
gene expression may mediate the anti-tumor effects of 
CAPE.
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INTRODUCTION
Caffeic acid phenethyl ester (CAPE) is a phenolic anti-
oxidant. As an active component of  propolis, CAPE has 
many biological and pharmacological functions including 
immunoregulation, anti-inflammatory, antiviral, antibacte-
rial and antitumor activities. Several studies have demon-
strated that CAPE has antiproliferative effect, apoptosis-
inducing effect in various tumor cells in vitro[1-4] and in 
vivo[5,6]. CAPE also inhibited the development of  azoxy-
methane-induced aberrant crypts in the colon of  rats[7]. 
Furthermore, a number of  studies reported that CAPE 
elicits apoptosis and suppresses the growth of  transformed 
cells, and the cytotoxicity of  CAPE to transformed cells is 
sensitive and selective[8-10]. Multiple molecular mechanisms 
seem to be involved in the tumor suppressive effects of  
CAPE. It was reported that CAPE could inhibit NFκB 
and induce apoptosis via Fas signal activation in human 
breast cancer MCF-7 cells[11]. Additionally, Carrasco et al[12] 
found an 85% decrease in nuclear localization of  the p65 
subunit of  NF-kappa B. While in C6 glioma cells, the tu-
mor suppressor proteins P53 and p38 mitogen-activated 
protein kinase (p38 MAPK) are involved in CAPE-induced 
apoptotic cell death[13].

Colorectal cancer (CRC) is the third most common 
cancer and the fourth most frequent cause of  cancer death 
worldwide. Recent studies have indicated that in most of  
CRC, there are aberrant β-catenin associated signaling 
pathways[14]. The β-catenin associated signaling pathway 
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Abstract
AIM: To study the anti-tumor effect of caffeic acid 
phenethyl ester (CAPE) and the influence of CAPE 
on β-catenin associated signaling pathway in SW480 
colorectal cancer (CRC) cells.

METHODS: SW480 cells were treated with CAPE at 
serial concentrations. The proliferative status of cells was 
measured by methabenzthiazuron (MTT) assay. Cell cycle 
and cell apoptosis were analyzed using flow cytometry 
(FCM). Western blotting assay was used to evaluate 
the protein level of β-catenin, c-myc and cyclinD1. 
β-catenin localization was determined by indirect 
immunofluorescence.

RESULTS: CAPE displayed a strong inhibitory effect in a 
significant dose- and time-dependent manner on SW480 
cell growth. FCM analysis showed that the ratio of G0 
/G1 phase cells increased, S phase ratio decreased and 
apoptosis rate increased after SW480 cells were exposed 
to CAPE for 24 h. Pretreatment of SW480 cells with CAPE 
significantly suppressed β-catenin, c-myc and cyclinD1 
protein expression. CAPE treatment was associated 
with decreased accumulation of β-catenin protein in 
nucleus and cytoplasm, and concurrently increased its 
accumulation on the surface of cell membrane.

CONCLUSION: CAPE can inhibit SW480 cell proliferation 
by inducing cell cycle arrest and apoptosis. Decreased 
β-catenin and the associated signaling pathway target 
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plays critical roles in cell proliferation and differentiation, 
and the β-catenin is the central component in the pathway. 
Aberrant β-catenin associated signaling pathway, which 
generally results from inactivating mutation of  adeno-
matous polyposis coli (APC) or activating mutation of  
β-catenin, leads to the accumulation of  β-catenin in the 
nucleus of  cells, which is subsequently complexed with 
T-cell factor (TCF) and promotes transcription of  a variety 
of  target genes, such as c-myc, cyclinD1, ultimately lead-
ing to cell aberrant proliferation and tumor formation. 
Dysregulation of  β-catenin associated signaling and hence 
β-catenin expression is believed to be central to the early 
stages of  sporadic colorectal carcinogenesis in humans[15-17]. 
Therefore, control of  β-catenin and/or control of  the 
downstream target gene expression represents an opportu-
nity for rational colorectal cancer therapy.

Here we report the anti-tumor effect of  CAPE in as-
sociation with β-catenin associated signaling in SW480 
colorectal cancer cells. These studies have important im-
plications for CAPE to be used as a potential therapeutic 
agent for colorectal cancer.

MATERIALS AND METHODS
Chemicals
CAPE, dimethyl sulphoxide (DMSO), PI, metha-
benzthiazuron (MTT), mouse anti-human β-catenin, 
c-myc, cyclinD1 and β-actin monoclonal antibody were 
purchased from Sigma-Aldrich (USA). RPMI-1640 
medium, fetal calf  serum and trypsin-EDTA were 
purchased from Hyclone (USA). FITC and horseradish 
peroxidase-conjugated secondary antibody were obtained 
from Pierce Biotechnology (USA). Annexin-V and PI 
double staining kit and Tripure were purchased from 
Roche (Germany). Protein assay kits were obtained from 
Bio-Rad Labs (USA). Enhanced chemiluminescence (ECL) 
system was purchased from Amersham Life Science (UK). 
CAPE was dissolved with DMSO and adjusted to final 
concentrations with culture medium prior to use.

Cell culture
The human CRC cell line SW480 was purchased from the 
American Type Culture Collection (ATCC). The cells were 
cultured in RPMI-1640 medium supplemented with peni-
cillin G (100 U/mL), streptomycin (100 μg/mL) and 10% 
fetal calf  serum. Cells were grown at 37℃ in a humidi-
fied atmosphere of  50 mL/L CO2 and were routinely sub-
cultured using 0.25% (w/v) trypsin-EDTA solution.

MTT assay 
The logarithmically growing SW480 cells were plated into 
a 96-well plate at a density of  4 × 103 cells/well. After 24 h,  
the cells were treated with CAPE at designated concentra-
tions (2.5, 5, 10, 20, 40 and 80 mg/L) for 24, 48, 72 and 
96 h, respectively. Control wells were treated with 0.1% 
DMSO alone. Then, 20 μL MTT (5 g/L) was added to 
each well and incubated for an additional 4 h, and then 
culture media were discarded followed by addition of  0.15 
mL DMSO and vibration for 10 min. The absorbance was 
measured at 490 nm. The inhibitory rates (IR) were calcu-

lated as follows: IR (%) = [(1-absorbance of  the treated 
wells)/(absorbance of  the control wells) ] × 100%. The 
50% inhibitory concentration (IC50) value was determined 
using CalcuSyn software.

Flow cytometry analysis
Cell density was adjusted to 0.3-1.0 × 107 cells/mL. Cells 
were serum-starved for 24 h and then treated with differ-
ent concentrations of  CAPE (2.5, 5 and 10 mg/L) for 24 h.  
Then the cells were harvested with trypsin-EDTA to pro-
duce a single cell suspension. The cells were pelleted by 
centrifugation and washed twice with phosphate-buffered 
saline (PBS). Then, the cell pellets were resuspended in 0.5 
mL PBS and fixed in 5 mL ice-cold 70% ethanol at 4℃. 
The fixed cells were spun down by centrifugation and the 
pellets were washed with PBS. After resuspension with 1 
mL PBS, the cells were incubated with RNase A (20 mg/L) 
and PI (50 mg/L) and shaken for 1 h at 37℃ in the dark. 
The stained cells were analyzed using a FACScan flow 
cytometer in combination with BD analysis Ⅱ software 
(Becton Dickinson).

Annexin-V and PI double-staining flow cytometry analysis
The cells were treated and harvested in the same way as 
mentioned above. Analysis of  apoptosis was performed 
using the Annexin-V and PI double staining kit according 
to the manufacturer’s protocol. After treatment with 
CAPE, the cells were immediately analyzed by flow 
cytometry. The apoptotic cells were localized in the right 
lower quadrant of  a dot-plot graph by using Annexin-V-
fluorescein versus PI. 

Western blot analysis
Cells were placed in serum-free medium with or without 
CAPE (2.5, 5 and 10 mg/L) for 24 and 48 h, then were 
lysed in solubilization buffer containing sodium dodecyl 
sulfate(SDS) and β-mercaptoethanol. After centrifugation, 
the supernatant was collected and the protein concentra-
tion determined by the BioRad DC kit. Equal amounts of  
protein (50 μg) in each sample were resolved in 10% SDS 
polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to a polyvinylidene difluoride (PVDF) membrane. 
After blocked with 2% skim milk, the membranes were 
incubated with primary antibodies at appropriate dilution 
(β-actin, 1/1000; β-catenin, c-myc and cyclinD1, 1/500) 
overnight at 4℃. Horseradish peroxidase-conjugated sec-
ondary antibody was diluted 1/5000 and incubated for 1 h 
at 20℃. Immunoreactive proteins were detected with an 
ECL system, and light emission was captured on Kodak 
X-ray films. Product bands were quantitated by scanning 
densitometry.

Indirect immunofluorescence
SW480 cells grown on glass coverslips were treated for 
48 h with CAPE (2.5, 5 and 10 mg/L) or an equivalent 
dilution of  DMSO, under standard culture conditions as 
described above. Then cells were washed with PBS and 
fixed with methanol for 20 min. Incubation with monoclo-
nal anti-β-catenin antibody (1:200) was carried out over-
night at 4℃. This was followed by incubation with FITC-
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conjugated secondary antibody (1:200) for 1 h at room 
temperature. Omission of  the primary antibody was used 
as a negative control. Images were collected using laser 
scanning confocal microscopy.

Statistical analysis
Data were expressed as mean ± SD. Analysis of  data was 
performed using one-way ANOVA. P < 0.05 was consid-
ered statistically significant.

RESULTS
Effect of CAPE on cell proliferation
SW480 cells were treated with various concentrations (2.5, 
5, 10, 20, 40 and 80 mg/L) of  CAPE for 24, 48, 72 and 96 h, 
respectively. Then the cell viability was measured by MTT 
assay. CAPE showed a significant dose-dependent and 
time-dependent inhibition of  cell growth (Figure 1). The 
IC50 value for CAPE at 24, 48, 72 and 96 h after treatment 
was 20.27, 11.38, 6.15 and 5.44 mg/L, respectively.

Effects of CAPE on cell cycle progression
In order to examine the effects of  CAPE on cell cycle 
progression, SW480 cells were treated with designated 
concentrations of  CAPE for 24 h. The distributions of  
cells in each of  the cell cycle phases were determined by 
FCM. As shown in Figures 2 and 3, the percentage of  cell 

population of  the G0/G1 phase significantly increased, 
while those in S and G2/M phase decreased. CAPE caused 
cell cycle arrest in G0/G1 phase in a dose-dependent 
manner.

Effect of CAPE on apoptosis
After SW480 cells were exposed to CAPE at various con-
centrations (2.5, 5 and 10 mg/L) for 24 h, Annexin-V and 
PI double-staining flow cytometry analysis showed that the 
apoptosis rates were 9.1% ± 0.7%, 15.23% ± 0.6% and 
21.1% ± 1.44%, respectively, which were significantly high-
er than that in the control group (3.7% ± 0.9%). CAPE 
induced apoptosis of  SW480 cells in a dose-dependent 
manner (Figures 4 and 5).

Effect of CAPE on the expression of β-catenin, c-myc and 
cyclinD1 
To investigate the mechanisms underlying CAPE induced 
apoptosis, we examined the effect of  CAPE on the expres-

CAPE concentration (mg/L)

Figure 1  Effect of CAPE on SW480 cell proliferation. SW480 cells were treated 
with CAPE at indicated concentrations for 24, 48, 72 and 96 h. The cell viability 
was determined by MTT assay.

Figure 2  Effect of CAPE on SW480 cell cycle distribution. The percentage of cells 
in each phase of the cell cycle, G0/G1, S, and G2/M was determined by FCM after 
cells were treated with indicated concentrations (2.5, 5 and 10 mg/L) of CAPE for 
24 h. aP < 0.05 vs the control group, treated with vehicle, DMSO only.
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sion of  β-catenin signaling pathway related genes. After 
SW480 cells were exposed to CAPE (2.5, 5 and 10 mg/L) 
for 24 and 48 h, Western blot analysis showed that CAPE 
significantly suppressed β-catenin protein expression in a 
dose and time-dependent manner. CAPE treatment after 
48 h markedly decreased the expression of  c-myc and cy-
clin D1, two of  the β-catenin associated signaling pathway 
target genes (Figure 6). 

Indirect immunofluorescence studies of  β-catenin 
localization in SW480 cells revealed that CAPE treatment 
decreased the accumulation of  β-catenin protein in 
nucleus and cytoplasm, and concurrently increased its 
accumulation on the surface of  cell membrane (Figure 7).

DISCUSSION
Propolis has been used since ancient times in folk 

medicine. Researches indicate that propolis exhibits 
immunoregulation, anti-bacterial, anti-inflammatory 
and anti-tumor activities[18-20]. As an active component 
of  propolis, CAPE is receiving much attention in the 
medical research community because of  its potential 
for the treatment of  a number of  disorders, including 
cancer. Recent studies demonstrated that CAPE has 
antiproliferative and apoptosis-inducing effects in various 
tumor cells. An in vivo study showed that CAPE decreased 
the growth of  the xenografts of  C6 glioma cells in nude 
mice[6]. Also, dietary intake of  CAPE decreased tumor 
formation in the enterocytes of  the Min/+ mouse[21]. 

In the present study, we investigated the effect of  
CAPE on cell proliferation, cell cycle and apoptosis of  
SW480 CRC cells. Our data demonstrated that CAPE 
treatment could significantly inhibit cell growth in a dose- 
and time-dependent manner, along with induction of  G0/
G1 arrest and apoptosis in SW480 cells.

Multiple molecular mechanisms seem to be involved 
in the tumor suppressive effect of  CAPE. Recently, it was 
reported that CAPE could inhibit NFкB, inducing apop-
tosis via Fas signal activation in human tumor cells[11,12]. 
Hung et al[22] reported that down-regulation of  Mcl-1 gene 
expression and activation of  caspase-8 are associated with 
CAPE-triggered cell apoptosis. Moreover, tumor suppres-
sor proteins P53 and p38 MAPK play a prominent role in 
the CAPE-induced apoptotic cell death in C6 glioma cells, 
which might contribute to the anti-tumor effect in these 
cells[13].

Our results suggest that the anti-tumor effects of  
CAPE on SW480 cells are associated with down-regulation 
of  the β-catenin associated signaling pathways. β-catenin 
plays a dual role in cells. It is a structural component 
of  cell-cell adherent junctions as well as a key player in  
β-catenin associated signaling pathway[23]. The signaling 
function of  β-catenin is particularly important in colorec-
tal cancer since mutations of  APC or tumor-associated 
mutations of  β-catenin lead to its stabilization[24,25]. Here 
we showed that CAPE treatment inhibited β-catenin in 
a dose-dependent manner in SW480 cells. More interest-
ingly, CAPE changed the localization of  β-catenin in cells. 
As shown in Figure 7, nuclear accumulated β-catenin in 
SW480 cells mainly relocalized on the cell membrane at 
cell-cell contacts after CAPE treatment. Two of  target 
genes of  the activated β-catenin associated signaling path-
ways have been reported to be c-myc and cyclin D1[26,27]. 
Oncogenes c-myc and cyclinD1 are a kind of  effector 
protein of  the karyomitosis signal, which can trigger and 
regulate the transcription of  the genes related with pro-

Figure 5  Annexin-V and PI double-staining flow cytometry analysis of SW480 
cells following 24 h incubation with CAPE (A) 0 mg/L, (B) 2.5 mg/L, (C) 5.0 mg/L, (D) 
10 mg/L.
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Figure 6  Western blot analysis of β-catenin, c-myc and cyclinD1 protein 
expression in SW480 cells following 24 and 48 h incubation with indicated 
concentrations of CAPE. β-actin served as a loading control.
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Figure 7  Indirect immunofluorescence analysis of β-catenin protein localization in 
SW480 cells following 48 h incubation with CAPE (A) 0 mg/L, (B) 10 mg/L.
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liferation. They are frequently overexpressed in several 
human tumors, including colorectal cancer. Our results 
showed that CAPE treatment markedly decreased the ex-
pression of  c-myc and cyclinD1. This indicates that CAPE 
induced cell cycle arrest and apoptosis might be associated 
with down-regulation of  β-catenin associated signaling 
pathways.

In summary, we have shown that CAPE can inhibit 
the growth of  human SW480 colorectal cancer cells 
by inducing cell cycle arrest and apoptosis. Decreased 
β-catenin and the β-catenin associated signaling pathway 
target gene expression might mediate the anti-tumor 
effects of  CAPE. These findings have strong implications 
for CAPE as a potential therapeutic agent for colorectal 
cancer.
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