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INTRODUCTION
The liver has a very strong capacity to regenerate[1]. Liver 
cells proliferate rapidly to compensate for lost liver tissues 
after liver injury or drug stimulus, which is called liver 
regeneration (LR)[2]. The LR process is usually categorized 
based on hepatic physiological activities divided into four 
stages: initiation phase [0.5-4 h after partial hepatectomy 
(PH)], transition from G0 to G1 (4-6 h after PH), cell 
proliferation (6-66 h after PH), cell differentiation and 
reorganization of  the structure-function (66-168 h after 
PH)[3]. The process involves hepatic cell activation, 
dedifferentiation, proliferation and its regulation, 
redifferentiation, structure-functional reorganization[4].

Liver is a vital organ of  drug metabolism[5]. Disorder 
of  drug metabolism in liver could cause drug-induced 
liver diseases[6]. It is indicated that 182 genes are associated 
with drug-induced liver diseases. In addition, there are 
gene-gene, protein-protein, gene-regulator, and protein-
regulator interactions. It is hardly possible to highlight the 
role of  the genes in LR unless gene expression profiles is 
analyzed with high-throughput[7,8]. Therefore, we used the 
Rat Genome 230 2.0 array containing 84 genes associated 
with drug-induced liver diseases to detect gene expression 
changes after PH, finding that 32 of  them were associated 
with LR, and analyzed these genes expression changes, 
patterns and actions during LR primarily.

MATERIALS AND METHODS
Regenerating liver preparation 
Healthy SD rats weighing 200-250 g were obtained from 
the Animal Center of  Henan Normal University. The rats 
were separated into groups at random and each group 
included 6 rats (male:female = 1:1). PH was performed 
according to Higgins and Anderson[9], the left and middle 
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Abstract
AIM: To study the action of the genes associated with 
drug-induced liver diseases at the gene transcriptional 
level during liver regeneration (LR) in rats. 

METHODS: The genes associated with drug-induced 
liver diseases were obtained by collecting the data 
from databases and literature, and the gene expression 
changes in the regenerating liver were checked by the 
Rat Genome 230 2.0 array.

RESULTS: The initial and total expression numbers 
of genes occurring in phases of 0.5-4 h after partial 
hepatectomy (PH), 4-6 h after PH (G0/G1 transition), 
6-66 h after PH (cell proliferation), 66-168 h after PH (cell 
differentiation and structure-function reconstruction) 
were 21, 3, 9, 2 and 21, 9, 19, 18, respectively. It 
is illustrated that the associated genes were mainly 
triggered at the initial stage of LR and worked at 
different phases. According to their expression similarity, 
these genes were classified into 5 types: only up-
regulated (12 genes), predominantly up-regulated (4 
genes), only down-regulated (11 genes), predominantly 
down-regulated (3 genes), and approximately up-/
down-regulated (2 genes). The total times of their up- 
and down-expression were 130 and 79, respectively, 
demonstrating that expression of most of the genes was 
increased during LR, while a few decreased. The cell 
physiological and biochemical activities during LR were 
staggered according to the time relevance and were 
diverse and complicated in gene expression patterns.

CONCLUSION: Drug metabolic capacity in regenerating 
liver was enhanced. Thirty-two genes play important 
roles during liver regeneration in rats. 
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lobes of  the liver were removed. Rats were killed by 
cervical vertebra dislocation at 0.5, 1, 2, 4, 6, 8, 12, 16, 
18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 96, 120, 144 and 168 
h after PH and the regenerating livers were observed at 
corresponding time points. The livers were rinsed three 
times in PBS at 4℃, then 100-200 mg liver from the 
middle parts of  the right lobe, six samples of  each group 
were collected, wrer mixed with 1-2 g (0.1-0.2 g × 6) total 
liver tissues, and stored at -80℃. The sham-operation (SO) 
groups were treated the same with the PH group except 
that the liver lobes were unremoved. The laws of  animal 
protection of  China were enforced strictly.

RNA isolation and purification
Total RNA was isolated from frozen livers according 
to the manual of  the Trizol kit (Invittrogen)[10] and 
purified based on the RNeasy mini-kit (Qiagen)[11]. Total 
RNA samples exhibited a 2:1 ratio of  28S to 18S rRNA 
intensities by agarose electrophoresis (180V, 0.5h). Total 
RNA concentration and purity were estimated by optical 
density measurement at 260/280 nm[12].

cDNA, cRNA synthesis and purification
As a template, 1-8 μg total RNA was used for cDNA 
synthesis. cDNA and cRNA synthesis was proceeded by 
the established method of  Affymetrix[13]. cRNA labeled 
with biotin was synthesized using 12 μL of  the above 
synthesized cDNA as the template, and cDNA and cRNA 
were purified[13]. Concentration, purity and quality of  
cDNA and cRNA were measured by the same method 
mentioned above[12]. 

cRNA fragmentation and microarray detection
Fifteen μL (1 μg/μL) cRNA incubated with 5 × 
fragmentation buffer at 94℃ for 35 min was digested into 
35-200 bp fragments. The hybridization buffer was added 
to the prehybridized Rat Genome 230 2.0 microarray 
produced by Affymetrix, then hybridization was carried 
out for 16 h at 45℃ on a rotary mixer at 60 rpm. The 
microarray was washed and stained by GeneChip fluidics 
station 450 (Affymetrix Inc., USA). The chips were 
scanned by GeneChip Scan 3000 (Affymetrix Inc., USA), 
and the signal values of  gene expression were observed[14].

Microarray data analysis 
The normalized signal values, signal detections (P, A, M) 
and experiment/control (Ri) were obtained by quantifying 
and normalizing the signal values using GCOS1.2[14]. 

Normalization of microarray data 
To minimize error in the microarray analysis, each 
analysis was performed three times by Rat Genome 230 
2.0 microarray. Results with a total ratio was maximal 
(Rm) and when the average of  three housekeeping genes 
(β-actin, hexokinase and glyceraldehyde-3-phosphate 
dehydrogenase) approached 1.0 (Rh), it was taken as a 
reference. The modified data were generated by applying 
a correction factor (Rm/Rh) multiplying the ratio of  every 
gene in Rh at each time point. To remove spurious gene 
expression changes resulting from errors in the microarray 

analysis, the gene expression profiles at 0-4 h, 6-12 h and 
12-24 h after PH were reorganized by NAP software 
(normalization analysis program) according to the cell 
cycle progression of  the regenerating hepatocytes. Data 
statistics and cluster analysis were done using GeneMath, 
GeneSpring, Microsoft Excel software[14-16].

Identification of genes associated with liver regeneration
The nomenclature of  a liver disease (e.g. drug-induced 
liver diseases) was adopted from the GENEONTOLOGY 
database (www.geneontology.org), and input into the 
databases at NCBI (www. ncbi.nlm.nih.gov) and RGD 
(rgd. mcw.edu) to identify the rat, mouse and human 
genes associated with the above liver diseases. Then the 
genes associated with the drug-induced liver diseases were 
collated. The results of  this analysis were codified, and 
compared with the results obtained for human and mouse 
searches in order to identify the difference of  human and 
mouse genes from rats. In comparison to these genes 
with the analysis output of  the Rat Genome 230 2.0 
array, the genes, showing a greater than twofold change in 
expression level as meaningful expression changes[17] , were 
referred to as rat homologous genes or rat specific genes 
associated with drug-induced liver diseases. Genes, which 
displayed reproducible results with three independent 
analyses with the chip and showed a greater than twofold 
change in expression level in at least one time point during 
liver regeneration with significant difference (0.01≤ P 
< 0.05) or extremely significant difference (P ≤ 0.01) 
between PH and SO, were referred to as associated with 
liver regeneration.

RESULTS
Expression changes of genes associated with drug-
induced liver diseases during LR 
According to the data f rom databases a t NCBI, 
GENEMAP, KEGG and BIOCARTA, 182 genes were 
associated with drug-induced liver diseases. Among them, 
84 genes were contained in the Rat Genome 230 2.0 
array. Thirty-two of  them revealed meaningful changes in 
expression at least at one time point after PH. There was 
significant difference or extremely significant difference in 
expression between PH and SO, and reproducible results 
were obtained with three analyses with Rat Genome 230 
2.0 array, suggesting that the genes were associated with 
LR (Table 1). The analysis indicated that 12 genes were 
up-, 11 genes down-, and 9 were up/down-regulated 
during liver regeneration. Total expression times of  up- 
and down-expressed genes were 130 and 79, respectively 
(Figure 1A). At the initial stage of  liver regeneration (0.5-4 
h after PH), 13 genes displayed up-, 7 genes down-，1 
gene up/down-regulation; at the transition phase from G0 
and G1 (4-6 h after PH), 10 genes revealed up-, 2 genes 
down-regulation; at cell proliferation phase (6-66 h after 
PH), 12 genes showed up-, 8 genes down-, 5 genes up/
down-regulation; and at cell differentiation and structure-
function reorganization phase (66-168 h after PH), 9 
genes displayed up-, 10 genes down-, 5 genes up/down-
regulation (Figure 1B).
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Initial expression time of genes associated with drug-
induced liver diseases during LR 
At each time point of  LR, the numbers of  initial up-, 
down-regulation and total up-, down-regulation genes were 
in the sequence: both 6 and 2 at 0.5 h; 3, 3 and 9, 5 at 1 h; 3, 
1 and 10, 1 at 2 h; 1, 2 and 10, 2 at 4 h; 0, 0 and 8, 1 at 6 h; 0, 
0 and 8, 2 at 8 h; 0, 1 and 6, 2 at 12 h; 2, 1 and 5, 3 at 16 h; 1, 
1 and 6, 5 at 18 h; 0, 0 and 4, 4 at 24 h; 1, 1 and 3, 3 at 30 h; 0, 
0 and 2, 6 at 36 h; 0, 0 and 4, 3 at 42 h; 0, 1 and 7, 7 at 48 h; 0, 
0 and 5, 4 at 54 h; 0, 0 and 8, 3 at 60 h; 0, 0 and 4, 5 at 66 h; 0, 
0 and 5, 4 at 72 h; 0, 1 and 4, 4 at 96 h; 1, 0 and 8, 3 at 120 h; 
0, 0 and 3, 4 at 144 h , 0, 0 and 5, 6 at 168 h (Figure 2).

Expression similarity and time relevance of genes asso-
ciated with drug-induced liver diseases during LR
Thirty-two genes mentioned above during LR could 

be characterized based on their similarity in expression 
as follows: only up-, predominantly up-, only down-, 
predominantly down-, and up-/down-regulated, involving 
13, 4, 11, 3 and 2 genes, respectively (Figure 3). They could 
also be classified according to the time relevance into 15 
groups, including 0.5 and 1 h, 2 h, 4 and 6 h, 8 h, 12 h, 16 
h, 18 and 24 h, 30 h, 36 h, 42 and 96 h, 48 h, 54 h and 60 h, 
66 and 72 h, 120 h, 144 and 168 h. Their times of  up- and 
down-regulation genes were respectively 15 and 7, 10 and 
1, 18 and 3，8 and 2, 6 and 2，6 and 3, 10 and 9, 3 and 3, 
6 and 2, 8 and 7, 7 and 7, 13 and 7, 9 and 9, 8 and 3, 8 and 
10 (Figure 3).

Expression patterns of genes associated with drug-
induced liver diseases during LR 
Thirty-two genes mentioned above during LR might be 

Table 1  Expression abundance of 32 genes associated with drug-induced liver diseases during liver regeneration

Italic numbers: Genes are up-regulated more than twofold; Bold numbers: Genes are down-regulated more than twofold.
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Gene                                                      Recovery time (h) after partial hepatectomy (PH)

Abbr. 0 0.5 1 2 4 6 8 12 16 18 24 30 36 42 48 54 60 66 72 96 120 144 168

1 Cholestasis
   Ace 1 0.80 0.48 1.29 0.88 1.39 0.82 1.14 1.16 1.00 0.88 0.93 1.18 1.03 1.18 1.03 1.39 0.56 0.71 0.78 0.75 0.56 0.47 
   Akt1 1 0.81 0.76 0.98 0.86 1.01 0.87 1.11 1.12 0.62 0.71 3.91 0.65 2.60 0.53 0.57 0.68 1.10 0.97 1.17 1.02 0.94 1.01 
   Apoe 1 0.93 1.24 0.87 0.93 1.07 0.95 0.76 0.15 0.93 1.08 0.13 0.93 0.17 1.00 1.00 0.93 1.07 1.20 0.33 1.41 1.23 1.07 
   Bdnf 1 0.97 0.46 1.98 1.43 1.04 1.04 2.00 2.08 0.63 0.58 2.12 0.52 1.43 0.45 1.25 2.50 1.06 1.32 2.56 0.39 0.52 0.50 
   Cyp2d6 1 0.76 0.33 1.62 1.00 1.15 1.35 1.62 1.14 1.15 1.24 0.60 0.57 0.74 0.81 0.81 0.66 1.73 0.65 1.07 0.66 0.44 0.50 
   Ephx1 1 1.52 1.53 1.32 0.93 1.00 0.63 0.41 0.86 0.76 0.62 0.97 2.46 1.12 2.14 1.74 2.00 2.82 2.77 0.54 1.74 1.62 1.62 
   Il6 1 1.87 1.08 3.25 3.25 3.03 3.81 1.32 0.99 3.25 1.87 0.91 0.50 1.28 2.83 1.87 2.30 0.87 0.28 6.06 0.81 1.52 0.93 
   Mmp9 1 2.05 2.16 2.10 2.07 1.37 2.81 2.75 2.13 1.12 1.58 1.27 1.83 5.89 1.00 1.20 1.15 1.16 1.21 9.54 2.22 0.48 2.03 
   Slc22a1 1 0.62 0.88 0.76 0.66 0.66 0.59 0.71 0.86 0.81 0.82 1.20 0.71 1.47 0.41 0.71 0.62 1.31 1.05 1.23 0.81 0.76 0.71 
   Slc22a2 1 1.23 1.01 0.50 0.93 0.87 0.39 0.38 0.33 0.38 0.33 0.08 0.87 0.69 1.07 1.07 1.62 0.18 0.98 0.38 0.66 1.15 1.32 

2 Fatty liver
   Esr1 1 1.07 0.62 3.48 4.92 4.92 1.17 1.41 1.31 2.14 1.08 1.29 1.23 1.37 1.74 2.64 4.29 1.51 1.48 1.23 4.59 6.06 2.30 
   Fabp1 1 0.87 1.16 0.81 0.81 1.00 0.77 0.66 1.40 0.87 0.94 1.29 0.87 1.12 0.87 0.93 0.93 1.07 1.29 0.50 1.23 1.00 0.93 
   Hiat1 1 0.93 1.43 1.07 1.07 1.32 1.90 1.15 1.14 1.15 1.33 0.10 1.00 0.14 1.41 1.07 0.93 1.41 1.20 0.15 1.32 1.32 1.32 
   Hsd11b1 1 4.92 6.13 2.64 4.92 2.83 3.81 1.07 0.99 2.14 3.50 1.04 0.87 0.97 2.83 1.87 2.46 0.93 2.77 0.93 3.73 5.28 4.92 
   Il5 1 1.15 0.67 1.00 0.76 0.76 1.26 1.52 0.86 2.83 1.52 0.85 1.32 1.28 3.03 3.25 3.48 1.51 1.70 1.07 0.93 1.32 1.32 
   Mthfr 1 0.47 0.44 1.87 3.25 2.64 3.19 3.73 1.50 0.50 0.38 1.48 0.66 1.69 0.66 0.71 0.87 0.46 0.40 2.00 0.57 0.66 0.50 
   Tnf 1 0.87 0.62 1.23 1.41 1.15 1.17 0.93 0.93 0.71 0.66 0.79 1.41 0.85 1.62 1.07 1.15 0.93 0.52 1.23 3.25 0.81 0.71 
   Trp63 1 3.00 2.44 2.40 1.06 0.97 1.70 2.03 1.58 1.81 1.35 0.84 1.19 1.33 1.55 2.12 1.62 1.23 1.12 1.11 0.74 1.19 0.90 
   Ugt1a1 1 0.93 1.43 1.28 1.23 1.15 0.99 0.71 2.06 1.04 0.88 1.36 1.04 1.25 0.95 0.95 1.08 1.51 1.34 0.69 1.42 1.12 1.08 

3 Liver ischemic injury
   Ces2 1 0.81 1.08 1.32 1.32 1.23 1.44 1.00 2.81 1.23 1.42 0.85 1.62 2.23 1.74 1.62 1.52 3.24 2.77 1.23 1.87 1.41 1.52 
   Ces3 1 1.74 3.29 2.46 3.03 3.03 2.88 1.32 0.70 0.87 1.00 0.64 0.44 0.60 0.27 0.44 0.57 0.33 1.48 0.71 1.23 1.62 1.62 
   Creb1 1 0.93 1.01 0.93 0.50 1.00 0.55 0.66 1.06 1.23 0.94 0.91 0.87 0.91 0.87 1.41 1.15 1.14 0.85 0.93 1.23 1.07 1.00 
   Fos 1 28.43 16.11 8.54 3.07 4.82 2.07 3.72 3.50 2.83 2.63 3.21 1.77 2.03 2.76 1.65 1.69 1.90 1.71 1.12 2.44 0.88 1.00 
   Per1 1 3.03 3.49 4.29 3.91 3.73 3.09 0.93 1.61 0.38 0.71 1.38 0.44 1.81 0.44 0.33 0.47 0.75 0.79 1.15 3.48 4.00 3.48 

4 Drug hepatitis
   Bcl2 1 0.82 0.64 1.12 1.00 1.19 1.17 1.15 0.85 0.33 0.37 1.80 0.32 0.79 0.44 0.39 0.46 0.81 0.38 0.84 0.50 0.68 0.64 
   Cyp2d6 1 0.76 0.33 1.62 1.00 1.15 1.35 1.62 1.14 1.15 1.24 0.60 0.57 0.74 0.81 0.81 0.66 1.73 0.65 1.07 0.66 0.44 0.50 
   Egr1 1 17.15 18.59 13.93 2.30 2.00 2.68 3.48 0.86 1.62 2.84 0.64 3.03 0.56 2.83 3.25 3.73 4.58 2.25 0.66 3.03 1.00 0.93 
   Esr1 1 1.07 0.62 3.48 4.92 4.92 1.17 1.41 1.31 2.14 1.08 1.29 1.23 1.37 1.74 2.64 4.29 1.51 1.48 1.23 4.59 6.06 2.30 
   Gstm1 1 1.32 2.17 1.32 1.52 1.52 1.26 0.66 1.61 1.23 1.42 1.12 1.23 1.69 1.41 1.52 1.52 1.73 2.10 1.07 1.62 1.52 1.32 
   Il5 1 1.15 0.67 1.00 0.76 0.76 1.26 1.52 0.86 2.83 1.52 0.85 1.32 1.28 3.03 3.25 3.48 1.51 1.70 1.07 0.93 1.32 1.32 
   Mthfr 1 0.47 0.44 1.87 3.25 2.64 3.19 3.73 1.50 0.50 0.38 1.48 0.66 1.69 0.66 0.71 0.87 0.46 0.40 2.00 0.57 0.66 0.50 
   Nat2 1 1.00 1.89 1.07 2.30 1.32 1.09 1.41 0.99 3.25 4.02 1.29 1.07 1.04 3.48 2.83 3.25 2.63 1.70 1.41 3.48 1.74 2.46 
   Pten 1 0.66 1.08 0.93 0.50 0.47 0.72 0.76 0.86 1.23 1.33 0.79 1.41 1.04 1.74 1.32 1.23 1.62 1.12 1.41 1.52 1.32 1.23 
   Ptgs2 1 0.57 0.90 2.14 1.23 1.41 1.17 1.41 1.31 0.62 0.66 0.85 0.12 1.12 0.47 0.71 1.15 0.31 0.69 1.00 0.44 0.33 0.47 
   Trp63 1 3.00 2.44 2.40 1.06 0.97 1.70 2.03 1.58 1.81 1.35 0.84 1.19 1.33 1.55 2.12 1.62 1.23 1.12 1.11 0.74 1.19 0.90 

5 Granulomatous disease of the liver
   Cyp2d6 1 0.76 0.33 1.62 1.00 1.15 1.35 1.62 1.14 1.15 1.24 0.60 0.57 0.74 0.81 0.81 0.66 1.73 0.65 1.07 0.66 0.44 0.50 
6 Peliosis hepatis
   Erbb2 1 0.50 0.10 1.74 0.66 0.62 0.34 0.62 1.40 0.29 0.17 1.12 0.41 1.47 0.50 0.41 0.47 0.15 0.15 1.15 0.25 0.23 0.31 
   Sult1a1 1 1.62 2.17 1.41 1.52 1.41 1.26 0.76 0.22 1.00 1.24 1.12 1.15 0.49 1.87 1.32 1.41 1.62 1.70 0.71 1.74 1.62 1.62 



categorized according to the changes in expression into 
20 types of  patterns: (1) up-regulation at one time point, 
i.e. at 16, 120 h after PH, (Figure 4A), 2 genes; (2) up- at 
two time point, i.e. at 1 and 72 h, 30 and 42 h, (Figure 4B), 
2 genes; (3) up- at one time point/phase, i.e. at 18 and 
48-72 h (Figure 4C), 1 gene; (4) up- at one time point/two 
phases (Figure 4C), 1 gene; (5) up- at one time point/three 
phases (Figure 4C), 1 gene; (6) up- at two time points/one 
phase (Figure 4D), 2 genes; (7) up- at three time points/
two phases (Figure 4E), 2 genes; (8) up- at three time 
points/phases (Figure 4D), 1 gene; (9) down- at one time 
point, at 0.5, 48 or 96 h (Figure 4F), 3 genes; (10) down- at 
two time points, i.e. at 1 and 168 h (Figure 4G), 1 gene; (11) 
down- at three time points(Figure 4G), 1 gene; (12) down- 
at more time points (Figure 4G), 1 gene; (13) down- at one 
phase, i.e. at 1-6 h (Figure 4H), 1 gene; (14) down- at one 
time point/phase, i.e. at 1 and 144-168 h (Figure 4H), 1 
gene; (15) down- at two time points/phases (Figure 4H), 
1 gene; (16) down- at two time points/four phases (Figure 
4H), 1 gene; (17) down- at three time points/one phase 
(Figure 4H), 1 gene; (18) predominantly up- (Figure 4I), 4 
genes; (19) predominantly down- (Figure 4J), 3 genes; (20) 
up/down- approximately (Figure 4K), 2 genes.

DISCUSSION
In this paper, the roles of  84 genes associated with drug-
induced liver diseases during liver regeneration were 
analyzed. Of  the 36 genes associated with drug-induced 
abnormality of  cell proliferation and apoptosis, cocaine 
addiction-associated cAMP responsive element binding 
protein 1 (CREB1)[18] and estradiol-induced interleukin 
6 (IL6)[19] were related to liver regeneration initiation[20]. 
Cocaine-induced V-fos FBJ murine osteosarcoma viral 
oncogene homolog (FOS)[21], troglitazone-induced 
early growth response 1 (EGR-1)[22], prostaglandin-
endoperox ide synthase 2 (PTGS2) repressed by 
cyclophosphamide[23], estradiol-activated Akt (v–akt) 
murine thymoma viral oncogene homolog 1 (AKT1)[24] 
and estradiol-induced brain derived neurotrophic factor 
(BDNF)[25] all promote cell growth or cell division[26,27]. 
Valproic acid-restrained estrogen receptor 1 (ESR1)[28] 
inhibits cell division[29]. Period homolog 1 (Drosophila) 
(PER1) promotes apoptosis[30]. Cyclophosphamide-induced 
B-cell leukemia/lymphoma 2 (BCL2) restrains apoptosis[31]. 
Diethylstilbestrol-restrained transformation related 
protein 63 (TRP63)[32] is associated with differentiation[33]. 
Estradiol-induced matrix metallopeptidase 9 (MMP9)[34] 

is involved in the breakdown of  extracellular matrix. 
Indomethacin-induced phosphatase and tensin homolog 
(PTEN)[35] blocks tumor cell proliferation and migration[36]. 
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Angiotensin I converting enzyme (ACE), whose activity 
is inhibited by captopril[37], participates in the control of  
blood pressure. The sameness or similarity in some time 
points, and the difference in other points of  meaningful 
expression changes of  these genes during LR may indicate 
that they regulate the mass of  regenerating liver together.

Of  the 21 genes associated with drug-induced disorder 
of  lipid metabolism or amino-acid metabolism, estradiol-
induced apolipoprotein E (APOE)[38] and fatty acid binding 
protein 1, liver (FABP1) play a part in the metabolism 
and transport of  lipid[39,40]. One of  the tamoxifens’ target 
proteins: epoxide hydrolase 1, microsomal (EPHX1)[41], 
and tetracyclin-induced tumor necrosis factor (TNF)[42] 
participate in lipid metabolism, and 5, 10-methylenetetrahy
drofolate reductase (MTHFR)[43] plays a role in methionine 
biosynthesis. That meaningful expression changes of  these 
genes are the same or similar in some time points, then 
different in other points during LR perhaps regulate the 
metabolism of  lipid and/or amino-acid together.

Of  the 27 genes associated with drug metabolism 
disorder, six genes including solute car rier family 
2 2 m e m b e r 1 , 2 , ( S L C 2 2 A 1 , S L C 2 2 A 2 ) , U D P 
glucuronosyl transferase 1 fami ly A1 (UGT1A1), 
glutathione S-transferase M1 (GSTM1), amitriptyline-
restrained cytochrome P450 family 2 subfamily D 6 
(CYP2D6)[44] and sulfotransferase family cytosolic 1A 

phenol-preferring member 1 (SULT1A1) are involved 
in drug metabolism[45-47]. Hippocampus abundant gene 
transcript 1 (HIAT1) is responsible for transmembrane 
of  tetracyclin[48]. N-acetyltransferase 2 (NAT2) catalyzes 
decomposition of  isoniazid. Hydroxysteroid (11-β) 
dehydrogenase 1 (HSD11B1) can inactivate cortisol[49]. 
Carboxylesterase 2, 3 (CES2，CES3) catalyze the 
hydrolysis of  fatty acids and cocaine[50]. Interleukin 5 
(IL5) is associated with corticosteroid resistance[51] and 
inflammation[52]. V-erb-b2 erythroblastic leukemia viral 
oncogene homolog 2 (ERBB2) can impede the function 
of  tamoxifen[53]. The expression changes of  the genes 
mentioned above were the same or similar at some time 
points and different at other time points during LR, 
speculating that they promote drug metabolism together.

In conclusion, some genes associated with drug-
induced liver diseases are up-regulated and the others 
are down-regulated during liver regeneration. In liver 
regeneration, some drug-induced liver diseases-related 
genes regulate the liver cell number by adjusting cell 
proliferation and apoptosis, some control lipid metabolism 
or amino acid metabolism, and others participate and 
modulate drug metabolism, demonstrating that they are 
closely in line with liver regeneration. We will use northern 
blotting, protein array, RNA interference etc. to further 
confirm the above results at the cell level in the future.
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Figure 4  Expression patterns of 32 genes associated with drug-induced liver diseases during liver regeneration. These genes exhibit 20 types of expression patterns. A-E: 
Up-regulation in expression; F-H: Down-regulation; I-J: Up/down-regulation mixed. X-axis represents recovery time after PH (h), Y-axis shows logarithm ratio of the signal 
values of genes at each time point to the control.
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