
INTRODUCTION
Innate immunity is considered to be important for the 
elimination of  invading microbes from the gastrointestinal 
tract and for the control of  their systemic dissemination. 
Mammalian toll-like receptors (TLRs) are members of  
the pattern-recognition receptor (PRR) family and play 
a central role in the initiation of  innate cellular immune 
responses and the subsequent adaptive immune responses 
to microbial pathogens[1,2]. The capacity to recognize 
diverse pathogen-associated molecular patterns (PAMPs) 
that are unique to microorganisms and therefore absent 
from host cells makes TLRs well-suited to act as an early 
warning system against invading pathogens. Activation of  
the TLR signal transduction pathway leads to the induction 
of  numerous genes that function in host defense, including 
those for inflammatory cytokines, chemokines, antigen-
presenting molecules, and costimulatory molecules[1,2]. 
Recognit ion of  PAMPs by TLRs differs from the 
recognition of  microorganism-specific antigens by the 
adaptive immune system, in that PAMPs are typically 
highly conserved across several species of  microorganisms, 
such as surface lipoproteins common to several bacterial 
species, or genetic material from an entire family of  
viruses. The ability of  TLRs to recognize a broad spectrum 
of  microbial molecules enables the host to detect the 
presence of  pathogens rapidly, before a more widespread 
infection occurs.

In this review, we have briefly summarized the recent 
progress in the understanding of  the role of  TLRs in 
the host defense against gastrointestinal pathogens and 
in the maintenance of  immune tolerance to commensal 
microflora. For more general information on the biological 
functions of  TLRs and the TLR signaling pathway, the 
readers are referred to a number of  excellent review 
articles in this field[3-7].

TLRs, TLR LIGANDS AND TLR SIGNALING 
PATHWAYS
To date, 11 related TLR genes have been identified and 
characterized (tlr1 to tlr11) (Table 1)[3,4,7-9]. Some TLRs, 
such as TLR3, TLR5 and TLR9, only recognize one 
type of  PAMP, while others, such as TLR2, appear to 
recognize several different microbial molecules. Among 
these, TLR4 is the signal-transducing element of  the 
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Abstract
The human gastrointestinal (GI) tract is colonized 
by non-pathogen ic commensa l mic ro f lo ra and 
frequently exposed to many pathogenic organisms. 
For the maintenance of GI homeostasis, the host must 
discriminate between pathogenic and non-pathogenic 
organisms and init iate effective and appropriate 
immune and inflammatory responses. Mammalian toll-
like receptors (TLRs) are members of the pattern-
recognition receptor (PRR) family that plays a central 
role in the initiation of innate cellular immune responses 
and the subsequent adaptive immune responses to 
microbial pathogens. Recent studies have shown that 
gastrointestinal epithelial cells express almost all TLR 
subtypes characterized to date and that the expression 
and activation of TLRs in the GI tract are tightly and 
coordinately regulated. This review summarizes the 
current understanding of the crucial dual roles of TLRs 
in the development of host innate and adaptive immune 
responses to GI infections and the maintenance of the 
immune tolerance to commensal bacteria through down-
regulation of surface expression of TLRs in intestinal 
epithelial cells.
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lipopolysaccharide (LPS) receptor complex, and is also 
involved in the signaling response to other exogenous 
stimuli [e.g., bacterial HSP60 and fimbriae, Streptococcus 
pneumoniae pneumolysin, lipoteichoic acid (LTA) from 
gram-positive bacteria, and respiratory syncytial virus coat 
protein][10,11]. TLR2 binds to bacterial lipoproteins, LTA 
and peptidoglycan[11-13], although some recent studies have 
argued that peptidoglycan recognition does not occur 
through TLR2[14], or that TLR2 alone is not sufficient 
to detect peptidoglycan[15]. Flagellin, a bacterial protein 
involved in motility, binds TLR5[16]. CpG, a repetitive 
sequence of  unmethylated nucleic acids found in high 
quantities in bacterial DNA, is recognized by TLR9[17]. 
Also, although the specific ligand is not yet known, murine 
TLR11 is involved in protection from uropathogenic 
bacterial infection in mice[18]. Certain bacterial virulence 
factors, such as fimbriae or enterotoxins, have been 
shown to activate TLR2 and/or TLR4[19-23]. Some viruses 
are also recognized by TLRs. Double-stranded RNA 
(dsRNA), which is found in many types of  virus, elicits 
immune responses through TLR3[24] and probably another 
PRR[25, 26]. Human TLR7 and/or TLR8 are known to 
bind single-stranded RNA (ssRNA) from viruses, such 
as human immunodeficiency virus (HIV)-1, influenza 
and human parechovirus-1[27-29]. TLR specificity is not 
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limited to bacterial or viral PAMPs. TLR2 and/or TLR4 
have been implicated in the detection of  Candida albicans 
and Entamoeba histolytica[30-34]. In addition, some TLRs also 
bind endogenous molecules, such as HSP60, fibronectin, 
surfactant protein A, and β-defensin-2[4, 9].

TLRs vary from one another by their ligand specificity, 
determined by the extracellular portion of  the receptor. 
The cytoplasmic tails of  TLRs appear to be associated 
with the tails of  other TLRs in a process known as 
TLR cooperation[35]. This can occur between receptors 
of  similar or different specificity. For example, TLR2 
requires association with TLR6 in order to propagate the 
correct intracellular signal after binding peptidoglycan or 
zymosan (a yeast cell-wall particle)[35]. In the cytoplasmic 
domain of  TLRs, the element common to all TLRs is the 
Toll-interleukin-1-related (TIR) domain. After homo- or 
heterodimerization of  TLRs, the intracellular TIR domains 
self-associate, and bind TIR domains of  intracellular 
adaptor molecules. All TLRs except TLR3 associate with 
the TIR-containing myeloid differentiation factor (MyD) 
88[36], which upon activation mediates a signaling cascade 
leading to activation of  the NF-κB transcription factor[6]. 
The end result of  TLR signaling is an upregulation of  
pro-inflammatory cytokines and chemokines, such as 
TNF-α and IL-8, and the induction of  a localized immune 
response. 

TLR4 was the first PRR to be properly identified as 
having a specific ligand[10], and the mechanism of  TLR/
LPS interaction is thus the best studied. LPS is transferred 
to cell-surface CD14 by LPS-binding protein (LBP)[37,38]. 
CD14 does not signal LPS presence directly to the cell 
because it lacks a cytoplasmic domain. Instead, the 
proximity of  CD14 to TLR4 allows CD14 to “present” 
LPS to TLR4[10,39,40], which itself  is bound to MD-2 on 
the cell surface. A physical association on the cell surface 
between MD-2 and TLR4 is essential for TLR4 function[41], 
and MD-2 is in fact essential for TLR4 to be trafficked to 
the cell surface in the first place[42].

TLR ACTIVITY IN THE GASTROINTESTINAL 
(GI) TRACT
Emerging evidence has shown that TLR expression and 
activation is specially regulated in the GI tract. This is 
probably due to the continuous presence of  physiological 
microflora in the gut. It is essential that TLRs do not 
react to PAMPs expressed by commensal microflora, 
yet retain the ability to detect and mount effective 
immune responses against invading pathogens. This is 
mainly accomplished by the down-regulation of  surface 
expression of  TLRs, such as TLR2, TLR4 and MD-2, 
in the gut epithelium[5,43-47]. Although intestinal epithelial 
cells (IEC) can and sometimes do express TLR2 and/
or TLR4[46,48-50], these TLRs usually relocate to either 
intracellular compartments such as the Golgi apparatus, 
or to the basolateral membrane of  the cell as a result 
of  the continuous stimulation by varying components 
of  the commensal bacteria[50-53]. Indeed, in vitro studies 
of  an IEC line have shown that LPS or peptidoglycan 
stimulation relocates the constitutive surface expression 

Table 1 Toll-like receptors and known microbial ligands[4,7,18]

TLR family Microbial ligands

Lipid ligands

TLR1 Tri-acyl lipopeptides (bacteria, mycobacteria)
TLR2 Lipoprotein/lipopeptides (a variety of pathogens)

Peptidoglycan (Gram-positive bacteria)
Lipoteichoic acid (Gram-positive bacteria)
Lipoarabinomannan (mycobacteria)
A phenol-soluble modulin (Staphylococcus epidermidis)
Glycoinositolphospholipids (Trypanosoma Cruzi)
Glycolipids (Treponema maltophilum)
Porins (Neisseria)
Zymosan (fungi)
Atypical LPS (Leptospira interrogans and 
Porphyromonas gingivalis)
Hemagglutinin (measles)

TLR4 LPS (Gram-negative bacteria)
Fusion protein (respiratory syncytial virus)
Envelope proteins (mouse mammary tumor virus)
HSP60 (Chlamydia pneumoniae)

TLR6 Di-acyl lipopeptides (mycoplasma)

Nucleic acid 
ligand

TLR3 Double-stranded RNA (virus)
TLR7 or 8 U-rich ssRNA

TLR9 CpG DNA (bacteria)

Protein ligand

TLR5 Flagellin (bacteria)

Uropathogenic 
bacteria

TLR11 Uropathogenic bacteria

Ligand unknown

TLR10 ?
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of  TLR2 and TLR4 into intracellular compartments near 
the basolateral membrane[51]. Others have shown that 
both primary and immortalized IEC responded to TLR 
ligand stimulation, and that prolonged exposure to these 
ligands reduced surface expression of  TLRs without 
reducing mRNA levels[49]. It is important to note that 
intracellular TLR4 retains its full signaling capability, and 
detects both internalized LPS and intracellular bacteria[52,53]. 
This mechanism allows the host to detect the pathogenic 
organisms that have penetrated the intestinal epithelium 
without overreaction to commensal bacteria on the surface 
of  intestinal epithelium.

There have been some debates over the precise cellular 
localization of  TLR5, the receptor for flagellin, in IEC[54-57]. 
One group has shown that TLR5 was only expressed on 
the basolateral membrane[55], whereas another group using 
a different cell line showed both basolateral and apical 
TLR5 expression following the stimulation with Escherichia 
coli flagellin[54]. Apical TLR5 expression has also been 
demonstrated ex vivo in the murine ileum[54]. In addition, 
Salmonella typhimurium flagellin can translocate across 
epithelial cells to the basolateral membrane, a process 
that is essential for S. typhimurium flagellin to induce 
inflammatory responses[55,58,59]. These data strongly suggest 
the possibility that under normal circumstances TLR5 is 
only expressed at the basolateral membrane in IEC. The 
basolateral expression of  TLR5 may be important for 
the maintenance of  GI homeostasis since flagellin from 
commensal bacteria generally does not translocate to the 
basolateral membrane and thereby does not induce an 
inflammatory response[58].

The intestinal epithelium also uses specific tissue 
distribution and compartmentalization of  TLR-expressing 
cells to avoid unnecessary TLR activation and at the 
same time allow the development of  rapid and efficient 
host defense against invasion by pathogenic organisms. 
In this regard, intestinal myofibroblasts are capable of  
upregulating TLR2, TLR3, TLR4, TLR6 and TLR7 
expression after LPS or LTA stimulation, thereby allowing 
a functional TLR response to invasive pathogens in the 
subepithelial compartment[60]. It has also been shown that 
crypt epithelial cells express TLR2 and TLR4, whereas 
mature IEC express TLR3 only[44]. Since crypt epithelial 
cells do not come into direct contact with commensal 
bacteria, their expression of  TLR2 and TLR4 should 
not be detrimental to the host. TLR3 expression in the 
intestinal lumen is also non-detrimental because the TLR3 
ligand, viral dsRNA, is not a natural presence in the gut 
microflora.

Another strategy in the regulation of  TLR activities 
in the GI mucosa is through high expression of  TLR-
antagonists to suppress the activation of  these TLRs 
still present at the cell surface. For example, TLR9 is 
constitutively expressed in IEC, but remains completely 
unresponsive to CpG[61]. In this regard, various proteins, 
termed TLR-attenuating factors, are known to attenuate 
TLR signaling, and this was extensively reviewed by Liew 
et al[6]. Some of  these TLR-attenuating factors have been 
shown to be highly expressed in TLR-hyporesponsive 
IEC, or to be lacking in cases of  intestinal inflammation. 
Toll-interacting protein (TOLLIP) inhibits TLR signaling 

by interfering with IL-1 receptor-associated kinase 
(IRAK), an important component of  the TLR signaling 
cascade[62]. TOLLIP was found to be upregulated in TLR-
hyporesponsive primary and immortalized IEC after 
prolonged exposure to TLR ligands[45,49], and TOLLIP 
mRNA was highly expressed in healthy colonic mucosa[49]. 
Peroxisome proliferator-activated receptor γ (PPARγ) limits 
TLR activity by inhibiting NF-κB activation[63,64]. PPARγ 
was more highly expressed in the colon compared to the 
small intestine[65], and has been shown to have a crucial 
role in the induction of  tolerance to commensal bacteria[66]. 
Stimulation of  IEC by TLR ligands or by intestinal 
microflora extracts increased PPARγ expression[67]. Thus, 
TOLLIP and PPARγ appear to down-regulate TLR activity 
in direct response to the continual exposure of  IEC to 
commensal bacteria.

It has recently been identified that TIR8/single Ig IL-
1-related receptor (SIGIRR) can negatively regulate TLR 
activity, possibly by interfering with TLR4 and IRAK 
signaling[68,69]. Studies in TIR8-/- mice showed that these 
mice developed more severe intestinal inflammation than 
wild-type control mice after LPS treatment[70], implicating 
the role of  TIR8 in the suppression of  the intestinal 
inflammatory response. In addition, it has been shown 
in a mouse model of  colitis that vasoactive intestinal 
peptide (VIP) treatment can restore the overexpressed 
TLR2 and TLR4 to baseline levels[71]. The mechanism 
of  action was unknown, but might involve either VIP-
mediated suppression of  NF-κB activation (leading to a 
cessation of  further TLR expression) or suppression of  
cytokines known to contribute to TLR upregulation in 
IEC[71]. This appears to be a novel mechanism by which a 
natural intestinal peptide suppresses TLR activity. Finally, 
macrophages isolated from the intestinal lamina propria of  
IL-10-/- mice, which develop inflammatory bowel disease 
(IBD)-like colitis, were shown to express reduced levels 
of  IκBNS, an inhibitor of  NFκB activation[72]. IκBNS 
is responsible for suppression of  LPS-induced cytokine 
production by lamina propria macrophages[72]. The lamina 
propria macrophages are normally hyporesponsive to TLR 
stimulation except in cases of  intestinal inflammation[73], 
but these from IL-10-/- mice were responsive.

There are some known cases where commensal 
bacteria actually enhance anti-inflammatory activity in the 
intestinal epithelium. One example is the aforementioned 
upregulation of  TOLLIP and PPARγ by commensal 
bacteria[45,49,66]. Others have shown that non-pathogenic 
S pullorum could block the activation of  NF-κB by S 
typhimurium[74]. Furthermore, Backhed et al[75] showed that 
hypo-acylated LPS was less stimulatory towards TLR4 
compared to normally acylated LPS, and that it actually 
inhibited the pro-inflammatory effects of  wild-type LPS. 
Several species of  commensal bacteria produce hypo-
acylated LPS, which may contribute to the down-regulation 
of  TLR4 activities[75].

TLRs AND INFLAMMATORY BOWEL 
DISEASE
IBD, comprising Crohn’s disease (CD) and ulcerative 
colitis (UC), is a chronic, relapsing GI disorder of  
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unknown e t io log y. The deve lopment of  IBD i s 
hypothesized to be the result of  dysregulated immune 
responses to one or more intestinal luminal antigens 
(loss of  tolerance) in genetically predisposed individuals. 
While the pathophysiological features of  IBD are 
uncontrolled, excessive inflammation in the GI mucosa 
and the upregulation of  a host of  pro-inflammatory and 
T cell cytokines[76,77], the root of  the problem may lie in 
the defective immune tolerance to commensal bacteria 
and other intestinal luminal antigens. Experimental and 
clinical studies suggest that the over-expression of  certain 
TLRs and down-regulation of  TLR antagonists in IEC 
can be one of  the underlying mechanisms leading to an 
improper reaction to commensal bacteria by the host. In 
this regard, TLR4 expression was reported to be elevated 
in colonic tissue of  UC and CD patients[47], and TLR4 
polymorphisms at Asp299Gly and Thr399Ile have been 
linked to the development of  both CD and UC[78,79]. It 
was also shown that TLR2 activity was increased in a 
mouse model of  colitis[80]. The presence of  high titers of  
flagellin-specific antibodies in the serum of  CD patients 
raises the possibility that flagellin from commensal bacteria 
might trigger an improper immune response in the GI 
mucosa through TLR5[81,82] and that TLR5 may also play 
an important role in the pathogenesis of  IBD. In addition, 
as discussed above, intestinal myofibroblasts express TLR2 
and TLR4 and respond to LPS and LTA stimulation, and 
have been implicated in the development of  CD-associated 
fibrosis[60]. Moreover, PPARγ was found to be decreased 
in intestinal epithelial tissue of  UC patients[67]. Thus, TLR 
mutations and dysregulation are likely major contributing 
factors in the predisposition and perpetuation of  IBD.

More recently, it has been shown that TLRs may 
contribute to the pathogenesis of  IBD in conjunction 
with another family of  PRRs termed nucleotide-binding 
oligomerization domain proteins (Nod). Specific genetic 
variations in Nod2 have been strongly linked to the 
development of  CD[83,84] and to excessive NF-κB activity[85]. 
Interestingly, the Nod2 variations may also have a direct 
effect on TLR-mediated control of  intestinal inflammation. 
In IEC from Nod2-variant patients, TLR2 stimulation led 
to excessive production of  both pro-inflammatory and Th1 
cytokines[15,86,87]. These cytokines are heavily involved in 
the pathogenesis of  IBD[77]. It appears that the association 
between Nod2 and TLRs seen in normal intestinal tissue[88] 
is important for intestinal homeostasis. Alteration of  
this association by genetic variation in Nod2 leads to the 
development of  chronic intestinal inflammation. Further 
exploration into how Nod2 mutations affect TLR function 
will undoubtedly shed light on novel interactions between 
Nod1/2 and TLRs in the GI mucosa.
  
TLRs AND HEL ICOBACTER PYLORI 
INFECTION 
Helicobacter pylori (H pylori) is a Gram-negative bacterium 
that colonizes the gastric mucosa and causes chronic 
gastritis and gastric ulcers. The bacterium adheres strongly 
to the surface of  gastric epithelial cells (GEC) without 
actually invading them[89,90]. As is the case with IBD, the 
host inflammatory response to H pylori infection directly 

contributes to disease pathogenesis[91]. Although the 
host mounts a strong specific immune response to the 
pathogen, this response is for the most part ineffective[92]. 
H pylori infection is relatively common worldwide, yet 
less than one quarter of  infected individuals progress to 
disease[93]. Whether or not an individual proceeds to a 
disease state might be influenced by any combination of  
host, bacterial and environmental factors.

Because of  the clinical significance of  H pylori infec-
tion, the interaction between TLR and H pylori is probably 
the most extensively studied. Since the first step in H pylori 
infection is the adherence to GEC by the bacterium, it is 
logical to postulate that TLRs would play a role in H py-
lori detection, as well as the subsequent mounting of  the 
deleterious cellular and inflammatory immune response. 
Despite extensive studies on this subject, as yet there is 
no clear consensus as to which TLR(s) is involved in the 
detection of  H pylori by GEC. Several groups have shown 
the apical and basolateral expression of  TLR4 in H pylori-
infected GEC[94,95]. TLR5 and TLR9 were also expressed 
both apically and basolaterally in the GEC of  healthy indi-
viduals, but the apical expression of  these TLRs was lost 
in H pylori-induced gastritis[95]. GEC expression of  TLR2, 
another important receptor for bacterial PAMPs, has yet to 
be fully characterized.

Several studies have suggested that TLR4 may play an 
important role in the recognition of  H pylori infection by 
gastric mucosa[94,96] as TLR4 and MD-2 expression, as well 
as responsiveness to H pylori LPS stimulation, in gastric 
biopsy samples of  patients with H pylori infection were up-
regulated[94]. However, others have reported that the detec-
tion of  H pylori by primary GEC is TLR4-independent[97]. 
Interestingly, Smith et al[98] found that the gastric epithelium 
recognizes H pylori LPS through TLR2 rather than TLR4, 
suggesting the possible disassociation between the up-
regulation of  TLR4 and the pro-inflammatory potential of  
H pylori LPS. Similarly, Mandell et al[99] showed that whole 
H pylori elicited an immune response through TLR2, not 
TLR4, in mice. These findings are not entirely surprising 
since it has been long recognized that H pylori LPS does 
not share all the characteristics of  other Gram-negative GI 
bacteria.

Although H pylori flagellin was initially shown to be able 
to interact with TLR5[100], more recent studies have found 
that TLR5 was unresponsive to H pylori flagellin, suggest-
ing the low immunogenicity of  this molecule[101-103]. An-
derson-Nissen et al[101] have recently mapped low TLR5 re-
sponsiveness to a specific area of  the amino acid sequence 
in the H pylori flagellin. Introduction of  this sequence into 
Salmonella flagellin renders the new construct devoid of  all 
TLR5-activating activity[101]. Thus, it is possible that H pylori 
uses TLR5 evasion to avoid immune detection. The ability 
of  H pylori to induce chronic and persistent gastric inflam-
mation suggests that PAMP(s) other than flagellin may be 
involved in the pathogenesis of  the infection. Indeed, Tak-
enaka et al[104] have shown that H pylori heat shock protein 
(HSP) 60 is able to activate TLR2 and TLR4 and increase 
NF-κB activity and IL-8 production in GEC. 

Evidently, there is still much to be discovered regarding 
the interactions of  H pylori with TLRs in the gastric 
epithelium. While it is likely that host factors in the 
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immune response might play a role in disease pathogenesis, 
there does not appear to be any evidence in the literature 
demonstrating an association between genetic variation 
in TLRs and H pylori disease progression, as is the case in 
IBD.
 
TLRs AND INFECTIONS WITH INTESTINAL 
BACTERIA
Despite a relatively large amount of  information available 
concerning the roles of  TLRs in the GI tract, there is 
surprisingly little data showing the actual in vivo role for 
TLRs in combating enteric pathogens. The obvious 
assumption is that invasive pathogens expressing known 
bioactive PAMPs will trigger a TLR-mediated immune 
response upon invasion of  the IEC barrier. However, 
in vivo models of  this scenario are scarce. Of  the most 
common enteric pathogens, the interplay between TLRs 
and S typhimurium has been most extensively studied.

Invasion of  IEC by S typhimurium leads to bacterial 
replication in intracellular vacuoles, localized inflammation, 
and lysis of  infected cells. Several TLRs (TLR2, TLR4 
and TLR5) appear to play a crucial role in the host 
defense against S typhimurium infection. Allelic variation 
in chicken TLR4 has been linked to the susceptibility 
to S typhimurium[105]. Studies of  systemic S typhimurium 
infection in TLR4-deficient mice have also shown an 
important role for TLR4 in controlling the infection, 
TNF-α and chemokine production, and cellular immune 
responses[106-108]. Moreover, results from several recent 
studies have implicated TLR4 in the immediate detection 
of  S typhimurium and early macrophage responses, and 
TLR2 as a key player in late responses after cellular 
invasion and intracellular replication have occurred[109,110].

S typhimurium flagellin induces a strong, TLR5-mediated 
inflammatory response in IEC[55,59]. Interestingly, this 
phenomenon does not require cellular invasion; adherence 
to IEC is sufficient[55,58,111]. The fact that IECs do not 
express TLR5 on the apical membrane[55,58] implies that S 
typhimurium actually has to translocate flagellin molecules 
through IEC to the basolateral membrane where TLR5 is 
expressed[55,58,59]. This process is dependent on the presence 
of  S typhimurium pathogenicity island 2 (SPI2)[59,112], and 
probably also S typhimurium guanine nucleotide exchange 
factor, SopE2[113]. Therefore, it appears that the interplay 
between TLR5 and S typhimurium flagellin is a major 
determinant in the host response to IEC infection and 
the clinical outcome of  the infection. Indeed, Sebastiani 
et al[114] linked the murine TLR5 gene to an S typhimurium 
susceptibility locus, and showed that susceptible mice 
expressed decreased levels of  TLR5. Also, Zeng et al[115] 
found that S typhimurium strains lacking flagellin expression 
induced minimal inflammatory responses, suggesting that 
flagellin is the primary cause of  inflammation in enteric S 
typhimurium infection.

The impor tant ro le of  TLRs in the immuno-
pathogenesis of  Salmonella infection is further verified 
in infection with S typhi, the etiological agent of  typhoid 
fever. Unlike S typhimurium, S typhi infection fails to 
induce IL-8 production or neutrophil recruitment to the 
intestinal epithelium that is characteristic of  S typhimurium 

infection, thereby allowing the systematical dissemination 
of  the infection. It has been suggested that the ability 
of  the S typhi capsular antigen (Vi, a virulence factor not 
expressed in S typhimurium) to inhibit the TLR4 and TLR5 
response to the infection may partially contribute to its 
pathogenesis[116]. 

The role of  TLRs in the pathogenesis of  and immunity 
to other enteric bacterial infections remains largely 
unexplored. Recognition of  LPS by TLR4 is unlikely to be 
a major contributing factor in diarrheagenic E coli infection 
because lipid A, the structure within LPS which activates 
TLR4, is highly conserved, and is therefore common to 
both pathogenic strains and non-pathogenic commensal 
strains of  E coli. Although the O antigen of  E coli LPS 
is more variant between strains, this antigen does not 
activate TLR4[75]. In addition, commensal bacteria-derived 
LPS is known to induce the intracellular relocalization 
of  TLR4 in IEC[51]. It is, therefore, reasonable to assume 
that IECs do not react to LPS from E coli adhered to the 
outer apical membrane of  the cell. However, other E 
coli PAMPs may play a role in the up-regulation of  TLR 
activities in IEC. In this regard, it has been shown that 
flagellin from several strains of  pathogenic E coli can 
induce NF-κB activation and IL-8 production through 
TLR5[117-119]. In addition, it has recently been shown that 
aggregative adherence fimbriae (AAF), an EAEC virulence 
factor, is involved in cell adhesion and contribute to 
inflammation and IL-8 production in IEC[120], although 
it is unclear whether this effect is TLR-mediated. Since 
both Porphymonas gingivalis fimbriae and E coli P fimbriae, a 
virulence factor in uropathogenic E coli, can activate TLR2 
and/or TLR4[20,22,121,122], it is possible that the inflammatory 
response induced by EAEC AAF is mediated through 
TLR recognition as well. Furthermore, it has been shown 
that the E coli type II heat-labile (LT-II) enterotoxin, 
expressed by ETEC, activates TLR2 via its B subunit[21]. 

Campylobacter jejuni infection is one of  the most 
common causes of  food-born gastroenter i t i s. C 
jejuni infection leads to adhesion to IEC, followed by 
cellular damage due to invasion, toxins and excessive 
inflammation[123,124]. Infection of  IEC by C jejuni leads 
to an enhanced IL-8 production, which is dependent on 
bacterial adhesion to IEC[125]. However, it is not known 
whether this inflammatory response is TLR-mediated and, 
if  so, which TLR(s) and ligand(s) are involved. Studies of  
TLR4 and CD14 polymorphisms commonly associated 
with susceptibility to other infections showed no link to 
C jejuni infection or disease progression, suggesting that 
TLR4 does not play a role in the immune response to this 
pathogen. Moreover, C jejuni flagellin failed to stimulate 
TLR5[101,125], as it possesses the same site-specific mutations 
as H pylori that allow it to avoid TLR5 recognition[101]. One 
possible candidate for the induction of  the inflammatory 
responses seen in the above study could be C jejuni 
fimbriae, as is the case with the fimbriae of  other bacterial 
species[20,22,121,122]. However, it remains controversial 
whether C jejuni expresses any sort of  fimbriae[126,127]. 

Shigella flexneri , the causative agent of  dysentery, is 
able to survive in a highly acidic environment such as the 
stomach. As a result, a relatively low dose of  S flexneri can 
initiate an intestinal infection[128]. S flexneri lipoproteins 
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can activate TLR2 in non-intestinal epithelial cell lines[129], 
but TLR2 reactivity to S flexneri lipoproteins in IEC 
remains to be demonstrated. The ability of  S flexneri to 
invade IEC plays an important role in the induction of  
inflammation[130]. Cellular invasion by S flexneri induces 
NF-κB activation and IL-8 production in both IEC and 
non-intestinal epithelial cells[130-133]. However, this response 
appears to be independent of  TLR and MyD88, and is 
mediated by Nod1[132]. Some clinical isolates of  S flexneri 
have been shown to express a type I fimbriae[134], which 
could potentially be detected by TLRs similar to fimbriae 
of  other enteric bacteria[20,22,121,122].

TLRs AND INTESTINAL VIRAL INFECTIONS
Viral infection in the GI tract can lead to invasion and 
destruction of  IEC and gastrointestinal inflammation. In 
most cases, an individual becomes immune to reinfection, 
suggesting that an effective adaptive immune response 
occurs in viral gastroenteritis[135]. Although it has been 
proposed that TLR3, TLR7 and TLR8 are likely to play a 
major role in sensing the viral infection in the GI tract and 
initiating an effective mucosal immune response, there is 
little published evidence to support this notion. The four 
most common viruses associated with viral gastroenteritis 
are rotavirus, calicivirus, astrovirus and adenovirus 
(serotype 40, 41). Of  these, only rotavirus infection of  
IEC has been examined for TLR involvement. It appears 
that extracellular TLR3 was not involved in the response 
to rotavirus dsRNA since dendritic cells pretreated with 
TLR3-blocking antibodies, thereby blocking the surface 
TLR3, remained responsive to rotavirus dsRNA[136]. 
Because viruses are intracellular pathogens, the viral 
genetic material is more likely to be exposed after invasion 
of  the cell. Indeed, intracellular expression of  TLR3 has 
been demonstrated in several cell types[136-138]. However, 
studies on TLR3-deficient mice showed that responses 
to infection by reovirus, a dsRNA virus which is known 
to infect the gastrointestinal epithelium, were TLR3-
independent[26]. Therefore, it seems that despite its 
constitutive expression in IEC[44], TLR3 may not play an 
important role in the host defense against GI infection by 
dsRNA viruses.

The role of  TLR7 and TLR8 in the GI infection with 
ssRNA viruses, such as calicivirus, has not been directly 
investigated, despite the importance of  these TLRs in 
the recognition of  ssRNA viruses. It is worth noting 
that of  the four major types of  viral gastroenteritis, 
calicivirus infection tends to occur equally in adults and 
children, whereas infections with rotavirus, astrovirus 
and adenovirus are mostly seen in children. Glass  
et al[135] suggested that this could be caused by short-lived 
immunity to calicivirus or because of  antigenic variation, 
rendering the adaptive immune response less effective in 
the face of  future infection. If  the former is the case, it 
would be interesting to know if  the short-lived immune 
response could be attributed to a unique property of  TLR7 
and/or TLR8-mediated detection of  calicivirus in IEC, 
compared to detection of  the other three dsRNA viruses. 

TLRs IN PARASITIC GASTROINTESTINAL 
INFECTION 
Despite the high incidence and economic significance 
of  parasitic GI infections, particularly in the developing 
countries, there is very limited information in literature 
on the role of  TLRs in the parasitic GI infection, with 
the exception of  E histolytica infection. E histolytica can be 
ingested with contaminated food or water, and colonize the 
colon. The infection can sometimes remain asymptomatic, 
but can also cause diarrhea, vomiting and ulcers. Studies 
performed prior to the discovery of  TLRs showed that E 
histolytica infection induced neutrophil influx into the site 
of  infection[139,140] in mice and IL-8 production in IEC lines 
as well as in human IEC xenografted into immunodeficient 
mice[141,142]. In the IEC cell line, the IL-8 response was 
contact-independent, and presumably mediated by E 
histolytica soluble factors[142]. It has recently been shown that 
E histolytica lipopeptidophosphoglycan (LPPG) induces 
TLR2- and TLR4-dependent IL-8 production in human 
kidney cell lines and monocytes[33,34]. These studies also 
suggest that LPPG might be a novel PAMP, and the factor 
responsible for induction of  IL-8 and the neutrophil 
response seen in previous studies of  E histolytica infection.

CONCLUSION AND PROSPECTIVE
Emerging experimental and clinical evidence have shown 
that TLR expression and activation are specially regulated 
in the GI tract, probably due to its unique environment 
(the presence of  commensal microflora and the exposure 
to invading pathogens). This is mainly accomplished by: 
(1) the down-regulation of  surface expression of  TLRs 
by the gut epithelium; (2) the specific tissue distribution 
and compartmentalization of  TLR-expressing cells in 
the gut; and (3) the high expression of  TLR-antagonists/
attenuating factors that suppress the activation of  these 
TLRs still present at the cell surface. These mechanisms 
render the GI mucosa able to avoid unnecessary TLR 
activation to commensal microflora yet retain the ability to 
detect and mount rapid and efficient immunity against the 
invasion of  pathogens. 

TLRs are expressed by both epithelial and non-
epithelial cells throughout the entire GI tract. The unique 
patterns of  cellular localization and tissue distribution of  
TLRs in GI tract allow the host to differentiate between 
commensal non-pathogenic and pathogenic microbes. 
Recent studies strongly suggest that dysfunction or 
dysregulation of  TLR expression and activation in IEC 
is one of  the underlying mechanisms leading to the 
development of  IBD. Although there is little doubt now 
that TLRs play important roles in both the predisposition 
and perturbation of  IBD, caution must be exercised in 
the interpretation of  the clinical and experimental data on 
TLR studies because it remains to be determined whether 
the TLR dysregulation seen in patients with IBD is the 
pathological consequence or the underlying cause of  the 
chronic inflammation. In addition, conflicting results have 
been reported in regard to the TLR4 activity[80], and the 
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expression of  some TLRs by IEC was found unchanged 
(TLR9) in patients with IBD[47,61]. This is hardly surprising 
and probably reflects the complexity of  the nature of  
the disease, the diversified patient populations, and the 
different research approaches employed.

Despite the demonstrated roles of  TLRs in host 
defense against many microbial infections, there is 
surprisingly little data on the actual in vivo role for TLRs in 
combating GI pathogens, particularly in viral and parasitic 
infections. For bacterial pathogens, although the interaction 
between H pylori and GEC has been extensively studied, 
there is no clear consensus as to which TLR(s) is involved 
in the recognition of  H pylori by the host, or the role of  
TLRs in the pathogenesis of  H pylori-induced gastritis 
and gastric ulcer. S typhimurium is another well-studied GI 
pathogen although many studies regarding the interaction 
between TLR and this pathogen were conducted in animal 
models where the infection was initiated by systemic 
injection rather than the natural GI route. In this regard, 
studies on systemic and respiratory infections have shown 
that the requirement of  different subtypes of  TLRs in 
host defense against microbes appears to be dependent on 
the type of  pathogen, the route of  infection, and the initial 
dose of  infection[143-145]. 

Many virulent strains of  pathogens have evolved 
multiple mechanisms to evade recognition by TLRs. In this 
regard, a new family of  PRRs, the NACHT-LRRs (NLRs), 
which include both nucleotide-binding oligomerization 
domains (NODs) and NALPs [NACHT-, LRR- and pyrin 
domain (PYD)-containing proteins], has been recently 
identified and implicated in the recognition of  bacterial 
components in the cytosol[146]. It has been suggested that 
the Nod family of  proteins is a major contributor to innate 
immunity in IEC when TLR activity is attenuated[147-149]. 
The intracellular location of  NODs allows the detection 
of  invasive pathogens in a similar fashion to intracellular 
or basolateral TLR expression (Figure 1). In addition, 

Nod1/2 can activate NF-κB through a different signaling 
pathway from TLRs[150-152], thus rendering them functional 
even in the presence of  TLR-attenuating factors such as 
TOLLIP and TIR8/SIGGIR that are highly expressed in 
IEC. Furthermore, Nod1/2 can positively influence TLR 
activity[15,88,153], and may contribute to the pathogenesis 
of  IBD in conjunction with TLRs. The discovery of  the 
NLR family definitely adds further complexities to the 
host immune regulation but is also likely to shed new 
insights into the pathogenesis of  GI disorders and provide 
additional opportunities for the development of  novel 
immunotherapeutic strategies.

TLRs were discovered relatively recently, and their 
involvement in health and diseases of  the GI tract remains 
a new and exciting field of  study. Future work in this 
field will lead to a better understanding of  the unique 
mechanisms involved in the fine balance between tolerance 
and immune response. An array of  new treatment options 
for IBD, H pylori infection, and other GI disorders could 
involve tissue-specific suppression of  TLR signaling 
pathways by either chemical means, introduction of  natural 
TLR suppressors and antagonists such as PPARγ, or use of  
gene therapy to correct TLR gene defects. In this regard, 
further exploration of  the recently characterized negative 
regulatory mechanisms, that have evolved to attenuate TLR 
signaling by the host, may be fruitful for the development 
of  new generation of  more effective immunotherapeutic 
agents for the treatment of  GI disorders.
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