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Abstract
Primary canalicular bile undergoes a process of fluidi-
zation and alkalinization along the biliary tract that is 
influenced by several factors including hormones, in-
nervation/neuropeptides, and biliary constituents. The 
excretion of bicarbonate at both the canaliculi and the 
bile ducts is an important contributor to the generation 
of the so-called bile-salt independent flow. Bicarbon-
ate is secreted from hepatocytes and cholangiocytes 
through parallel mechanisms which involve chloride ef-
flux through activation of Cl- channels, and further bi-
carbonate secretion via  AE2/SLC4A2-mediated Cl-/HCO3

- 
exchange. Glucagon and secretin are two relevant hor-
mones which seem to act very similarly in their target 
cells (hepatocytes for the former and cholangiocytes for 
the latter). These hormones interact with their specific G 
protein-coupled receptors, causing increases in intracel-
lular levels of cAMP and activation of cAMP-dependent 
Cl- and HCO3

- secretory mechanisms. Both hepatocytes 
and cholangiocytes appear to have cAMP-responsive in-
tracellular vesicles in which AE2/SLC4A2 colocalizes with 
cell specific Cl- channels (CFTR in cholangiocytes and not 
yet determined in hepatocytes) and aquaporins (AQP8 in 
hepatocytes and AQP1 in cholangiocytes). cAMP-induced 
coordinated trafficking of these vesicles to either cana-
licular or cholangiocyte lumenal membranes and further 
exocytosis results in increased osmotic forces and pas-
sive movement of water with net bicarbonate-rich hydro-
choleresis. 

© 2006 The WJG Press. All rights reserved.

Key words: AE2 anion exchanger; Bile salt-independent 
flow; Biliary bicarbonate excretion; Regulation of 

intracellular pH; Hydroionic fluxes in cholangiocytes

Banales JM, Prieto J, Medina JF. Cholangiocyte anion exchange 
and biliary bicarbonate excretion. World J Gastroenterol 2006; 
12(22): 3496-3511

 http://www.wjgnet.com/1007-9327/12/3496.asp

IntroductIon
Hepatocytes and cholangiocytes are the epithelial cells 
in the liver, and they both participate in the production 
of  bile. The hepatocytes, the major liver cell population 
(65%), generate the primary bile at their canaliculi[1]. 
As an important complement, the epithelial cells lining 
intrahepatic bile ducts or cholangiocytes (5% of  the 
liver cell population) exert a series of  reabsorptive and 
secretory processes which dilute and alkalinize the 
bile flow during its passage along the biliary tract[2-6]. 
Modifications of  ductal bile appear to be tightly regulated 
by the action of  nerves, biliary constituents, and some 
peptide hormones like secretin. Accordingly, it is possible 
to distinguish between three different bile flow fractions: (1) 
the canalicular bile salt-dependent flow (30% to 60% of  
spontaneous basal bile flow) that is driven by concentrative 
secretion of  bile acids by the hepatocytes followed by a 
facilitated efflux of  water[7,8]; (2) the canalicular bile salt-
independent flow (another 30% to 60% of  spontaneous 
basal bile flow)[1,8-10], which is also created by hepatocytes 
but through active secretion of  both inorganic and organic 
compounds (mainly bicarbonate[11,12] and glutathione[13], 
respectively); and (3) the ductal bile flow, that is the bile 
salt-independent flow fraction modified and contrib-
uted by cholangiocytes, mainly through production of  a 
bicarbonate-rich fluid in response to secretin[2,14-17] and 
other regulatory factors[2,5,6,17,18].
    In the last decade, the use of  molecular- and cell-biology 
tools and the availability of  suitable experimental models 
have greatly facilitated our knowledge on the processes 
involved in bile generation and modification. This review 
summarizes some of  the experimental models employed 
in biliary studies, and focuses on the biliary excretion of  
bicarbonate, the chief  factor responsible for ductal bile al-
kalinization and fluidization, and the role and interactions 
of  regulatory factors.
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Study ModelS
Biliary studies started over one hundred years ago. In 1902 
Bayliss and Starling discovered the hormone secretin as 
an agent with stimulatory effects on pancreatic secretion 
and bile flow[19]. About 25 years later secretin was reported 
as a cholagogue, i.e. an agent capable of  stimulating the 
flow of  bile into the duodenum[20], as well as a choleretic 
agent that could stimulate the production of  bile in the 
liver[21]. In spite of  this, although the role of  hepatocytes 
for bile generation was widely recognized quite early, 
the contribution of  cholangiocytes to the production of  
bile with an adequate composition was accepted more 
recently. Knowledge of  the cholangiocyte contribution was 
facilitated by the availability of  experimental models and 
the development of  both in vivo and in vitro sophisticated 
procedures.

In vivo models
The initial experimental studies on the bile flow and bile 
composition were carried out by using in vivo models of  
conscious or anesthetized mammals with biliary fistulas. 
In the case of  total biliary fistulas, there was a major 
concern because of  the interruption of  the enterohepatic 
circulation and the subsequent depletion of  the bile acid 
pool. However, this can be overcome by continuous 
intravenous or intraduodenal administration of  exogenous 
bile acids at controlled rates. On the other hand, partial 
biliary fistula allows controlled interruption of  the 
enterohepatic circulation, and a portion of  bile collected 
can be returned to the stomach or duodenum, thereby 
replenishing the pool of  natural bile acids[10]. Fistula 
animals have also been useful to estimate canalicular bile 
flow by measuring the biliary clearance of  selected inert 
solutes (mainly erythritol and mannitol). This procedure 
assumes that these solutes are sufficiently permeable to 
enter the canalicular bile by passive processes while being 
unable to cross the ductal epithelium[22,23]. It appears that 
this might be the case in some animal species but not 
in all[24]. Moreover, bile duct cannulation allows direct 
interventions in the biliary tract through retrograde 
intrabiliary injection[25-28]; this procedure has been 
employed to obtain animal models of  hepatitis[29] and 
toxic-induced biliary disease[30], as well as for experimental 
gene therapy[31,32]. Retrograde intrabiliary injection has also 
been employed to assess the effects of  toxic substances 
or inhibitors on the bicarbonate-rich choleresis upon 
stimulation. For instance, ursodeoxycholate-induced 
bicarbonate-rich choleresis has been shown to be sensitive 
to intrabiliary phenol [33]. More recently, secretion of  
bicarbonate in secretin-stimulated rats has been found to 
be sensitive to intrabiliary administration of  particular ion-
transport blockers[17].
    In humans, in vivo assessment of  biliary bicarbonate 
secretion has employed cumbersome maneuvers like 
nasobiliary drains in hepatic bile ducts[34]. In a context of  
surgical interventions, invasive procedures similar to those 
employed in animals (for instance T-tube insertion into 
the common bile duct[35,36] or percutaneous transhepatic 
cholangio-drainage[37]) were also used. Recently, non-
invasive assessment of  biliary bicarbonate secretion 

was developed by using positron emission tomography 
(PET)[38]. This imaging technique allows evaluation of  
baseline and stimulated organ functions after intravenous 
injection of  short half-live positron emitting isotopes[39,40]. 
Thus, 2-3 min after bicarbonate labeled with carbon-11 
(half  live of  20.4 min) was given to healthy volunteers, 
label uptake was observed in the abdominal region 
corresponding to the liver parenchyma and hepatic 
hilum. Interestingly, administration of  secretin increased 
bicarbonate uptake in the parenchymal region, this being 
followed by accumulation of  the label in the perihilar 
area[38]. Currently, the availability of  micro-PET systems 
may also facilitate non-invasive in vivo studies of  biliary 
bicarbonate secretion in small laboratory animals.
    Animal models of  bile ductal cell hyperplasia have 
also been developed, mainly in rodents, to study the 
pathophysiology of  bile ducts[41-43]. These models are 
closely associated with increased secretin-stimulated 
ductal secretion. The increased responsiveness seems to 
occur regardless of  the procedure employed to obtain 
the hyperplasia of  cholangiocytes: partial hepatectomy[44], 
chronic feeding of  bile acids[45] or α-naphthylisothiocyanate 
(ANIT)[46], chronic administration of  phenobarbital 
plus CCl4 to rats[47] or just CCl4 in mice[48], or bile-duct 
ligation (BDL)[41,49]. In contrast, a decreased secretin-
stimulated ductal secretion can be observed in BDL rats 
with ductopenia following interruption of  the cholinergic 
innervation by total vagotomy[50], or selective damage of  
large (but not small) cholangiocytes by acute feeding with 
CCl4[51,52]. 
    The development of  genetically modified murine mod-
els has contributed to ascertain the role of  selective genes, 
like those for the cystic fibrosis transmembrane conduct-
ance regulator Cftr[53,54] and the P-glycoprotein PGY3/
MDR2-3/ABCB4 Mdr2/Abcb4[55], among others. In Cftr-/- 
mice, for instance, induction of  colitis has been shown 
to result in increased bile duct injury[53]. In Mdr2/Abcb4-/- 
mice, a multistep process of  bile-duct damage leading to 
sclerosing cholangitis has been described[55]. Spontaneous 
mutant animals can also serve as useful in vivo models. The 
PCK rat, a model of  the autosomal recessive polycystic 
kidney and hepatic disease (PKHD), has been used for 
studies on possible trigger factors of  biliary cystogenesis. 
This mutant was spontaneously developed in the rat strain 
Crj:CD/Sprague-Dawley because of  a germ line mutation 
of  the Pkhd1 gene[56,57]. The TR- rat model is widely used 
for studying canalicular secretion of  organic anions. This 
mutant lacks the functional canalicular isoform of  the 
conjugate export pump MRP2/ABCC2 because of  one-
nucleotide deletion in the Mrp2/Abcc2 gene[58].

In vitro models
Isolated perfused liver preparations are useful experimen-
tal models to evaluate the liver effects of  single factors in 
a manner independent of  systemic or humoral effects[59]. 
There are two modalities of  these preparations, as the liver 
can be isolated and perfused in situ or ex situ, i.e. attached 
to or removed from the animal body. Livers can be iso-
lated from many animal species (rat[1,59], hamster[60], guinea 
pig[61], cat[62], rabbit[63], dog[64], sheep[65], calf[66], pig[67], and 
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monkey[68]), the isolated perfused rat liver (IPRL) being the 
model most widely used[69]. All these models allow repeated 
collection of  both the perfusate and the bile, and permit 
easy exposure of  the liver to different concentrations of  
test substances. Test substances may be given intravascu-
larly through just the portal vein[1,59-61,70], which provides 
flow to essentially all hepatocytes[71], or through both the 
portal vein and the hepatic artery (i.e. isolated bivascularly 
perfused liver)[72,73]. The latter bivascularly perfused model 
is particularly adequate to investigate ductal physiology be-
cause the predominant blood supply to the bile ducts is via 
the hepatic artery[74,75]. For studies on ductal secretion, test 
substances and drugs may also be administered intrabiliary 
(as retrograde intrabiliary injection[76]). Altogether, these in 
vitro preparations of  isolated perfused liver had provided 
very valuable data on liver physiology and pathophysiol-
ogy, the regulation of  bile secretion included. However, 
extrapolation of  that data to the in vivo situation should be 
cautious, as in vivo effects of  local factors may be tightly 
influenced by systemic players such as humoral factors and 
innervation.
    Membrane vesicle preparations derived from rat liver 
have been useful to distinguish transport across the cell 
membrane from intracellular events. They may be selectively 
enriched in basolateral or apical plasma membrane, or 
in intracellular membranes[77]. The first identification of  
liver anion exchange activity was carried out in canalicular 
plasma membrane vesicles[78].
    While isolated couplets of  hepatocytes was particularly 
useful as primary secretory units to study canalicular 
secretion[79], the development in the last decade of  the 
model of  isolated bile duct units (IBDU), mainly from 
rat [16,80,81], but also from mouse[82] is making a great 
contribution to better study the regulation of  ductal 
bile secretion[83]. Both models permit micropuncture for 
electrophysiological studies as well as video microscopic 
optical planimetry to determine bile secretion[16,81,84]. 
Isolated cholangiocytes[85-89] are also widely employed 
for transport studies. The preparation of  different size 
subpopulations of  cholangiocytes and IBDU isolated 
from specific portions of  the rat intrahepatic biliary tree 
has made it possible to define the functional heterogeneity 
of  cells lining specific sized intrahepatic ducts [2,90]. 
Furthermore, knockout and mutant animal models are 
being used to isolate cholangiocytes and bile duct units to 
carry out different in vitro studies[91-93]. Moreover, studies 
have been performed in isolated cholangiocytes from 
patients with cytic fibrosis (i.e. patients with mutations in 
the CFTR gene)[94,95]. Finally, a major advance is coming 
from the development of  polarized primary cultures 
of  intrahepatic cholangiocytes from both rat[96,97] and 
humans[98-101].
    As the excretion of  bicarbonate to bile involves a 
change in intracellular pH (pHi) and a counterbalance 
through ion transporters in the responsible epithelial cells, 
several procedures and maneuvers have been developed 
to study pHi regulation. The main strategy is based on the 
pHi recovery towards its initial values after loading cells 
with acid or alkali. This type of  experiment requires tech-
niques for rapid and efficient monitoring of  the pHi. Al-
though the most direct and accurate method seems to be 

the insertion of  double-barreled microelectrodes sensitive 
to [H+]i into the cell, this has important limitations; tested 
cells should have large dimensions and a special ability to 
manipulate the electrodes. Thus a valuable alternative is 
microfluorimetry, a procedure based on the sensitivity of  
intracellular fluorescent dyes to pHi. The indicator most 
widely employed is the membrane-permeable compound 
2’, 7’-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxy-
methylester (BCECF-AM)[102-104]. Uncharged BCECF-AM 
rapidly enters the cell, where it is enzymatically cleaved 
into its charged, membrane impermeant, fluorescent form 
BCECF. When bound to H+ ions, BCECF exhibits a shift 
in its emission fluorescence spectrum, and the ratio be-
tween the pH-sensitive emission at 495 nm wavelength, 
and the pH-insensitive (background) emission at the 
isosbestic point (440 nm) can be estimated. Once proper 
adjustments are set up (correcting for cellular autofluores-
cence, minimizing dye leakage, bleaching, or compartmen-
tation, and preventing photodynamic damage to the cells), 
this methodology allows for continuous measurements of  
pHi, with a very rapid response time. The technique can be 
applied to studies with a fluorimeter, flow cytometer, in-
verted epifluorescent microscope connected to a photon-
counting photometer and a TV camera attachment plus 
a digital image-processing software[105]. An example of  
successful use of  this methodology is the measurement 
of  the Na+-independent Cl-/HCO3

- anion exchange (AE) 
activity in both cell clusters and single cells. After inducing 
intracellular alkalinization by administration and further 
withdrawal of  the cell-permeant weak acid propionate in 
Krebs-Ringer bicarbonate buffer (KRB), it is possible to 
estimate the anion exchange activity as the rate of  spon-
taneous recovery of  pHi

[106]. Rates of  pHi recovery can be 
measured as δpHi/δt from the tangent to the experimental 
plot; transmembrane acid fluxes (or equivalent transmem-
brane base fluxes, i.e. JOH

-) are usually calculated as βtot × 
δpHi/δt, βtot being the total intracellular buffering power in 
the presence of  CO2/HCO3

-, estimated as described[107,108].
    The collection of  additional important methodologies 
which enabe a continuous progress in bile secretion 
pathophysiology is still large. Thus, microcomputed 
tomography [109], scanning and transmission electron 
microscopy[89,110], immunoelectron microscopy[111], and 
dual labeled immunogold[112,113] are only a few among 
those techniques deserving a brief  mention. Moreover, 
concerning molecular biological tools, the techniques 
of  gene silencing through RNA-interference show 
great potential for clarifying the function of  selective 
genes in bile duct cells. Currently, RNA-interference 
may be achieved with small interfering RNAs (siRNA) 
and through microRNAs (miRNA) and short/small 
hairpin RNA (shRNA)[114]. siRNAs had been used in 
normal rat IBDU to examine the role of  fibrocystin in 
ciliary morphology and biliary cystogenesis[57] and that 
of  aquaporin-1 (AQP1) in the transport of  water by 
biliary epithelia[115]. Also siRNA experiments had been 
carried out in cholangiocarcinoma cells to identify factors 
involved, for example, in the growth of  these cells[116] or 
their resistance to tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL)[117]. Usual transfection protocols 
are not very efficient to internalize the siRNAs in cultured 



cholangiocytes. Viral vectors that incorporate shRNA 
expression cassettes have thus been developed. Recently, 
a recombinant adenovirus with this design has been 
constructed and employed to efficiently infect normal rat 
cholangiocytes in culture and test the function of  AE2/
SLC4A2 anion exchanger in these cells[17].

MechanISMS Involved
Bile formation is regarded as an osmotic water flow in 
response to active solute transport. Bile salts are secreted 
in the canaliculi through a specific export pump referred 
to as BSEP/SPGP/ABCB11 (from bile salt export pump, 
sister of  P-glycoprotein, and ATP-binding cassette, 
subfamily B, member 11, respectively)[118-120], allowing for 
the generation of  the bile salt-dependent flow fraction. 
Remaining bile-salt independent flow fractions can be 
driven by supplementary solutes secreted at both the 
canaliculi (the so-called canalicular bile salt-independent 
flow), and the bile ducts (named as ductal bile salt-
independent flow)[1,2,10,14,121]. Estimates for the magnitude 
of  each bile flow fraction in humans are shown in Table 1.

Canalicular bile-salt independent flow
In addit ion to bi le acid secretion, the canal icular 
membranes of  hepatocytes show active secretion of  other 
organic and inorganic compounds, mainly glutathione[13] 
and bicarbonate[11,12,122], respectively. Glutathione can 
be secreted via the organic anion transporter MRP2/
ABCC2[123], while the efflux of  bicarbonate occurs through 
a DIDS-sensitive Na+-independent Cl-/HCO3

- exchange 
in association with other ion transport systems (Figure 
1)[78,124-127]. Both glutathione and bicarbonate seem to 
have an equivalent major input in canalicular bile flow 
generation, each driving up to 50% of  the bile salt-
independent fraction[11]. For this to be accomplished, 
resultant osmotic forces need to be associated with 
aquaporin-mediated transcellular movement of  water 
molecules from plasma to the bile canaliculi[128]. In any 
event, the relative contribution of  the canalicular bile salt-
independent fraction to the whole canalicular bile flow 
may vary substantially between animal species (Table 2).
    Canalicular bicarbonate excretion has been reported to 
be regulated by glucagon[134,135], a hormonal oligopeptide 
secreted by the pancreatic α-cells. This hormone is 
encoded by the gene GCG, which belongs to the same 
multigene family as secretin (SCT), vasoactive intestinal 
peptide (VIP), and gastric inhibitory peptide (GIP) genes, 
among others. Following its synthesis in the pancreas, 
glucagon may reach the liver and stimulate the hepatocytes 
via its interaction with the glucagon receptor (Figure 
2). Interestingly, this receptor and the receptors for 
secretin, VIP, GIP and other small peptidic hormones, are 
included in a superfamily of  receptors characterized by a 
7-transmembrane domain structure and by their coupling 
to adenylate cyclase (ADCY) via GTP-binding proteins 
(G proteins). Glucagon-glucagon receptor interaction in 
hepatocytes leads to increased intracellular levels of  cAMP, 
PKA activation, stimulation of  canalicular Cl-/HCO3

- 
exchange activity[126,134,135], and enhanced AQP8-mediated 
water permeability at the canalicular membrane[128,136-138]. 

Current data strongly suggests that these choleretic effects 
of  glucagon are microtubular-dependent and involve 
mobilization of  intracellular vesicles[126,128,136,139,140]. These 
effects of  glucagon in hepatocytes resemble those of  
secretin in cholangiocytes (Figure 2). After their interaction 
with their specific G-protein-coupled receptors, both 
hormones appear to use a similar cAMP-dependent PKA 
pathway to co-redistribute cell-type specific intracellular 
vesicles with flux proteins towards the apical plasma 
membrane of  the target cell. But some of  the f lux 
proteins involved in bile formation may differ between 
hepatocytes and cholangiocytes. While AQP8 is the 
involved water chanel in hepatocytes[128,136,137,140], it changes 
to AQP1 in cholangiocytes[112,141,142]. Moreover, there are 
data suggesting that in hepatic cells in baseline situation, 
the water channel AQP8, the glutathione carrier MRP2/
ABCC2 and the chloride bicarbonate exchanger AE2/
SLC4A2[138,140] are present in pericanalicular vesicles that 
might migrate to the canalicular membrane upon glucagon 
stimulation[128]. These data, together with previous findings 
on AE2/SLC4A2 expression at the canaliculi and the 
pericanalicular area[143,144], point towards the canalicular 
bicarbonate excretion occurring via an AE2/SLC4A2-
mediated Cl-/HCO3

- exchange[127]. Although a number of  
observations suggest that this excretion of  bicarbonate 
in exchange for chloride functions in connection with 
an apical chloride channel that maintains favorable Cl- 
gradients[78,124,127], the specific chloride channel(s) involved 
need yet to be identified (see Figures 1 and 2). While in 
cholangiocytes AE2/SLC4A2 colocalizes with CFTR[112], 
this particular cAMP-responsive Cl- channel is not 
expressed in hepatocytes. Therefore, it might be expected 
that a Cl- channel other than CFTR[145-148] be physically 
and/or functionally associated with AE2/SLC4A2 in 
hepatocytes. Moreover, previous findings have established 
an important link between bicarbonate excretion to bile 
and changes in pHi. Canalicular Cl-/HCO3

- exchange is a 
major hepatic acid loading mechanism; at resting pHi and 
in the absence of  any stimulation it shows low activity, 
but it is rapidly activated by intracellular alkalosis, whereas 
cAMP stimulation leads to intracellular acidification 

Table 1  Estimated bile flow rates in humans[10]

Bile flow fraction Flow rate 
Canalicular bile acid-dependent flow 0.15-0.16 mL/min
Canalicular bile acid-independent flow 0.16-0.17 mL/min
Ductal secretion of bile flow 0.11 mL/min
Daily total bile flow 620 mL/d

Table 2  Estimations of canalicular bile-salt independent flow in 
different species

Species Flow rate[122]

(μL/min/kg)
 Percentage of the

 canalicular bile flow
Humans   2            30%[128,129]

Monkey   7
Dog   5            20%[9]    

Rat 70         > 60%[1,131,132]

Rabbit 60         > 50%[133]
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which requires appropriate counterbalance[124,127]. Figure 
1 summarizes several carriers putatively involved in these 
events in hepatocytes (as well as in cholangiocytes), 
including acid/base transporters and related proteins. 
A brief  recall on bicarbonate loaders -and therefore 
acid extruders- highlights the role of  electrogenic Na+-
HCO3

- cotransporters (NBCe)[149-151] and the carbonic 
anhydrase/CA-CO2 pathway[152,153]. Intracellular load of  
bicarbonate may increase upon hydration of  intracellular 
CO2 by carbonic anhydrase(s)[154] and subsequent H+ 
efflux via Na+/H+ exchange (NHE) (Figure 1). The 
involved exchanger is mainly the basolateral NHE1/
SLC9A1[155-157], but NHE4/SLC9A4[158] and the canalicular 
NHE3/SLC9A3 [159] may also participate. The other 
relevant way of  loading bicarbonate into hepatocytes, i.e. 
through electrogenic Na+-HCO3

- cotransport, functions 
upon membrane depolarization following intracellular 
acidification [160]. The specific proteins mediating this 
cotransport in hepatocytes remain to be defined. The only 
two members of  the SLC4 family of  bicarbonate trans-
porters[161] known to be electrogenic are NBCe1/SLC4A4 

and NBCe2/NBC4/SLC4A5 [162]. NBCe1/SLC4A4 is 
widely expressed in most tissues, but its expression is 
negligible in the liver[163,164], while mRNA expression for 
NBCe2/NCB4/SLC4A5 is high in this tissue[165]. Of  the 
known human NBCe2/NCB4/SLC4A5 variants, only 
the rat NBC4c ortholog can be detected in the rat liver 
by RT-PCR[164]. Moreover, NBC4c immunoreactivity had 
been observed at the basolateral membrane of  rat hepato-
cytes[164]. Altogether these findings suggest that the basola-
teral NBC4c variant might be a relevant bicarbonate loader 
that enables hepatocytes for canalicular secretion of  bicar-
bonate through the apical AE2/SLC4A2 anion exchanger.

Ductal bile
As previously mentioned, primary canalicular bile 
undergoes a process of  fluidization and alkalinization 
along the biliary tract that is influenced by several factors 
including hormones (mainly secretin in most species[2,14-17]), 
innervation/neuropeptides[2,50,166,167], and biliary constitu-
ents[2,5,6,17,18]. This process results in net ductal secretion 

of  a bicarbonate-rich watery fluid. The magnitude of  the 
ductal contribution varies between species, representing 
30% of  basal bile flow in humans and 10% in rats[6]. 
Cholangiocytes are provided with specific transport 
systems that participate in bile modifications[2,168]. They 
are able to take up bile salts via an apical Na+-dependent 
transporter (SLC10A2, formerly ASBT/ISBT and 
occasionaly ABAT)[45,169-172] and release them through 
a basolateral truncated isoform of  the same carrier[173]. 
Indeed, transcellular transport through these carriers is 
specially important under cholestatic situations. In any case 
under normal conditions, biliary transport of  bicarbonate 
appears as a relevant function of  the bile duct epithelium. 
It is accomplished by specific acid/base carriers and 
related transporters that enable cholangiocytes to regulate 
their pHi

[105,174] (Figure 1). 

Cholangiocyte acid extruders
The vectorial transport of  HCO3

- from cholangiocytes to 
duct lumen starts with the accumulation of  HCO3

- in the 
cells via mechanisms which vary between animal species. In 
rat cholangiocytes, for instance, HCO3

- loading is mediated 
by transport systems similar to those in hepatocytes, i.e. by 
electrogenic Na+-HCO3

- cotransport activity[168,174-176] and 
the carbonic anhydrase/CA-CO2 pathway coupled to sub-
sequent carrier-mediated H+ extrusion[153,154]. Carbonic an-
hydrases (CAs) catalyze the hydratation of  carbon dioxide, 
CO2 + H2O  HCO3

- + H+ (reviewed in ref. 153). Thus 
far, several CA isoenzymes have been identified which dif-
fer in organ distribution, subcellular location, and function 
(cf. Table I in ref. 153). Compared with other secretory 
organs, the mammalian liver contains relatively low levels 
of  total CA activity. Thus, the cytoplasmic CA-II (CA2) 

B

Figure 2  Hormonal stimulation of bicarbonate excretion from hepatocytes and 
cholangiocytes. A: In hepatocytes, glucagon may induce an exocytic trafficking 
of vesicles with the anion exchanger AE2/SLC4A2 and the water channel AQP8, 
which can results in canalicular bicarbonate-rich hydrocholeresis. MRP2/ABCC2, 
while being a carrier for organic anions like glutathione rather than an inorganic ion 
transporter, is hereby depicted because of its possible colocalization with the other 
two flux proteins; B: In cholangiocytes, secretin induces trafficking of vesicles with 
the chloride channel CFTR, the anion exchanger AE2/SLC4A2, and the water 
channel AQP1, and further exocytosis to the lumenal membrane of these cells, 
which results in ductal bicarbonate-rich hydrocholeresis.
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Figure 1  The major ion carriers implicated in pHi regulation and secretion of 
bicarbonate to bile from liver cells. A: Hepatocytes; B: Cholangiocytes. 
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is mainly expressed in bile duct cells (but it may also be 
found in hepatocytes), and appears to be involved in the 
production of  HCO3

- for its further secretion to bile[153,177]. 
Also, the biliary epithelial cells express the membrane as-
sociated CA-IV and CA-IX, which on the basis of  their 
location might be involved in acidification and concentra-
tion of  the bile, even though the exact mechanisms have 
not been described[153]. 
    Among electrogenic Na+-HCO3

- cotransporters[161,162] 
only the NBC4c variant of  NBCe2/NBC4/SLC4A5 was 
found to be expressed in the rat liver, being immunolocal-
ized to both hepatocytes and cholangiocytes[164]. Interest-
ingly, NBC4c immunoreactivity was basolateral in hepato-
cytes but apical in cholangiocytes, suggesting a potential 
role for this cotransporter in the luminal fluid secretion 
and/or absorption[164]. In humans cholangiocytes, however, 
Na+-HCO3

- cotransport is not active in the physiological 
range of  pHi, being active only at very low pHi, and 
bicarbonate influx occurs mainly through electroneutral 
Na+-dependent Cl-/HCO3

- anion exchange[176,178]. Thus far, 
NDCBE/SLC4A8 is the only Na+-dependent Cl-/HCO3

- 
exchanger cloned in humans[179]. Although Northern blot 
analysis could not detect its messenger RNA in the whole 
liver[179], this cannot rule out that NDCBE/SLC4A8 be 
expressed in cholangiocytes (which account for just 5% of  
the liver cell population).
    In both rat and human cholangiocytes, H+ extrusion 
takes place essentially through NHE activity (Figure 1) 
 -while in pig cholangiocytes H+ extrusion is mediated by a 
cAMP-activated H+-ATPase[180]. Thus far, several members 
of  the NHE/SLC9 family have been described in rat 
cholangiocytes. They include NHE1/SLC9A1, restricted to 
the basolateral membrane and highly sensitive to amiloride, 
and the amiloride-insensitive isoform NHE2/SLC9A2, 
which is likely to be active on the side facing the lumen[106]. 
Moreover, NHE3/SLC9A3 has been immunolocalized 
to the apical membrane of  rat cholangiocytes, where it 
may play an important role in fluid absorption from the 
bile duct lumen[159]. Also NHE4/SLC9A4 -an isoform 
seemingly activated by hypertonicity and with K+/H+ 
exchange activity[181], was identified in whole liver extracts 
by Western blot[158]. Some findings in the stomach of  
Nhe4/Slc9a4-/- mice had led to speculations on a possible 
functional coupling of  NHE4/SLC9A4 with the AE2/
SLC4A2 anion exchanger in parietal cells[182]. In any case, 
the specific cellular expression and function of  this NHE 
isoform in the liver remains to be determined.

Cholangiocytes acid loaders
As previously reported in hepatocytes, the main acid loader 
mechanism in bile duct cells is the apical Na+-independent 
Cl-/HCO3

- exchange[17,106,174,176]. Such an AE activity might 
secrete HCO3

- into the lumen which is exchanged for Cl- 
influx. This exchange is electroneutral, being facilitated 
by the outside to inside transmembrane gradient of  Cl- at 
relatively high intracellular concentration of  HCO3

-, specially 
upon secretin stimulation[16,81,106,175,183] (Figure 2). Actually, 
several bicarbonate transporters have been described as 
exerting Na+-independent Cl-/HCO3

- exchange activity. 
This is the case for the SLC4 anion exchangers (AE1/
SLC4A1, AE2/SLC4A2 and AE3/SLC4A3) [161,184] as 

well as several members of  the SLC26 gene family of  
multifunctional anion exchangers (DRA/CLD/SLC26A3, 
PDS/DFNB4/SLC26A4, and SLC26A6 [185] and more 
controversially SL26A7[186,187]). But none of  these carriers 
except AE2/SLC4A2 had been described to occur in the 
liver. Moreover, AE2/SLC4A2 was localized not only to 
the canaliculi but also to the lumenal membrane of  bile 
duct cells[143]. Recent experiments of  RNA intereference 
with recombinant adenovirus expressing shRNA have 
shown that AE2/SL4A2 is indeed the main effector of  
both basal and stimulated Na+-independent Cl-/HCO3

- 
exchange in rat cholangiocytes[17].

Other ion-loaders/extruders
Besides acid/base transporters cholangiocytes possess 
other ion carriers like those for Cl-, Na+, and K+, which 
greatly contribute to pHi regulation and bicarbonate 
secretion (Figure 1). Thus, the cAMP-responsive Cl- 
channel CFTR had been localized at the apical side, where 
it plays a role in biliary excretion of  HCO3

-[188,189]. Although 
HCO3

- permeability through activated CFTR has been 
shown in several cell systems[190-194], its main contribution 
to biliary bicarbonate secretion appears to occur through 
a coordinated action with AE2/SL4A2[17,175,195]. In addition 
to CFTR, cholangiocytes possess a dense population of  
Ca2+-activated Cl- channels. These channels are responsive 
to interaction of  the purinergic-2 (P2) receptors with 
nucleotides (mainly ATP or UTP)[196-199], and they appear 
to be related to the Ca2+-calmodulin-dependent protein 
kinase II[188,200,201]. Resultant Ca2+-stimulated Cl- efflux might 
be up to 2-fold greater than that mediated by cAMP[202]. 
Additional high conductance anion channels which are 
insensitive to both Ca2+ and cAMP were identified in rat 
bile duct cells[203], but their specific role remains to be 
defined. The efflux of  Cl- from cholangiocytes to the 
ductular lumen is counterbalanced not only via apical 
Cl-/HCO3

- exchange but also through other Cl- uptake 
systems, mainly the basolateral Na+-K+-2Cl- cotransporter 
NKCC1/SLC12A2[196,204]. In addition to maintain high 
intracellular Cl- concentration facilitating apical Cl- 
excretion, this forskolin-stimulable cotransporter has been 
reported to participate in cell volume homeostasis[205] and 
cell proliferation[204,206,207]. Because the NKCC1/SLC12A2-
mediated influx of  Cl- occurs together with the entry of  
Na+ and K+, cholangiocytes possess other systems that 
sustain the gradients of  these cations and the membrane 
potential difference. Thus a basolateral sodium pump 
(the Na+/K+-ATPase)[208,209], extrudes Na+ and uptakes K+ 
with a 3:2 stoichiometry[210]. Accumulation of  K+ within 
cholangiocytes is prevented by its exit through K+ channels. 
Intracellular cAMP and/or Ca2+ concentration may 
activate basolateral K+ conductance that hyperpolarizes the 
cell[211]. The small conductance K+ channel SK2/KCNN2 
has been identified in rat and human hepatocytes[212] and in 
rat and human biliary epithelia[202,212], the activity of  which 
is stimulated by small increases in intracellular Ca2+ in an 
apamin-sensitive manner[213]. Although SK2/KCNN2 
immunoreactivity has been localized in cholangiocytes at 
both apical and basolateral membranes, functional studies 
in polarized preparations have demonstrated a significantly 
greater basolateral Ca2+-stimulated K+ conductance[202]. 
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Because the nonselective K+ channel blocker Ba2+ is able 
to cause a greater degree of  inhibition than apamin[202], 
apamin-insensitive channels not yet identified may also be 
involved in the conductance of  K+.
    In a context of  cAMP- and/or Ca2+-stimulated Cl- 
channels, cell hyperpolarization due to K+ conductance 
facilitates the transcellular Cl- movement into the lumen. 
Recycling of  K+ can be held up through the basolateral 
Na+-K+-2Cl- cotransport and the Na+/K+-ATPase. All 
these ionic fluxes across cholangiocyte membranes may 
ultimately lead to biliary excretion of  bicarbonate via its 
exchange with lumenal chloride, which is facilitated by the 
outside to inside transmembrane gradient of  chloride at 
relatively high intracellular concentration of  bicarbonate[16,

81,106,175,183]. The apical fluxes of  anions result in increased 
osmotic forces in the bile duct lumen which in the pres-
ence of  aquaporins contribute to the generation of  ductal 
bile flow. This view has been strongly supported by the 
finding that AE2/SLC4A2 and CFTR both colocalize with 
AQP1 in cholangiocyte intracellular vesicles which co-
redistribute to the apical cholangiocyte membrane upon 
both cAMP and secretin stimulations[112].

Water transporters or aquaporins
Aquaporins are water channels that mediate a bidirectional 
passive movement of  water molecules across epithelial 
cells in response to osmotic gradients established by ions 
and solutes. Thus far, rodent cholangiocytes have been 
described to possess two types of  aquaporins. Thus, in 
addition to the AQP1 locating in the intracellular vesicles 
which may traffic to the apical membrane upon agonist 
stimulation[112], there occurs another water channel at 
the basolateral membrane of  cholangiocytes named 
AQP4, which is not sensitive to secretin[214,215] (Figures 
1 and 2). However, there can be differences between 
species. For instance, immunohistochemical analysis in 
liver pig has shown the presence of  AQP1 and AQP9 in 
cholangiocytes, while AQP3, AQP4, AQP7, and AQP8 
were absent in these cells[216]. 

regulatory factorS
The bile duct epithelium is constantly regulated by the 
action of  multiples factors that contribute to the formation 
of  bile flow with an adequate final composition. Among 
these factors secretin is a relevant hormone peptide 
which may induce bicarbonate-rich hydrocholeresis in 
many animal species. Thus, secretin regulation of  ductal 
bile flow and the concurrence of  other factors are briefly 
summarized as follows: 

Relevance of secretin stimulation
In 1902, Bayliss and Starling[19] described an active agent 
originating from the intestinal mucosa, which they referred 
to as secretin because of  its capacity to stimulate pancreatic 
secretion in the dog. They also used the word “hormone” 
to designate this sort of  compound that can be produced 
in an organ and carried through the circulation to exert 
its effect on another organ. Some years passed before 
the choleretic effect of  secretin in the liver was reported 
in several animal species and humans[217-219]. Secretin was 

found to stimulate bile flow together with a decrease in 
the concentration of  bile salts[217-219]. In the late 1960s the 
role of  bile ducts in secretin-induced hydrocholeresis was 
postulated because of  the observation that this secretin 
effect was associated with reciprocal changes in the biliary 
concentration of  bicarbonate and chloride anions[35]. 
    Meanwhile secretin was purified from most species, 
first in 1962 from pig[220,221] and then from humans, dog, 
goat, guinea pig, rabbit, rat, mouse and chicken. Secretin 
has only 27 amino acids, which allowed for its chemical 
synthesis as early as 1968[222]. There is close homology 
between mammalian secretins, but also between the 
regulatory peptides (more than 10) currently grouped in 
the secretin/glucagon/ VIP superfamily.
    Secretin is produced in many organs but mainly in 
the mucosa of  upper small intestine (duodenum and 
jejunum)[223,224]. Its release to blood occurs mainly in the 
postprandial period, being stimulated by gastric acid 
delivered into duodenal lumen[225], as well as by pancreatic 
and intestinal secretions[226,227]. Secretin release appears 
to be mediated by a luminal secretin-releasing peptide 
contained in these gastrointestinal juices[228-230]. In addition 
to its mentioned bilary and pancreatic effects, secretin 
may function as feedback inhibitor of  gastrin (GAST) 
release and gastric acid secretion [231], and may also 
regulate gastric motility[232]. The physiological activities of  
secretin are subjected to hormone-hormone and neuro-
hormonal interactions. Inhibition of  gastric acid secretion 
by secretin is thus mediated by somatostatin (SST) and 
prostagladins[233,234], and secretin inhibition of  gastric 
motility involves a vagal afferent pathway[235,236]. 
    Secretin exerts its physiological actions via interaction 
with the N-terminal extracellular tail of  its specific 
glycoprotein receptor SCTR[237-239]. Like the glucagon 
receptor and other members of  the same receptor super-
family, SCTR is coupled to adenylate cyclase/ADCY 
through an oligomeric GTP-binding protein. In the liver 
SCTR is exclusively expressed at the basolateral membrane 
of  cholangiocytes[240,241]. As previously noted, the action 
of  secretin in cholangiocytes runs parallel with the 
choleretic effect of  glucagon in hepatocytes (Figure 2). 
Thus, both glucagon and secretin may stimulate the bile 
salt-independent bile flow, but each at a different level, i.e. 
canalicular for the former and ductular for the latter(cf. ref. 
242). 
    Secretin-SCTR interaction in cholangiocytes results 
in increased intracellular levels of  cAMP[15,16,243]. Further 
PKA activation[175,183] can induce microtubule-dependent 
co-redistribution of  the intracellular vesicles with AE2-
CFTR-AQP1 flux carriers to the apical membrane[112]. 
Additionally, the CFTR is phosphorylated and activated[244], 
thus resulting in Cl- efflux to the ductular lumen. In 
consequence, Cl- secreted by CFTR can be exchanged 
with HCO3

- through AE2/SLC4A2. This mechanistic 
model has been consistently confirmed in vitro using rat 
IBDU[16,175] and cholangiocytes[174]. For in vivo studies, 
most experiments with rats have used some of  the 
aforementioned models with bile duct proliferation[41,43,46,

112,245,246], since normal rats appear to respond very poorly 
to secretin (likewise rabbit, but in contrast with guinea pig 
among rodent species)[15,41,46,47,247]. Indeed the expression of  
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SCTR is increased in BDL rat cholangiocytes[245,246] but the 
receptor is also expressed in normal rat cholangiocytes[240]. 
In the model of  IPRL[248], intra-arterial secretin increased 
biliary concentration of  bicarbonate, but had no effect 
on the net bile flow. Because the effect of  secretin was 
blocked only by the CFTR inhibitor NPPB and not by the 
anion exchanger inhibitor DIDS (both administered intra-
arterially), it was proposed that Cl-/HCO3

- exchange would 
have no role in the ductal secretion of  bicarbonate in the 
normal rat[248]. However, recent experiments indicate that 
secretin does increase bile flow and biliary Cl- and HCO3

- 
excretions in the normal rat, but when they maintain the 
bile acid pool via continuous infusion with taurocholate[17]. 
Moreover, these effects of  secretin were distinctively 
blocked by the inhibitors given by intrabiliary retrograde 
injection. While secretin effects were all blocked by 
intrabiliary NPPB, DIDS only inhibited secretin-induced 
increases in bile flow and bicarbonate excretion but not 
the increased chloride excretion[17]. These findings provide 
evidence for the role of  biliary Cl-/HCO3

- exchange in 
secretin-induced bicarbonate-rich choleresis in the normal 
rat model. 

The role of the bile acid pool
In line with former findings in earlier experiments with 
dogs[14,249], the aforementioned observation that secretin 
also has effects on the normal rat when infused continu-
ously with taurocholate[17] confirms the notion that bile 
acids are relevant for secretin actions. In a previous study 
in normal rats secretin and taurocholate were tested and 
no secretin effects were observed[41]. But in that study, 
taurocholate infusion was interrupted before secretin ad-
ministration[41]. It is already known that bile acids can enter 
into cholangiocytes through the carrier ASBT[45,169-172] and 
exert their effects on these cells (reviewed in refs. 2 and 
250). For instance, it has been recently reported, activation 
of  CFTR by ASBT-mediated bile salt absorption, which is 
seemingly independent from cAMP or cGMP signaling[251].
    The bile salt-dependent canalicular flow is related to the 
osmotic activity of  bile acids, but some bile acids such as 
ursodeoxycholic acid (UDCA), 23-nor-UDCA, and 23-nor-
chenodeoxycholate[252-254], have a higher choleretic effect 
than can be accounted for by their secretion into bile (the 
so-called hypercholeretic effect). This hypercholeretic 
effect is associated with a marked st imulation of  
bicarbonate secretion into bile. A classic hypothesis 
referred to as “cholehepatic shunt pathway”[253] claimed 
that the hypercholeretic effect may involve intraductal 
protonation of  unconjugated bile salts which results in the 
formation of  bicarbonate anions derived from hydrated 
CO2 (i.e. H2CO3 or H+ plus HCO3

-). Passive diffussion 
of  uncharged bile acids through cholangiocytes to the 
periductular vessels and further uptake in hepatocytes 
could be followed by their canalicular resecretion as 
unconjugated bile salts (reviewed in ref. 250). After the 
identification of  apical and basolateral bile acid carriers in 
cholangiocytes (ASBT and tASBT, respectively[45,169-173]), the 
cholehepatic shunt hypothesis has received a boost, being 
updated for the conjugated bile salts[250]. ASBT activity 
acutely increases upon secretin stimulation[172], which 
may accentuate the cholehepatic bile acid shunting in the 

postprandial period.

Neurovegetative liver innervation
The liver is directly regulated by the neurovegetative 
innervation. Indeed, the release of  the neurotransmitter 
acetylcholine from the intrahepatic parasympatic terminals 
induces, via selectively interaction with M3 Ach receptors 
on cholangiocytes, an increase in both secretin-stimulated 
cholangiocyte cAMP synthesis and Cl-/HCO3

- exchanger 
activity by Ca2+-calcineurin-mediated PKC-independent 
modulation of  adenylate cyclase/ADCY[255,256]. In fact, 
infusion of  acetylcholine in the IPRL model was found 
to potentiate the effect of  secretin on biliary HCO3

- 
excretion[248]. Furthermore, interruption of  parasympatic 
innervation in BDL rats by vagotomy has been reported 
to inhibit secretin-stimulated ductal secretion, as well as to 
decrease cholangiocyte intracellular cAMP levels[50].
    The intrahepatic biliary epithelium also receives 
dopaminergic innervation[257,258], but in contrast to the 
cholinergic system, the dopaminergic system inhibits 
secretin-induced choleresis. Although both systems exert 
their functions through increased intracellular ions (1, 4, 5) 
P3 and Ca2+, the cholinergic system acts via calmodulin and 
calcineurin but without recruitment of  PKC[256], whereas 
the D2 dopaminergic system inhibits secretin-stimulated 
ductal secretion through increased expression and activa-
tion of  PKC-γ[259].
    Moreover, cholangiocyte secretion can also be 
regulated by the action of  the adrenergic system[260,261]. 
The α2-adrenergic receptor agonist UK-14304 has been 
reported to inhibit cholangiocarcinoma growth through 
time course-dependent modulation of  Raf-1 and B-Raf  
activities[260], and the α1-adrenergic agonist phenylephrine 
can potentiate secretin-stimulated ductal secretion through 
the amplification of  the ADCY system via a Ca2+- and 
PKC-dependent mechanism[261].

Hormones
In addition to secretin, there are gastrointestinal hormones 
and neuropeptides such as bombesin/gastrin releasing 
peptide (BN/GRP), VIP, endothelin-1 (ET1/EDN1), 
somatostatin/SST, and gastrin/GAST, which may also 
modulate the ductular bile salt-independent flow (reviewed 
in ref. 2). Some of  these factors operate through a 
secretin-independent mechanism, while others influence 
the release of  secretin or interact with the secretin 
signaling in cholangiocytes, depending very much on the 
animal species. For instance, the neuropeptide bombesin/
BN/GRP can act either by increasing the secretin release 
in dogs[262,263], or inducing ductal secretion with activated 
Cl-/HCO3

- exchange via secretin-independent mechanisms 
in isolated rat cholangiocytes[2,264-266]. The effect of  VIP on 
cholangiocytes depends also on the animal species[2,267-271]. 
While VIP appears to increase secretin-stimulated bile 
flow and bicarbonate excretion in humans[267,268], studies 
in rat IBDU show that VIP can stimulate basal fluid and 
bicarbonate secretion through a cAMP-independent 
pathway[2,269].
    The cyclic tetradecapeptide somatostatin/SST is able 
to inhibit basal and secretin-stimulated bicarbonate-rich 
choleresis via its interaction with the SSTR2 receptor 
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subtype[2,272]. In rat, inhibition of  secretin-stimulated ductal 
secretion by SST is associated with decreased expression of  
the secretin receptor SCTR in cholangiocytes and reduced 
secretin-stimulated cAMP levels[49,272]. In mice SST has also 
been shown to stimulate ductal fluid absorption, a process 
involving intracellular cGMP synthesis and inhibition of  
secretin-stimulated cAMP synthesis[273]. Moreover, in dogs, 
SST has been shown to diminish the acid-induced release 
of  secretin from the duodenal mucosa[262]. Similarly SST, 
the gastrointestinal hormone gastrin/GAST may also 
modulate cholangiocyte secretion[2]. In BDL rats, GAST 
has been reported to inhibit secretin-stimulated ductal 
secretion by reducing both SCTR expression and secretin-
induced cAMP levels[274].
    Other peptide hormones like insulin and insulin-like 
growth factor 1 (IGF1) can also modulate the biliary epi-
thelium. Insulin was reported to inhibit secretin-induced 
secretion in BDL rats through activation of  PKC and in-
hibition of  secretin-stimulated cAMP and PKA activity[275]. 
On the other hand, studies using a liver cell line (though 
from hepatoma rather than cholangiocytic type), showed 
that insulin may stimulate membrane turnover with in-
creased exocytosis/endocytosis of  vesicles containing ion 

channels[276]. In rats IGF1 was found to stimulate cholere-
sis[277] as well as cholangiocyte proliferation[278]. IGF1 can 
be synthesized and released from cholangiocytes under 
the control of  the growth hormone (GH)[278]. Biliary IGF1 
may in turn interact with its receptor (IGF-R) located at 
the apical pole of  cholangiocytes[278]. Expression of  both 
IGF1-R and IGF1 is markedly enhanced in cholangiocytes 
following bile duct ligation[278].
    Also steroidal hormones like corticosteroids and estro-
gens have effects on the biliary epithelium. Corticosteroids 
are choleretic and increase biliary bicarbonate excre-
tion[277,279]. However, estrogen-induced cholestasis results 
in diminished biliary bicarbonate excretion[280]. Reduced bi-
carbonate excretion might be caused by a reflux of  biliary 
bicarbonate via leaky tight junctions as it is not associated 
with impaired activity of  the Cl-/HCO3

- exchanger[280].

Purinergic stimulation
Both hepatocytes and cholangiocytes are able to 
release ATP and UTP, which leads to increased biliary 
concentration of  nucleotides and nucleosides (the latter 
being a result of  nucleotide dephosphorylation by 
membrane-associated nucleotidases)[281-283]. Stimulation 
of  the different subtypes of  purinergic receptors (PR) 
at the lumenal membrane of  cholangiocytes by either 
extracel lular nucleosides (P1 family receptors) or 
extracellular nucleotides (P2 family receptors) may control 
cholangiocyte secretion and ion channel activities[281,283-286]. 
Most subtypes of  purinergic receptors are G protein-
coupled receptors except the P2X subtypes which are 
ligand-gated channels [281,283]. P2 activation stimulates 
cholangiocyte biliary efflux of  K+, HCO3

-, and Cl-, and 
reabsorption of  Na+[281,283,286]. Whereas Cl- efflux seems to 
be mediated by a calcium-stimulated Cl- channel[284], HCO3

- 
is secreted from cholangiocytes via an AE2/SLC4A2 
mediated Cl-/HCO3

- exchange[17,105,174,284,287]. Of  notice, 
the P2Y11 subtype receptor has been reported to mediate 
secretion via cAMP in pancreatic duct epithelial cells[288], 

which suggests that a similar mechanism may also occur 
in cholangiocytes (as well as in hepatocytes). Finally, P2 
receptors may stimulate the basolateral NHE1/SLC9A1 
activity in cholangiocytes[287]. 

Cytokines and related factors
Some cytokines such as IL5 and the combination of  the 
proinflammatory cytokines IL6, IFN-γ, IL1, and TNF-α 
can inhibit secretin-induced choleresis[289,290]. Moreover, 
proinflammatory cytokines can impair the barrier function 
of  biliary epithelia[290], and stimulate the biliary epithelium 
to generate NO, via induction of  inducible nitric oxide 
synthase 2A (NOS2A/INOS). Resultant reactive nitro-
gen oxide species (RNOS) may cause ductular cholestasis 
through inhibit ion of  both the soluble adenylate 
cyclase (SAC) and the cAMP-dependent HCO3

- and Cl- 
secretory mechanisms[195]. Such a pathogenetic sequence 
may contribute to ductal cholestasis in inflammatory 
cholangiopathies[195].
    In conclussion, biliary secretion of  bicarbonate is an 
important contributor to the generation of  the bile-salt 
independent flow. Bicarbonate is secreted from both he-
patocytes and cholangiocytes through parallel mechanisms 
which involve chloride efflux through activation of  Cl- 
channels, and further bicarbonate excretion via AE2/
SLC4A2-mediated Cl-/HCO3

- exchange. Glucagon and 
secretin are two relevant hormones which act very simi-
larly in hepatocytes and cholangiocytes, respectively. These 
hormones interact with their specific receptor, resulting 
in increased intracellular cAMP levels and activation of  
cAMP-dependent Cl- and HCO3

- secretory mechanisms. 
Both hepatocytes and cholangiocytes seem to have cAMP-
responsive intracellular vesicles in which AE2/SLC4A2 
may colocalize with cell specific Cl- channels (CFTR in 
cholangiocytes and thus far undetermined in hepatocytes) 
and aquaporins (AQP1 in cholangiocytes and AQP8 in 
hepatocytes). cAMP-induced coordinated trafficking of  
these vecicles to either canalicular or cholangiocyte lume-
nal membranes and further exocytosis results in increased 
osmotic forces and passive movement of  water with net 
bicarbonate-rich hydrocholeresis.
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