that contained the intralaminar nuclei of
the dorsal thalamus (bregma �1.06 to �1.82 mm) (Franklin and Paxi-
nos, 2001) were stained with neuronal marker NeuN as described above.
The thalamus was imaged at 20� magnification on a Zeiss 710 as a series
of 8 425 � 425 �m tiled images. These images were stitched together
using ZEN 2009 software from Zeiss to produce an 850 � 1700 �m image
of the thalamus. A 350 � 100 �m rectangle was drawn in the central and
paracentral lateral nuclei that innervate the dorsal striatum (Berendse
and Groenewegen, 1990), and the number of NeuN-positive neurons
within this rectangle was counted using the Cell Counter Plugin for
ImageJ (public domain software from the National Institutes of Health,
RRID:nif-0000-30467). Four independent brain sections for each animal
and three animals per genotype were analyzed.

Synapse quantification in mouse brain sections. Three independent cor-
onal brain sections per each mouse, which contain the motor (M1) cor-
tex and dorsal striatum (bregma 0.5–1.1 mm) (Franklin and Paxinos,
2001), were stained with presynaptic (VGlut1 or VGlut2) and postsyn-
aptic (PSD95) marker pairs as described previously (Ippolito and Eroglu,
2010; Kucukdereli et al., 2011). Three or four mice (genotype/age, each
Htt cKO or zQ175) were compared with a littermate gender-matched
Control or WT mouse. The 5-�m-thick confocal scans (optical section
depth 0.33 �m, 15 sections/scan, imaged area/scan � 20,945 �m 2) of the
synaptic zone in the M1 motor cortex or dorsal striatum were performed
at 63� magnification on a Leica SP5 confocal laser-scanning microscope.
Maximum projections of 3 consecutive optical sections (corresponding
to 1 �m total depth) were generated. The Puncta Analyzer Plugin (avail-
able upon request; c.eroglu@cellbio.duke.edu) for ImageJ was used to
count the number of colocalized synaptic puncta. This assay takes advan-
tage of the fact that presynaptic and postsynaptic proteins reside in sep-
arate cell compartments (axons and dendrites, respectively), and they
would appear to colocalize at synapses because of their close proximity.
At least 5 optical sections per brain section and at least 3 brain sections
per animal were analyzed, making a total of 45– 60 image datasets per
brain region in each genotype/age. Details of the quantification method
were given by Ippolito and Eroglu (2010).

Golgi-Cox staining, dendritic arborization, and spine analysis. Golgi-
Cox stainings were performed on Htt cKO, Htt (f/�), and zQ175 mice
and their gender-matched littermate controls (3 mice of either sex per
genotype) using the FD Rapid GolgiStain Kit (FD NeuroTechnologies).
Dye-impregnated brains were embedded in Tissue Freezing Medium (TFM,
TBS) and were rapidly frozen on ethanol pretreated with dry ice. Brains were
cryosectioned coronally at 80 �m thickness and were mounted on gelatin-
coated microscope slides (Southern Biotech). Sections were stained accord-
ing to the directions provided by the manufacturer.

Sections that contained M1 motor cortex and dorsal striatum were
imaged. Layer 2/3 and 5 pyramidal neurons were identified by their
distance from pia and by their distinct morphologies. Similarly, MSNs in
the striatum were identified by their morphology. To analyze neuroanat-
omy and dendritic arborization, cell bodies, proximal apical, and basal
dendrites were traced using the Neurolucida software (MBF Bioscience)
at 40� magnification. Total basal dendrite outgrowth and Sholl analysis
were calculated using the Neurolucida software.

Secondary and tertiary apical dendrites were imaged for spine analysis
as follows: z-stacks (30 �m total on z-axis, single section thickness � 0.5
�m) of Golgi-stained dendrites were taken at 63� magnification on a
Zeiss AxioImager M1. Series of TIFF files corresponding to each image
stack were loaded into the Reconstruct program (available at http://
synapses.clm.utexas.edu; RRID:nif-0000-23420) (Fiala, 2005), and 10
�m segments of dendrites were chosen for analyses. Spines were identi-
fied on selected dendritic stretches. z-length (spine length) and spine
head width were measured for each spine. These measurements were
exported to Microsoft Excel. A custom Excel macro was used to classify
spines based on the width, length, and length:width ratio measurements
taken in Reconstruct. Spines were categorized based on the following
hierarchal criteria: (1) more than one spine head � “branched spine,” (2)
head width � 0.7 �m � “mushroom spine,” (3) length � 2 �m �

“filopodia,” (4) length:width � 1 � “thin spine,” and (5) length:width �
1 � “stubby spine.” Branched and mushroom spines were identified as
mature spines, thin and stubby spines were categorized as intermediate
spines, and filopodia were classified as immature spines (see Fig. 3E).
Statistical analyses of changes in spine density, length, width, and spine
type were conducted in the Statistica program (StatSoft): 3 animals/
genotype, 15 dendrites/animal, 45 dendrites per genotype total were an-
alyzed for layer 2/3 and layer 5 cortical neurons and 12 dendrites/animal,
36 dendrites per genotype were analyzed in MSNs. The number of spines
analyzed per neuron type per age per genotype exceeded 1500.

Electrophysiology. Brain slices containing both striatum and cortex
were prepared from 5-week-old mice of either sex as follows. Briefly,
animals were killed by decapitation, and the brains were transferred rap-
idly to ice-cold modified aCSF containing the following (in mM): 194
sucrose, 30 NaCl, 4.5 KCl, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and 10
D-glucose. Modified aCSF was brought to pH 7.4 by aeration with 95%
O2/5% CO2. Coronal sections (250 �m) were cut in ice-cold modified
aCSF using a Vibratome 1000 and transferred immediately to a nylon net
submerged in normal aCSF containing the following (in mM): 124 NaCl,
2.5 KCl, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and 10 D-glucose.
Normal aCSF was maintained at pH 7.4 by bubbling with 95% O2/5%
CO2 at room temperature. Picrotoxin (50 �M) was added to the bath to
block GABAergic transmission. Pipettes were pulled from borosilicate
glass capillaries on a Narishige PC-10 micropipette puller. Pipettes were
filled with an internal solution containing the following (in mM): 120
cesium methane sulfonate, 5 NaCl, 10 tetraethylammonium chloride, 10
HEPES, 4 lidocaine N-ethyl bromide, 1.1 EGTA, 4 Mg-ATP, and 0.3
Na-GTP, pH adjusted to 7.2 with CsOH, and osmolarity set to 298
mOsm with sucrose. Recordings were made from layer 5 pyramidal cor-
tical neurons and medium spiny neurons in the dorsolateral striatum.
Cells were visually identified based on their characteristic size, shape, and
location. Cells were voltage-clamped at �70 mV for spontaneous EPSCs
(sEPSCs). For evoked EPSCs, test stimuli were delivered via a Master-8
stimulator through a bipolar twisted tungsten wire, and the stimulus
intensity was set to the level at which EPSC amplitude was 200 – 400 pA.
To measure NMDA currents, cells were clamped at 40 mV, and the
amplitude at 50 ms after the stimulus artifact was measured to eliminate
any fast AMPA component of the current. NMDA/AMPA ratio was cal-
culated by dividing the NMDA amplitude at 40 mV by the amplitude at
�70 mV. Paired pulse ratio was determined by calculating the ratio of the
amplitude of the second EPSC peak to that of the first EPSC. Series
resistance was closely monitored and was usually between 10 and 15 M�.
Synaptic currents were recorded with an Axopatch 1D amplifier, filtered
at 5 kHz, digitized at 10 kHz, stored on a computer, and analyzed using
pCLAMP10.

Results
Conditional silencing of Htt in the developing mouse cortex
Because Htt is essential for embryonic survival (Duyao et al.,
1995; Nasir et al., 1995; Zeitlin et al., 1995), we examined its role
in synaptic development by conditionally inactivating the floxed
allele in the mouse cortex with the Emx1-Cre transgene (Fig. 1A).
We chose to silence Htt in cortex because: (1) cortical synaptic
dysfunction is an early event in HD (Unschuld et al., 2012); (2)
the highest expression of Htt is localized to cortical pyramidal
neurons rather than the MSNs of the striatum (Fusco et al., 1999);
and (3) the timeline of synapse development and maturation is
well studied in the mouse cortex.

Previous characterization of the Emx1-Cre transgene showed
that Cre expression is restricted to the cortex, hippocampus, and
olfactory bulb (Gorski et al., 2002). Importantly, Cre expression
is present in all cortical pyramidal neurons, including those from
layer 5 that project to the striatum. Cre expression is detected as
early as embryonic day 9.5, before early postnatal synaptic devel-
opment. A previous study showed that Htt plays a role in neural
progenitor mitosis during cortical development (Godin et al.,
2010). Therefore, we first analyzed whether deletion of Htt sig-
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nificantly altered cell number in cortical layers. Analyses of nuclei
in the M1 region of the motor cortex at postnatal day 21 (P21)
revealed no gross changes in cortical layer structure or cell num-
ber (two-way ANOVA, p � 0.57) (Fig. 1B). The number of

NeuN-positive neurons was also not significantly different be-
tween genotypes (see Fig. 6D).

To determine whether Htt expression was decreased in the Htt
cKOs, we performed Western blot analyses of cortical and striatal
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lysates from control and Htt cKO mice. As expected, in Htt cKOs,
the level of Htt protein in the cortex was greatly reduced (Fig. 1C).
However, not all Htt protein was lost in the Htt cKO cortex,
which is most likely due to the expression of Htt in cortical in-
terneurons, a cell type in which the Emx1 promoter is not active
(Gorski et al., 2002). In addition to Controls and Htt cKOs, we
also quantified the cortical Htt levels in Htt(f/�) and Htt(f/�)
mice. We did not observe a significant difference in Htt protein
abundance in the cortices of Htt(f/�) mice, which have double
copies of the Htt gene (one floxed and one WT allele), and the
Htt(f/�) or Control mice, which have a single copy of Htt gene
(one floxed allele) all over the body or in the cortex, respectively.
This result suggests that loss of a single copy of Htt gene does not
alter the levels of Htt protein in the motor and somatosensory
cortices.

Surprisingly, we detected a significant decrease in the Htt lev-
els in the striata of Htt cKOs compared with Control mice (p �
0.001) (Fig. 1C). This raised the possibility that Emx1-Cre line
drives expression of Cre also in the striatum, particularly in the
MSNs. To determine the pattern of Cre expression, we crossed
the Emx1-Cre line to a reporter line, ROSA26-STOP (loxP/loxP)-td-
tomato. In the mice that harbor this reporter gene, td-tomato
(RFP) expression is only activated in cells that express Cre. Emx1-
Cre expression (reported by td-tomato fluorescence) was largely
restricted to cortex, hippocampus, and olfactory bulb (Fig. 1D).
However, we also observed extensive td-tomato-labeled cortical
axonal projections in the striatum (Fig. 1D, inlay, black arrow).
These axonal innervations closely associated with but did not
colocalize with the striatal MSNs, which were marked with the
MSN-specific marker DARPP32 (Fig. 1E). These data show that
the Emx1 promoter does not drive Cre expression in striatal neu-
rons. Together, our findings show that conditional deletion of
Htt in the cortex by Emx1-Cre severely reduces Htt levels in both
the cortex and the striatum. These findings indicate the possibil-
ity that a major portion of the total Htt in the striatum exists
within cortical afferents.

Loss of cortical Htt expression leads to enhanced excitatory
synapse development in the cortex and the striatum
To examine Htt’s effects on synapse development, we first ana-
lyzed synapses at P21, which marks the end of the synapse forma-
tion period in the cortex but before the synaptic maturation and
pruning events are concluded. To assess intracortical synaptic
connections, we focused on the synaptic zone below the pia in the
M1 motor cortex (Fig. 2A). Layer 2/3 and layer 5 excitatory py-
ramidal neurons project extensive dendritic trees to this region
and form a large number of the corticocortical connections
(Thomson and Lamy, 2007). First, we quantified the number of
synaptic puncta as the colocalization of the presynaptic and post-
synaptic markers (VGlut1 and PSD95, respectively) that are spe-
cific for the excitatory intracortical synapses. We found a highly
significant (1.5-fold) increase in the number of excitatory synap-
tic puncta in Htt cKOs compared with littermate controls (one-
tailed Student’s t test, p � 0.007) (Fig. 2B). Increased synapse
number in the cortices of Htt cKO mice was due to the condi-
tional deletion of Htt in the cortex and not due to Htt heterozy-
gosity elsewhere in the brain because the Htt (f/�) mice had
similar synapse numbers in the cortex compared with littermate
Htt(f/�) mice (Fig. 2C). These results show that lack of Htt in the
cortex leads to increased intracortical connectivity at P21. Next,
we analyzed striatal synapses in P21 Control and Htt cKOs to
determine the effect of loss of cortical (i.e., presynaptic) Htt on
striatal connectivity. The striatum receives excitatory inputs from

both the cortex and thalamus (Fig. 2D), and the axonal innerva-
tions from these inputs can be distinguished by the differential
expression of the presynaptic proteins VGlut1 (corticostriatal)
and VGlut2 (thalamostriatal) (Fujiyama et al., 2004). Interest-
ingly, we found that Htt cKO mice have a significant increase in
corticostriatal excitatory synapses (Student’s t test, p � 0.04),
whereas the number of VGlut2-PSD95-positive thalamostriatal
synapses is similar between Control and Htt cKO mice (Fig. 2E).
The change in corticostriatal synapse number in Htt cKO mice is
the result of loss of Htt in the cortex but not heterozygosity of Htt
in the striatum because Htt (f/�) mice have similar numbers of
corticostriatal synapses compared with Htt(f/�) mice (Fig. 2F).
Together, these findings show that cortical Htt is required to
regulate synaptic connectivity in both the cortex and striatum.

We next determined the effects of cortical Htt knockdown on
neuronal morphology by tracing the dendrites of Golgi-Cox
stained layer 2/3 and layer 5 pyramidal neurons of the M1 cortex
and MSNs of the dorsal striatum (Fig. 3A). In the cortices of Htt
cKO mice, dendritic outgrowth of layer 2/3 and layer 5 pyramidal
neurons was differentially affected. The layer 2/3 neurons dis-
played decreased total dendrite outgrowth (two-tailed Student’s t
test, p � 0.03) and complexity (Sholl analysis, ANCOVA, p �
7.39 � 10�9) (Fig. 3B) in Htt cKOs compared with Controls. On
the contrary, the layer 5 neurons exhibited a significant increase
in overall dendritic outgrowth (two-tailed Student’s t test, p �
0.01), and Sholl analysis revealed a more complex morphology
(ANCOVA, p � 1.76 � 10�6) in Htt cKOs compared with Con-
trols (Fig. 3C). The morphology of MSNs is similar in Htt cKOs
and Controls (Fig. 3D). These findings show that loss of cortical
Htt affects dendritic morphology, leading to opposite effects on
the outgrowth and elaboration of layer 2/3 and layer 5 cortical
neurons.

In the cortex and striatum, the majority of excitatory synapses
are compartmentalized into dendritic spines, which undergo
morphological maturation during development (Fig. 3E). Previ-
ous studies detected significant changes in the number and mor-
phology of dendritic spines in HD patients and in mouse models
of HD (Ferrante et al., 1991; Nithianantharajah and Hannan,
2013). Therefore, we performed a detailed quantitative analysis
of dendritic spine density and morphology. We focused on the
secondary and tertiary dendrites of layer 2/3 and layer 5 cortical
neurons and the MSNs of the dorsal striatum. Spines were cate-
gorized based on their spine length and head width (Fig. 3E; see
Material and Methods).

We found that, at P21, layer 2/3 pyramidal neurons of Htt
cKO mice have no significant changes in spine maturity com-
pared with littermate controls. By contrast, the layer 5 pyramidal
neurons have significantly more mature spines compared with
controls (t test, p � 0.03) (Figs. 3F,G). Surprisingly, we did not
find an overall increase in spine density in Htt cKOs despite the
increase in synapse number found in the synaptic zone (Fig. 2B).
Together, our results show that neither an increase in spine den-
sity nor an increase in dendritic outgrowth alone could account
for the increase in synapse number we observed in the synaptic
zone (Fig. 2).

Interestingly, similar to the layer 5 pyramidal neurons, the
MSNs of the dorsal striatum in Htt cortical cKO mice also showed
accelerated spine maturation at P21 (t test, p � 0.009) (Fig. 3H).
The increase in mature spines in the Htt cKOs was primarily
driven by an increase in the number of “mushroom” type spines.
Together, our findings suggest that WT Htt functions to inhibit
the exuberant formation of excitatory connections and pace their
maturation within cortical and striatal circuits.
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Exuberant cortical connectivity is not maintained in 5-week-
old Htt cKOs
After the early period of synapse formation (first 3 postnatal
weeks in mice), synapses undergo a period of refinement and
maturation in which some connections are eliminated and other

connections strengthen and grow (fourth and fifth weeks of post-
natal development). This later stage of excitatory synapse devel-
opment is activity-dependent and is required to shape synaptic
circuits to establish functional networks (West and Greenberg,
2011). To determine whether this period of development was
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altered by the lack of Htt in the cortex, we investigated synaptic
connectivity in 5-week-old (5 week) Htt cortical cKO mice and
their littermate controls.

Surprisingly, the Htt cKO mice displayed a reversal of synaptic
phenotypes in the cortex at 5 weeks compared with P21. The
increase in synapses seen in the Htt cKO mice at P21 (Fig. 2B) has
completely disappeared in 5 week mice (Fig. 4A). Notably, at this

age, the number of the postsynaptic PSD95 puncta was signifi-
cantly lower in the Htt cKOs compared with Controls (t test, p �
0.04) (Fig. 4A).

Analysis of spines in the Golgi Cox-stained cortical neurons
showed that, at 5 week in Htt cKOs, there are fewer mature and
more intermediate spines compared with littermate Control
mice (Student’s t test, p 
 0.05) (Fig. 4B). This phenotype is a
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reversal of the accelerated maturation we observed in Htt cKO
cortices at P21. Moreover, spines on both the layer 2/3 and layer
5 pyramidal neurons are affected at 5 weeks (Fig. 4B,C), whereas
accelerated maturation of spines is restricted to the layer 5 neu-
rons at P21 (Fig. 3F,G).

Similar to the number of synapses, dendritic outgrowth was
also normalized to Control levels in Htt cKO mice at 5 weeks.
Layer 2/3 pyramidal neurons no longer exhibited a significant
difference in basal dendritic outgrowth (Fig. 4D), but Htt cKO
mice still had less complex arborization (ANCOVA, p � 0.02).
There were no significant differences in the outgrowth and elab-
oration of the layer 5 neurons between the Control and Htt cKO
mice (Fig. 4E).

Our Golgi-Cox-based analysis of spine structure and the im-
munohistochemical examination of synaptic puncta suggest an
immature phenotype for cortical synapses in 5 week Htt cKOs. To
determine whether these structural changes have functional con-
sequences, we conducted electrophysiological analyses of excit-
atory synaptic transmission in layer 5 neurons (Fig. 5). We found
that the amplitude of sESPCs was significantly decreased in Htt
cKOs compared with Control mice (unpaired t test, p 
 0.01),
indicating that the synaptic strength is reduced in Htt cKO mice
(Fig. 5B). The frequency of sEPSCs was unchanged in Htt cKOs
(unpaired t test) (Fig. 5C). These electrophysiological results are
in line with our anatomical analyses and show that, in 5 week Htt
cKO mice, excitatory connections are weaker, but similar num-
bers of connections are made onto layer 5 cortical neurons in
both genotypes. Using evoked EPSCs (Fig. 5D), we found a sig-
nificantly higher NMDA to AMPA ratio in Htt cKOs compared
with controls (unpaired t test, p � 0.02) (Fig. 5E). We observed
no changes in presynaptic release probability as indicated by the
paired-pulse ratio (unpaired t test, p � 0.05) (Fig. 5F). Together,
these results show that despite the earlier prosynaptogenic and
promaturation effects of Htt deletion in the cortex, intracortical
connectivity is weakened in Htt cKO mice by 5 weeks of age.
These results also indicate that Htt is critically required for the
maturation and maintenance of synapses during the later stages
of synapse development.

Layer- and region-specific reactive gliosis occurs in the
cortices of 5-week-old Htt cKO mice.
Two classes of glial cells, astrocytes and microglia, are known to
play critical roles in regulating synaptic development and ho-
meostasis (Eroglu and Barres, 2010). Both glial cell types are also
known to sense synaptic activity and to respond to synaptic dys-
function by altering their gene expression and morphology (So-
froniew, 2009; Aguzzi et al., 2013) in a process known as reactive
gliosis. To determine whether the synaptic deterioration in the
cortex of 5 week Htt cKOs triggers reactive gliosis, we performed
immunohistological analyses of the Htt cKO and Control brains
with cell specific markers (Fig. 6). GFAP is a known marker for
white matter astrocytes and reactive astrocytes. In normal corti-
ces, GFAP-positive (GFAP�) astrocytes are rare and are re-
stricted to the pia and white matter (corpus callosum and white
matter tracks) (Fig. 6A, left). In contrast, in 5 week Htt cKO
brains, we detected a belt of GFAP�, reactive astrocytes that are
primarily localized to the M1 motor and the somatosensory re-
gions of the cortex (Fig. 6A, right). This belt of GFAP� astrocytes
is not present in P21 Htt cKOs (data not shown) but is present in
all of the 5 week Htt cKO mice we analyzed (n � 8). The thickness
of the GFAP� astrocyte belt varied between individual Htt cKO
mice and was always thicker in the somatosensory cortex and M1
compared with other neocortical areas, such as M2. GFAP� as-

trocytes were mostly excluded from all other cortical areas, such
as the piriform and cingulate cortices at this age. To determine to
which layer of cortex the reactive astrocytes localized, we quanti-
fied the number of GFAP� astrocytes throughout the 5 week Htt
cKO cortex and in littermate controls. Our analyses showed a
highly significant increase in the number of GFAP� astrocytes
within upper layer 5 (two-way ANOVA, p � 3.13 � 10�5) (Fig.
6B). We further verified the layer 5A localization of GFAP� as-
trocytes by costaining Control and Htt cKO brains with a layer
5-specific marker (ER81, Fig. 6B). Together, these findings show
that a region- and layer-specific activation of astrocytes takes
place in the Htt cKO cortices at 5 weeks. This activation is an
indication of synaptic dysfunction and neuronal stress at these
sites. The strict localization of the GFAP� astrocytes to layer 5A
of neocortical areas is of particular significance because the layer
5A neurons from these regions (M1 and S cortices in particular)
are known to specifically innervate MSNs of the dorsal striatum
(Gerfen, 1992; Anderson et al., 2010; Wall et al., 2013).

Despite the significant increase in the number of GFAP� as-
trocytes in the Htt cKO brains at 5 weeks, we did not find a
significant change in the number or distribution of neurons
(NeuN� cells) or microglia (Iba1� cells) in the Htt cKOs (two-
way ANOVA, p � 0.37 and p � 0.36) (Fig. 6D). Iba1 is expressed
in all microglia regardless of their activation state. To determine
whether microglia were activated in a similar manner to astro-
cytes in the Htt cKOs, we costained 5 week Htt cKO and Control
brains with GFAP, Iba1, and CD68, a lysosomal protein that is
highly expressed in activated microglia. Within the band of
GFAP� astrocytes, CD68 staining was strongly increased and
colocalized with Iba1� microglia (Fig. 6C). These neuroinflam-
matory changes in the cortex are not accompanied by neuronal
loss. No apoptotic cells were detected after staining the brains for
caspase 3, a known marker of apoptotic cell death (data not
shown). We also quantified the GFAP, Iba1, and NeuN-positive
cells in the dorsal striatum and did not see any significant changes
in cell numbers or activation states between genotypes (data not
shown). Our results show that loss of Htt in the cortex leads to a
layer 5A-specific reactive gliosis at 5 weeks. The specific localiza-
tion of the reactive gliosis underscores the particular importance
of Htt function in layer 5A neurons, which are the neurons that
project to the MSNs of the dorsal striatum, the cell type and the
brain region that are primarily vulnerable in HD.

Persistence of enhanced striatal synaptic connectivity in 5-
week-old Htt cKOs
In the striatum of 5 week Htt cKO mice, we see a synaptic phe-
notype very different from that of the cortex (Fig. 7). The number
of both corticostriatal (VGlut1-PSD95) and thalamostriatal
(VGlut2-PSD95) synaptic puncta are significantly increased in
the dorsal striatum of the Htt cKO mice compared with Control
at this age (one-tailed t test, p 
 0.01) (Fig. 7A). The Htt(f/�)
mice had similar excitatory synapse numbers compared with
Htt(f/�) mice (Fig. 7B). This result shows that the increased
striatal excitatory connectivity of the Htt cKOs is not due to Htt
heterozygosity in the striata of these mice.

Because we saw an increase in thalamostriatal connections in
the cortical Htt cKO mice, we next checked whether higher
thalamostriatal connectivity seen in Htt cKOs is due to an unex-
pected deletion of Htt in thalamic neurons by the Emx1-Cre
driver. We assessed Cre expression using the previously described
td-tomato reporter mice (see Fig. 1D, E). Neurons were marked
with NeuN (green) and Cre-expressing cells were marked by td-
tomato (red) expression. Colocalization of NeuN-positive neu-
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rons and td-tomato is clearly seen in the hippocampus, where
Emx1-Cre is known to be active (Fig. 7C, top inset). However, we
did not observe any colocalization of td-tomato with NeuN
within the thalamic nuclei that innervate the dorsal striatum: the
central lateral (CL) and paracentral lateral (PL) nuclei (Berendse
and Groenewegen, 1990) (Fig. 7C, right inset). We also quanti-
fied the number of NeuN� nuclei in the PL and CL of 5 week Htt
cKO and Control mice to determine whether an increase in neu-
ron number could account for the increase in thalamostriatal
synapses that we observe in the Htt cKOs. There were no signifi-
cant differences in neuron numbers between genotypes (two-
tailed t test, p � 0.21) (Fig. 7D). Together, we show that the Emx1
driver does not induce Cre expression in the thalamic nuclei that
project to the dorsal striatum. These results strongly indicate that
the increased thalamostriatal synaptic connectivity in the 5 week
Htt cKOs is due to the loss of cortical Htt expression.

In addition to having more synapses in the dorsal striatum, the
Golgi-Cox analysis of MSN spine morphology showed enhanced
spine maturation in Htt cKOs compared with Control mice (Fig.
8A). Similar to the P21 results (Fig. 3H) in 5 week Htt cKO MSNs,
the density of mature spines (particularly of the “mushroom”
type) is increased (Student’s t test, p � 0.04), whereas the number
of intermediate spines is reduced compared with littermate con-
trols (Student’s t test, p � 0.008) (Fig. 8A). Together, these find-
ings show that loss of cortical Htt expression in pyramidal
neurons leads to an increase in excitatory synaptic connections
and accelerated spine maturation in the dorsal striatum both at
P21 and 5 weeks.

To determine whether the structural changes we observed in
Htt cKO striatum at 5 weeks had functional consequences, we
conducted electrophysiological analyses of MSN excitatory syn-
aptic transmission in the dorsal striatum of Htt cKO mice and
their littermate controls (Fig. 8B). In agreement with an increase
in the number of synapses, we found a significant leftward shift in
the cumulative interevent interval curve of the Htt cKO mice
(Kolmogorov–Smirnov test, p 
 0.01) (Fig. 8C), but there was no
significant difference between the means of sEPSC frequency
(Fig. 8D). Moreover, in agreement with an increase in synaptic
spine head size and maturity, we found that the amplitude of
sESPCs is significantly increased in Htt cKOs (Kolmogorov–
Smirnov test, p 
 0.01; unpaired t test, p 
 0.05) (Fig. 8E). To-
gether, our results show that cortical loss of Htt expression
enhances excitatory synaptic connectivity onto MSNs. This effect
is significant at P21 and is further enhanced by 5 weeks of age.

zQ175, HD model mice, have alterations in synapse
formation and maturation
For many years, the gain-of-function effects of mutant Htt have
been investigated as the major driver of neurodegeneration in
HD. However, emerging evidence from several studies indicate
that loss-of-function effects of poly-Q mutations can contribute
to the pathophysiology of HD (Cattaneo et al., 2005). Our results
demonstrate a function for Htt in controlling the early and later
stages of cortical and striatal synaptic development. Therefore, next
we investigated whether the presence of the HD causing poly-Q
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mutation affects this function. To do so, we investigated synaptic
development in a mouse KI model of the disease, the heterozygous
zQ175 mice (Menalled et al., 2012). For our analyses of synaptic
connectivity in zQ175 mice and their WT littermates, we used the
same developmental times as we did for the Htt cKO mice.

Analyses of synaptic puncta numbers and spine morphology
in the cortices of WT and zQ175 mice showed very similar effects
on synapse development in the zQ175 mice to those found in the
Htt cKO mice. The number of VGlut1-PSD95-positive synaptic
puncta in the synaptic zones of the M1 cortex was significantly
increased in P21 zQ175 cortices (	1.5-fold) compared with WT
(Student’s t test, p � 3.6 � 10�4). This increase in synaptic
puncta numbers is no longer detectable at 5 weeks of age (Stu-
dent’s t test, p � 0.15) (Fig. 9A). In addition, similar to Htt cKO
mice, spine maturation was differentially affected in the cortices
of the P21 and 5 week zQ175 mice (Fig. 9B,C). At P21, layer 5
neurons from zQ175 mice have more mature dendritic spines

and a decrease in intermediate spines (Student’s t test, p � 0.008
and p � 0.02, respectively). Conversely, at 5 weeks, the layer 5
neurons in zQ175 mice have fewer mature spines than WT sib-
lings (Student’s t test, p � 2.5 � 10�4) (Fig. 9C). As in the case of
the Htt cKOs, the change in spine maturity was driven by the
changes in the number of “mushroom” and “thin” spines. To-
gether, these results show that cortical synaptic development is
altered in zQ175 mice. The alterations in the cortical connectivity
due to the presence of mutant Htt align well with the changes that
we observe in the Htt cortical cKO. These findings indicate that
zQ175 mice display a “loss-of-function”-like phenotype in the
regulation of cortical synaptic connectivity.

The zQ175 mice also exhibit differences in the neurite out-
growth and complexity of the cortical pyramidal neurons. Simi-
lar to Htt cKOs, the dendrites of layer 2/3 pyramidal neurons have
reduced outgrowth and complexity at P21 (ANCOVA, p �
1.02 � 10�5). By 5 weeks, this effect is reversed and the layer 2/3
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neurons from zQ175 mice display a slightly more complex ar-
borization (ANCOVA, p � 0.01) (Fig. 9D). The layer 5 neurons
of zQ175 mice did not have any significant differences compared
with their littermate WTs at either age (Fig. 9E).

Next, we determined how striatal excitatory synaptic connec-
tions are altered in zQ175 mice. We found that zQ175 mice dis-
play different synaptic phenotypes in the striatum compared with
the Htt cortical cKOs. At P21, unlike the Htt cKO mice, the zQ175
mice do not exhibit a change in synapse numbers as determined
by immunohistological analyses (Fig. 10A). However, similar to
the Htt cKO mice, at P21 the zQ175 mice have accelerated spine
maturation compared with WT mice (Fig. 10B).

Instead of the increase in synapse number and spine maturity
we observed in the striata of 5 week Htt cKOs, in 5 week zQ175
mice the number of VGlut2-PSD95-positive thalamocortical
synapses is significantly decreased compared with WT (Student’s
t test, p � 0.02) (Fig. 10C). Analysis of spine morphology in
Golgi-Cox-stained MSN dendrites revealed a decrease in mature
spines and a significant reduction in the overall spine density
(Student’s t test, p � 0.02) (Fig. 10D). This phenotype contrasts
with the 5 week Htt cKO mice that have no spine loss and display
enhanced spine maturity (Fig. 8A). These findings show that, in
zQ175 mice, the later stages of striatal synaptic development (5
weeks) are altered in a manner that is different from the cortical
conditional deletion of Htt expression (Htt cKOs). This differ-
ence may be because the Htt cKOs have WT Htt in the striatal
MSNs, whereas the zQ175 mice have the mutant Htt both in the
cortex and in the striatum. Thus, this finding signifies that
mutant Htt within MSNs contributes to the degenerative
changes in striatal connectivity and that functional Htt signal-
ing is required both in the cortex and striatum to maintain
proper striatal connectivity.

Discussion
Disrupted synaptic connectivity is a feature of many neurological
disorders, including HD. Orderly formation/maturation of syn-
apses is a crucial first step in the establishment of functional
circuits that can be maintained during aging and remodeled with
experience. Our findings reveal that cortical Htt is required for
normal development of cortical and striatal circuits. Interest-
ingly, our analyses of the HD mouse model, zQ175, show pheno-
types overlapping with those of Htt cKO mice, particularly
during early postnatal cortical synapse development (Table 1).
This finding indicates that the presence of mutant Htt leads to a
loss-of-function phenotype in the development of cortical syn-
aptic connections. The loss-of-function effects of mutant Htt
during development may be important for driving the disease
onset and could underlie prodromal neurological symptoms of
HD, whereas the gain-of-function toxicity of the mutant Htt may
drive establishment and progression of disease phenotypes.

Currently, some of the HD therapeutic strategies involve
knockdown of Htt expression in the brain. In some cases, these
strategies target not only the mutant Htt, but also the normal Htt
expression. Our findings raise the important caveat that silencing
of the normal Htt may produce unwanted outcomes. It is possible
that silencing Htt in the adult brain is better tolerated (Grondin et
al., 2012; Kordasiewicz et al., 2012) as opposed to its loss during
synaptic development. Future studies that address how loss of Htt
in the adult brain affects synaptic connectivity are essential to
determine the safety of nonspecific Htt silencing strategies.

Htt is required for normal cortical synapse development
We found that, in the Htt cKOs at P21, excitatory synapse num-
ber is increased 1.5-fold in the cortical synaptic zone, and the
layer 5 pyramidal neurons display more mature dendritic spines
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than their Control siblings. These findings show that Htt nega-
tively regulates the early stages of cortical excitatory synapse for-
mation and maturation. The cortical synaptic phenotypes in the
zQ175 HD mouse model closely track those of the Htt cKOs,
which illustrates that Htt’s regulatory function is lost with mutant
Htt present. In agreement with our findings in the zQ175 mice,

electrophysiological characterization of other HD models (R6/2
and YAC128) showed increased excitation in their cortex and
striatum at P21 (Cummings et al., 2009; Joshi et al., 2009). Even
though we detected a profound increase in the number of
VGlut1-PSD95-positive synapses by immunohistochemistry in
the cortices of P21 Htt cKOs and zQ175 mice, we did not find an
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increase in spine density. The increase in VGlut1-PSD95-positive
synapse number we observe may be the result of enhanced den-
dritic arborization of layer 2/3 or layer 5 pyramidal neurons in the
synaptic zone or an increase in the number of excitatory shaft
synapses. Shaft synapses are prevalent during the early stages of
synaptic development (Fiala et al., 1998) and normally constitute
a small percentage of the synapses at the cortical synaptic zone in
adult mice (Trachtenberg et al., 2002).

Interestingly, at 5 weeks, the cortices of Htt cKO and zQ175
mice no longer display an increase in the number of VGlut1-

PSD95-positive synapses. Instead, we found that, in both Htt
cKO and zQ175 mice, synapses are immature. The loss of struc-
tural and functional maturity of synapses in the 5 week Htt cKO
mice indicates a requirement for Htt in spine stability. In addi-
tion, our analyses of zQ175 mice show that this function of WT
Htt is impaired when the mutant Htt is present. In agreement
with our findings, immature spine morphology was observed in
cultured neurons overexpressing an expanded poly-Q Htt frag-
ment. Moreover, in vivo live imaging of cortical spine dynamics
revealed increased spine instability in the R6/2 HD mouse model
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(Murmu et al., 2013). The increase in the NMDA to AMPA ratio
in the cortical neurons could be driving the spine instability
(Gambrill and Barria, 2011). The reduction in mature spines that
we observe in 5 week Htt cKO and zQ175 mice may represent the
early stages of a degenerative process that results in eventual spine
loss, which have been found in the cortices of several other mouse
models of HD in adulthood (Guidetti et al., 2001; Murmu et al.,
2013).

Htt is required to mold the circuitry of the cortex, striatum,
and thalamus
In the striatum of Htt cKO mice, we observe that loss of cortical
Htt expression has a cell nonautonomous effect on striatal MSN
synapse formation and spine maturation. MSNs in the Htt cKO
mice display increased synapse formation and maturation at P21
and 5 weeks. The effects of cortical Htt deletion on striatal con-
nectivity may result from the plastic nature of striatal excitatory
circuits. Feedforward signals from the cortex and thalamus have
been shown to affect striatal connectivity (Kozorovitskiy et al.,
2012). The proliferative synaptic changes in the striatum of Htt
cKO mice occur both in the corticostriatal and the thalamos-
triatal connections. This may result from a compensatory
mechanism that keeps the cortical and thalamic inputs made
onto an MSN at a consistent ratio. Alternatively, the subse-
quent increase in thalamostriatal synapses in the striatum of 5
week Htt cKO mice may reflect a change in the corticothalamic
connectivity in these mice, which eventually affects the thalam-
ostriatal synapses.

We found that the zQ175 mice, similar to Htt cKOs, display
accelerated maturation of MSN spines at P21. However, the
zQ175 mice do not exhibit the increase in the number of syn-
apses, which we observe in the striata of the Htt cKO mice at P21.
In agreement with our findings, previous studies have shown that
YAC128 mice have increased evoked EPSC amplitudes at 1
month, indicating the presence of stronger, more mature syn-
apses at this age (Joshi et al., 2009). Moreover, we found that, in
zQ175 mice, synapse and spine loss begins by 5 weeks of age. The
MSN spine atrophy at 5 weeks mirrors a finding from human HD
patients (Ferrante et al., 1991) and matches results from several
other HD mouse models (Nithianantharajah and Hannan, 2013).
Interestingly, we found that VGlut2-positive thalamostriatal
synapses are lost first in zQ175 mice. A similar observation was
recently made in another HD model, KIQ140, which have dimin-
ished VGlut2 expression in the striatum in 4-month-old mice but
no changes in VGlut1 levels (Deng et al., 2013).

Previous studies with transgenic mice that express the patho-
genic first exon of Htt in a cell-specific manner showed that there
are pathological cell– cell interactions that contribute to the cor-

tical and striatal HD phenotypes (Gu et al., 2005, 2007), indicat-
ing the presence of cell nonautonomous toxicity of mutant Htt.
Moreover, a recent study using BACHD mice showed that disease
phenotypes can only be fully rescued when mutant Htt is deleted
from both the cortex and striatum, demonstrating the distinct yet
interacting roles of cortical and striatal mutant Htt in HD (Wang
et al., 2014). We found that the striatal connections in Htt cortical
cKO remain stronger and numerous in 5 week mice even though
intracortical connectivity of layer 5 neurons in these mice is di-
minishing. In contrast, the MSN synapses are weakened and lost
in zQ175 mice at 5 weeks of age. These divergent phenotypes in
the striata of the Htt cortical cKO and zQ175 mice can be ex-
plained by the fact that the Htt cKOs have WT Htt in the striatal
MSNs, whereas the zQ175 mice have the mutant Htt throughout
the brain. An important implication of these findings is that the
mutant Htt in the MSNs impairs striatal synaptic homeostasis.
This effect of mutant Htt on striatal connectivity can be mediated
through a loss- or gain-of-function mechanism. Future studies
that investigate whether Htt is required in the striatal MSNs to
establish and maintain normal synaptic connectivity are required
to distinguish between these possibilities.

In addition to changes in synaptic connectivity, we also ob-
served region- and layer-specific reactive gliosis in the cortices of
5 week Htt cKOs. Reactive astrocytes and activated microglia are
markers of neuroinflammation, which can be triggered by synap-
tic dysfunction (Oberheim et al., 2008). Reactive gliosis is de-
tected in many HD mouse models, but not in a layer-specific
manner observed in the Htt cKO mice (Gu et al., 2005). In 5 week
Htt cKOs, reactive glia are specifically localized to layer 5A of the
M1 motor and the somatosensory cortices. The upper layer 5A
pyramidal neurons from these neocortical areas specifically con-
nect to the MSNs of the dorsal striatum (Gerfen, 1992; Anderson
et al., 2010; Wall et al., 2013), a region of the striatum that degen-
erates first in HD (Hedreen and Folstein, 1995). Interestingly,
layer 5A of the cortex has the highest levels of Htt expression in
rats (Fusco et al., 1999). These findings indicate that the layer 5A
pyramidal neurons may be the primary site of synaptic dysfunc-
tion in HD. Aberrant connectivity of these neurons may trigger
synaptic dysfunction that subsequently spreads to the rest of the
cortex, striatum, and thalamus.

In conclusion, we show that Htt is an important regulator of
excitatory synapse development in the mammalian CNS. Future
studies to discover the molecular mechanism underlying this
function of Htt will provide important insights on Htt function
and dysfunction at the synapse. The interactome of Htt offers
tantalizing potential signaling partners that can regulate excit-
atory synapse development. These include actin remodeling pro-
teins, presynaptic and postsynaptic proteins, and proteins that
are involved in synaptic receptor trafficking (Kaltenbach et al.,
2007; Shirasaki et al., 2012).

An important implication of our findings is that developmen-
tal errors in synaptic connectivity may set the HD brain on track
for premature aging and neurodegeneration. In mouse models,
elimination of mutant Htt expression in symptomatic adults can
halt disease progression (Yamamoto et al., 2000; DiFiglia et al.,
2007; Kordasiewicz et al., 2012); however, there is significant
damage by the time motor dysfunction appears. Correcting the
developmental errors in the cortical and striatal circuits of mu-
tant Huntingtin carriers could prevent disease onset or greatly
diminish disease progression, allowing HD patients to live full,
healthy lives.

Table 1. Synaptic alterations in Htt cKO and zQ175 micea

Synapse number Spinematuration

cKO versus
Control

zQ175
versus WT

cKO versus
Control

zQ175
versus WT

P21
Cortex 1 (1.5-fold) 1 (1.5-fold) Layer 51 Layer 51
Striatum C-S1 C-S* 1 1

T-S* T-S*
5 weeks

Cortex * (trending2) n.s. Layer 52 Layer 52
Striatum C-S1 C-S* 1 2

T-S1 T-S2
aC-S, Corticostriatal; T-S, thalamostriatal;1, increase;2, decrease.

*No significant change.
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