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INTRODUCTION
The gastrointestinal tract is in charge of  handling the 
complex issues of  nutrient, electrolyte and fluid absorption 
and the secretion of  excess electrolytes and fluids. Body 
calcium homeostasis is regulated by the PTH and vitamin 
D feedback loop; additionally calcium plays a key role in 
many other mechanisms like intracellular signaling, cell 
differentiation, bone metabolism, etc. After identifying 
the calcium sensing receptor in several different tissues 
many studies were undertaken to characterize the role 
of  extracellular calcium as a first messenger and the 
receptor as a calcium sensor of  the cell. Ca2+-sensing 
receptor transcripts and/or protein are expressed in the 
gastrointestinal tracts of  fish[1], birds[2], amphibia[3,4] and 
mammals[5-10] including the human[5,11,12]. Tracings of  the 
expression of  the receptor in the gastrointestinal tract 
shows that the receptor goes back in evolution at least as 
far as cartilaginous fish (elasmobranchs), e.g., the dogfish 
shark[1]. In both cartilaginous and bony fish, the Ca2+-
sensing receptor has been shown to be expressed on apical 
surfaces of  stomach and intestine[1]. More recent evidence 
suggests that the Ca2+-sensing receptor may have evolved 
in the early marine environment in order to support osmo-
adaptation. This notion is supported by the more general 
expression of  the Ca2+-sensing receptor in many other 
tissues outside the gastrointestinal tract that are involved 
in mono-and divalent ion transport both into and out 
of  fish that live in a seawater environment that is rich in 
divalent minerals and sodium chloride[1,13]. This theme of  
the Ca2+-sensing receptor linking divalent and monovalent 
metabolism is echoed in mammals (e.g., effects of  the 
receptor on fluid transport by the colon; discussed later in 
this review). 

In the amphibian, Necturus maculosus, Ca2+-sensing 
receptor expression was detected on the basal surface 
of  gastric epithelial cells[3]. Wherease in contrast the frog 
stomach, shows expression of  the Ca2+-sensing receptor 
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Abstract
Calcium is an essential ion in both marine and terrestrial 
organisms, where it plays a crucial role in processes 
ranging from the formation and maintenance of the 
skeleton to the regulation of neuronal function. The Ca2+ 
balance is maintained by three organ systems, including 
the gastrointestinal tract, bone and kidney.

Since first being cloned in 1993 the Ca2+-sensing 
receptor has been expressed a long the ent i re 
gastrointestinal tract, until now the exact function is 
only partly elucidated. As of this date it still remains to 
be determined if the Ca2+-sensing receptor is involved in 
calcium handling by the gastrointestinal tract. However, 
there are few studies showing physiological effects of the 
Ca2+-sensing receptor on gastric acid secretion and fluid 
transport in the colon. In addition, polyamines and amino 
acids have been shown to activate the Ca2+-sensing 
receptor and also act as allosteric modifiers to signal 
nutrient availability to intestinal epithelial cells. Activation 
of the colonic Ca2+-sensing receptor can abrogate cyclic 
nucleotide-mediated fluid secretion suggesting a role 
of the receptor in modifying secretory diarrheas like 
cholera. For many cell types changes in extracellular 
Ca2+ concentration can switch the cellular behavior from 
proliferation to terminal differentiation or quiescence. As 
cancer remains predominantly a disease of disordered 
balance between prol i ferat ion, terminat ion and 
apoptosis, disruption in the function of the Ca2+-sensing 
receptor may contribute to the progression of neoplastic 
disease. Loss of the growth suppressing effects of 
elevated extracellular Ca2+ have been demonstrated in 
colon carcinoma, and have been correlated with changes 
in the level of CaSR expression.
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on the apical membranes of  acid-secreting oxyntic cells[4]. 
In the chicken, Gallus domesticus, the receptor was detected 
in the duodenum[2]. In mammals, a more complete 
exploration of  Ca2+-sensing receptor expression along the 
gastrointestinal tract has been performed[5-10,12]. Receptor 
transcripts and/or protein have been detected in: stomach, 
small intestinal, and colonic mucosal epithelia, as well as 
the underlying neural plexuses of  Meissner and Auerbach. 
In addition, Ca2+-sensing receptor expression has also been 
shown in several human intestinal cell lines (T84, HT-29, 
Caco-2, FET, SW480, MOSER and CBS;[8,14,15] in addition 
to primary cultures of  human gastric mucosa and human 
parietal cells[11,16,17].

In mammalian stomach, the Ca2+-sensing receptor has 
been identified on both apical and basolateral membranes 
of  human G-cells (gastrin secreting cells;[16,17]) and mucous 
secreting cells[11] and on the basolateral membranes of  
parietal cells [4,6,18]. In small intestine, both apical and 
basolateral membranes of  villus cells express the Ca2+-
sensing receptor[7]. In rat colon the receptor is expressed 
on both apical and basolateral membranes of  surface and 
crypt epithelial cells[5,7]. A similar pattern of  Ca2+-sensing 
receptor immunostaining in rat was observed in both 
proximal and distal colon[5]. In the human large intestine, 
Ca2+-sensing receptor has also been identified on both 
apical and basolateral membranes of  crypts as well as in 
certain enteroendocrine cells at the base of  crypts[7,12]. 

Calcium in the stomach 
Overview 
To produce the l a rg e quant i t i e s o f  0 .16 mol/L 
hydrochloric acid required for digestion of  ingested food, 
the mammalian stomach has employed a complex series 
of  neuronal, hormonal and/or paracrine[19]/autocrine 
feedback regulatory mechanisms[19-22] allowing for the 
continued production of  acid. A model of  acid secretion 
by the parietal cell is shown in Figure 1 summarizing data 
from many different studies[19,21-24]. Following stimulation, 

the H+, K+-ATPase (proton pump) is trafficked to the 
apical surface and is responsible for vectorial transport of  
protons[20-22,25-27]. Once at the membrane protons combine 
with secreted Cl- ions to produce the concentrated acid. 
With the generation of  a proton gradient enzymes such 
as pepsinogen are secreted into the lumen of  the gland 
where they combine with the secreted acid and move from 
the gland into the interior of  the stomach providing an 
effective solution that is capable of  digesting proteins and 
processing them for amino acid or peptide reabsorption in 
the intestine.

The common model of  acid secretion (Figures 1 
and 2) involves stimulation of  the gastric glands via 
either neuronal or hormonal pathways which results in 
the release of  gastrin, which in turn acts directly on the 
endocrine (ECL) cells of  the gland. Following stimulation 
ECL cells secrete histamine causing the parietal cell to 
insert proton pumps (H+, K+-ATPase) into the apical pole 
of  the gland[28] which occurs via an active tubular-vesicular 
insertion mechanism that is used to transport H+, K+-
ATPases into the apical region of  the parietal cell[26]. In 
conjunction with pump insertion activation of  an apical 
K+ channel(s) provides K+ ions that act as the counter ion 
and exchange with H+ on the pump[20,21,23,29] (Figure 1) to 
sustain acid secretion. In addition to cation secretion an 
additional action of  histamine release is to activate and/
or insert Cl- channels into the apical membranes of  the 
parietal cells which mediate Cl- secretion that accompanies 
H+ secretion[20,30,31] (Figure 1). Thus the entire acid secretory 
process relies on: (1) insertion of  H+, K+-ATPase into the 
apical surface for H+ secretion; (2) concurrent activation 
of  apical Cl- channels mediating Cl- secretion which allows 
for the formation of  HCl; and (3) activation of  apical K+ 
channel(s) for K+ recycling to the lumen of  the gland and 
thereby providing the counter cation K+ to maintain H+, 
K+-ATPase activity. 
    Loss of  feedback control of  acid (HCl) secretion in the 
stomach causes symptoms ranging from mild heartburn, 
to lesions and ulcerations of  the gastric mucosa[19,32]. Left 
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Figure 1  Simplified model of the parietal cell showing the current mechanisms 
involved in acid secretion in comparison to a resting cell. The Ca2+-sensing 
receptor (CaSR) and the histamine receptor are located on the basolateral 
membrane. HCl secretion is mediated by H+ extrusion via the H+,K+-ATPase 
coupled with Cl- secretion via an apical channel. Activation of the CaSR causes 
acid secretion via the H+, K+-ATPase.
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Figure 2  Schematic of acid secretion. A: Classically defined pathway of acid 
secretion: Gastrin released from the G cell binds to receptors on the ECL cell 
causing histamine release from the ECL cell. The histamine binds to receptors on 
the parietal cell and stimulates proton efflux; B: Modified model of acid secretion 
involving a functional CaSR on the basolateral membrane of both the G cell and 
parietal cell. Acid secretion can be activated directly by the CaSR on the parietal 
cell or via the G cell pathway.
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untreated gastric ulcers can lead to abdominal bleeding, 
hyperplasia of  cells, and potentially tumor formation. The 
complexity of  the tissue due to the mixed collection of  cell 
types, as well an additional layer of  surface cells (secreting 
a protective mucous gel layer rich in bicarbonate) has 
prevented a complete analysis of  glandular cell function 
and the associated feedback loops.

Role of the Ca2+-sensing receptor in acid secretion 
Following hormonal or neuronal stimulation there is a 
transient rise in intracellular Ca2+ concurrent with the onset 
of  acid secretion in the gastric gland[19,20,22,33], this process 
has been associated with activation of  pump translocation 
to the apical pole of  the cell , and the associated secretion 
of  acid[34]. Following this stimulatory period intracellular 
Ca2+ levels fall, and acid secretion diminishes to basal 
levels.

Activation of  basolateral CaSR in Necturus gastric 
antrum by elevating extracellular Ca2+, or using other 
receptor agonists like NPS-467, or neomycin resulted 
in a rapid hyperpolarization and a decrease in resistance 
of  the basolateral membrane. Circuit analysis of  these 
data suggested that these electrophysiological effects 
were due to activation of  a basolateral K+ channel(s)[3]. 
In rat stomach elevating extracellular Ca2+ leads to a 
rapid increase in intracellular Ca2+ in parietal cells which 
can occur in the absence of  conventional extracellular 
secretagogues (e.g. histamine;[6]). To confirm that this rise 
in Ca2+ was associated with activation of  the receptor, 
studies have been conducted using either the potent 
agonist Gd3+, or addition of  an allosteric modifier of  the 
receptor such as the amino acid phenylalanine which both 
lead to an increase in the rate of  acid secretion through the 
apical H+, K+-ATPase in the absence of  secretagogues[18,35]. 
Inactivation of  the Ca2+-sensing receptor by reducing 
extracellular divalent minerals can also down regulate acid 
secretion even in the presence of  potent secretagogues like 
histamine[18]. From the results of  these studies it has now 
become apparent that the Ca2+-sensing receptor (CaSR) 
plays an important regulatory role in acid secretion in 
mammalian gastric glands.

In addition to the animal studies on gastric glands, 
the CaSR has also been identified in human gastric 
tissues[11,16,17,36-38]. In the mucous epithelial cells, activation 
of  the receptor results in a rapid rise in intracellular Ca2+ 
as well as a proliferative response when the cells were 
placed in culture[11]. In G cells, stimulation of  the receptor 
results in gastrin release[16] accompanied by activation 
of  phospholipase C[16] and an increase in intracellular 
Ca2+[16,17]. The associated histamine release due to CaSR-
mediated secretion of  gastrin by G cells could account 
for rebound acid secretion that occurs following exposure 
to calcium containing antacids. All of  these data are 
consistent with the scheme that the CaSR in the stomach 
could play an important role in both acid secretion 
and in mucosal repair. Activation of  the receptor may 
act to modulate the rates of  acid secretion in response 
to total body calcium homeostasis. Should there be a 
deficiency in calcium receptor activation would increase 
acid secretion, or prolong acid secretion, thereby allow 
maximal ionization of  calcium from ingested foodstuffs 

and produce increased calcium delivery to the intestine. 
Increased intestinal calcium will activate the CaSR on 
the apical surface of  the cells and result in inhibition of  
fluid secretion and enhanced absorption of  the delivered 
Ca2+. Over time as serum calcium rises, gastric CaSR 
would either become internalized, or deactivated, leading 
to a down regulation in acid secretion. In patients with 
Zollinger-Ellison syndrome (ZES; characterized by ulcer 
disease of  the upper gastrointestinal tract, increased 
gastrin secretion, and non-β-cell tumors of  the pancreas, 
i.e., gastrinomas), gastrin secretion and serum levels appear 
to correlate with the activity of  the frequently associated 
hyperparathyroidism. This result would be consistent with 
gastrin secretion paralleling high PTH-driven elevations in 
plasma Ca2+. Significant albeit variable, CaSR expression 
has been detected in human gastrinomas[37,38], suggesting 
that the receptor could mediate the effect of  extracellular 
Ca2+ on gastrin secretion. Consistent with this explanation, 
activation of  CaSR by raising extracellular Ca2+ increased 
rapidly intracellular Ca2+ that was not altered by the Ca2+ 

channel blocker, nifedipine[38]. 

Calcium in the intestine 
Overview 
The Ca2+-sensing receptor is expressed in epithelial cells 
along the entire small and large intestine, but only in colon 
has the receptor been studied in sufficient detail to permit 
comment on potential roles in normal intestinal function, 
in diarrheal states, and the effect of  oral Ca2+ intake on 
reducing the risk of  colon cancer. The expression of  
CaSR in nerve plexi involved in smooth muscle function 
and coordination, however, suggests a potential role 
in modulating intestinal motility. The latter could be 
important in coordinating food delivery (Ca2+, amino 
acids, polyamines) and modulating intestinal motility to 
maximize nutrient absorption. In addition, an effect of  
CaSR activation on intestinal motility may be one factor 
contributing to the constipation that is associated with 
hypercalcemic states. 

Calcium modulates fluid transport in the colon 
The primary function of  the colon is to both absorb 
and secrete fluid and thereby maintain normal salt and 
water homeostasis. The colon is a complex epithelium 
that consists of  both extensive invaginations of  the 
surface which are designated as crypts which make 
up approximately 90% of  the epithelial mass and the 
remaining 10% being surface cells. Although earlier studies 
suggested that only surface cells absorb and only crypt 
cells secrete fluid into the lumen of  the colon, recent 
evidence has established that both surface and crypt cells 
absorb and secrete fluid (see review for details;[39]). As over 
90% of  the colonic epithelial surface area is occupied by 
invaginations or crypts, these structures constitute the 
major functional unit of  the colonic epithelium[40, 41]. 

The direction of  net fluid transport is determined by 
the relative magnitudes of  the absorptive and secretory 
fluxes. Under basal conditions (absence of  hormones, 
drugs or other factors), net fluid transport by crypts is 
absorptive[42]. However, colonic crypts alter the direction 
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of  net fluid transport to secretion upon exposure to cell 
permeable cyclic AMP analogues, (forskolin, or other 
agents that activate adenylate cyclase), or modulators 
of  cyclic AMP metabolism such as phosphodiesterase 
(PDE) inhibitors[42]. Addition of  cyclic AMP-generating 
hor mones/fac tors l ike 5-hydroxyt r yptophan or 
prostaglandin E2 to the blood/interstitial surface of  
the crypt will also increases fluid secretion by colonic 
crypts[40,41]. Modulation of  these fluid transport processes 
in the colon by cyclic AMP can result in profound fluid 
and electrolyte losses with associated secretory diarrheas, 
as is the case during cholera exposure (Figure 3)[40].

Some previous physiological studies in rats, measuring 
Ca2+ fluxes in isolated colonic mucosa suggested that 
the colon had the capacity to respond to changes in 
extracellular Ca2+. For example, the colon, as is true for the 
small intestine, can absorb and secrete Ca2+ in response 
to changes in extracellular Ca2+ as well as in levels of  1, 
25-dihydroxy vitamin D3[43-45]. These latter observations 
indicate that colonic mucosal epithelium per se is equipped 
with a Ca2+-sensing mechanism. Recent studies have 
suggested that this divalent mineral sensing mechanism in 
colonic epithelia is the CaSR, based on immunolocalization 
of  the receptor in apical and basolateral membranes and 
receptor function assays[3,8,9,12].

The activation of  colonic CaSR by: Ca2+, Gd3+ or 
neomycin, leads to rapid rises in intracellular Ca2+ in both 
surface and crypt cells[5]. The elevation in intracellular Ca2+ 

occurs within a few seconds, consistent with activation 
of  the phosphatidylinositolphospholipase C-inositol 1, 
4, 5-trisphosphate (PI-PLC-IP3) pathway by G protein-
coupled cell membrane receptors. Ca2+-sensing receptor-
mediated increases in intracellular Ca2+ can be prevented 
by pre-treatment with U-73122, a specific inhibitor of  
phosphatidylinositolphospholipase C. This effect of  PLC 
inhibition demonstrated that intracellular Ca2+ transients 
induced by Ca2+-sensing receptor agonists were not the 
result of  altered entry of  extracellular Ca2+ into colonic 
epithelial cells but were rather due to receptor-mediated 
activation of  PI-PLC. The receptor-mediated increase in 
intracellular Ca2+ concentration in colon was shown to be 
due to the release of  Ca2+ from thapsigargin-sensitive cell 
stores[5].

The role of  CaSR in modulat ing colonic fluid 
movement has been examined in isolated perfused colonic 
crypts using an in vitro micro-perfusion technique[5,46]. 
Under basal conditions (i.e., in the absence of  forskolin, or 
other secretagogues), crypts exhibit net fluid absorption[47]. 
Following exposure to forskolin a net fluid secretion 
occurs[47]. Activation of  either luminal or basolateral CaSR 
by Ca2+ and/or spermine reverses the forskolin-stimulated 
fluid secretion[5,46]. Further studies will be necessary to fully 
define the mechanism of  CaSR effects on cyclic AMP-
mediated fluid secretion. However, based on information 
recently obtained from the effects of  CaSR activation 
on vasopressin-stimulated increases in cyclic AMP in the 
kidney thick ascending limb of  Henle[48,49], we postulate 
CaSR-mediated elevation in intracellular Ca2+ would 
activate Ca2+/calmodulin-sensitive phosphodiesterases that 
would metabolize intracellular cyclic AMP, and thereby 
abrogate fluid secretion (Figure 3).

Increasing the levels of  calcium on either the apical 
or basolateral membrane of  the intact colon in Ussing 
chambers or in isolated perfused crypts leads to a decrease 
in fluid secretion. This decrease remains even in the 
presence of  potent secretagogues such as forskolin; in fact 
there is enhanced absorption of  fluid in the continued 
presence of  potent secretagogues as long as the receptor 
remains activated[5,6]. In disease states or infectious states, 
fluid and electrolyte secretion can occur at pronounced 
levels and can cause dehydration and potentially death. 
By modulating the CaSR through increased delivery of  
calcium, or calcimimetic agents to the receptor, it appears 
possible that secretion could be stopped. This aspect of  
the CaSR could serve as an important new therapeutic 
target to modulate secretion and absorption of  electrolytes 
along the intestine and combat secretory disease states. 

POTENTIAL ROLES OF THE CaSR IN 
INTESTINAL EPITHELIAL CELL GROWTH 
AND DIFFERENTIATION AND NUTRIENT 
SENSING
Overview 
The epithelium of  the colon and the small intestine 
remains in a constant state of  renewal. In the colon cells 
proliferate and become differentiated as they migrate from 
the base of  the crypt towards the surface. Therefore cells 
at the base of  the crypt are highly proliferative but less 
differentiated, whereas cells along the surface of  the colon 
are highly differentiated and are in a non-proliferative 
state. Alterations of  this tightly regulated process may lead 
to the development of  hyperplastic events (polyps) and/
or tumors. A potential role for the Ca2+-sensing receptor 
in colonic epithelial cell proliferation, differentiation and 
development is suggested by the observations that receptor 

Figure 3  Cell model of proximal and distal colon. Shown are the known  transport 
proteins in absence or presence of mineralocorticoid stimulation and their  known 
inhibitors.
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activation reduces proliferation and induces differentiation 
of  a variety of  different cell types in addition to the 
intestinal epithelium. For example, activation of  CaSR 
enhances cell differentiation in both mouse [50,51] and 
human[52,53] keratinocytes[54]. Moreover, activation of  the 
Ca2+-sensing receptor in other cells modulates proliferation 
and inhibits apoptosis[55-57].

The Ca2+-sensing receptor responds not only to 
changes in divalent minerals but also to changes in organic 
nutrients (such as polyamines)[58] and amino acids[59,60]. 
Recently this effect was demonstrated in isolated rat gastric 
glands, whereby stimulation of  the Ca2+-sensing receptor 
by L-amino acids induced acid secretion in vitro[35]. In 
addition to activation of  CaSR, there is evidence that 
certain amino acids can stimulate gastric acid secretion via 
the system L-amino acid transporter [Kirchhoff] which 
illustrates an increased layer of  complexity in the process 
of  acid secretion. Organic nutrients function primarily by 
altering the EC50 of  the CaSR for Ca2+, although direct 
agonist effects have been demonstrated. These nutrients 
could potentially alter the conformational structure of  
the Ca2+-sensing receptor thereby enhancing the affinity 
for divalent ions and attenuating the cellular effects of  
receptor stimulation. The potential roles for these nutrients 
in coordinating protein and divalent mineral metabolism 
and in providing information on nutrient delivery to 
intestinal cells will be discussed in the following section. 

Role in intestinal cell growth and differentiation 
In small rodents such as rats and mice , dietary polyamine 
intake plays an essential role for normal gastrointestinal 
tract cell growth and development[61-65]. In humans, the 
postulated mechanisms for the pro-differentiation and 
anti-cancer effects of  dietary Ca2+/polyamines include: 
(1) formation of  insoluble salts of  Ca2+ with otherwise 
tumorigenic fatty acids and bile salts; and (2) modulation 
of  the rates and/or fates of  biologically active molecules 
such as nucleic acids, proteins and phospholipids[66-69]. 
The presence of  CaSR on the plasma membranes of  
both surface and crypt epithelial cells raises the intriguing 
possibility that this receptor could mediate some of  the 
dietary effects of  Ca2+, polyamines, and other nutrients on 
tissue modeling of  intestinal epithelia. 

Increases in polyamines, specifically spermine, 
results in the generation of  IP3, raises intracellular Ca2+, 
and modulates forskolin-stimulated fluid secretion, all 
consistent with activation of  the colonic epithelial CaSR[46]. 
Polyamine (spermine > spermidine > putrescine)-mediated 
augmentation of  intracellular IP3 and Ca2+ accumulation 
requires the presence of, and is potentiated by, extracellular 
Ca2+. The EC50 for Ca2+

o- mediated activation of  the 
CaSR was also reduced by polyamines[46]. These results 
demonstrate that the colonic epithelial CaSR also positively 
responds to polyamines.

In cultured intestinal cell lines, CaSR has been shown 
to increase E-cadherin and reduce β-catenin production 
which are markers for intestinal differentiation[14,70,71]. 
In Caco-2 cells expressing the CaSR activation of  this 
receptor by extracellular Ca 2+ increases thymidine 
incorporation into DNA as a marker of  cell proliferation[72]. 
Low concentrations of  extracellular Ca2+ cause a PKC-

dependent increase in c-myc protooncogene expression in 
Caco-2 cells and this pro-proliferative effect is abrogated 
by activation of  the CaSR by increasing concentrations 
of  extracellular Ca2+[15]. The CaSR in keratinocytes and 
certain other cells has been shown to alter proliferation/
differentiation and to modulate the activities of  MAP and 
tyrosine kinases associated with cell proliferation[50-52,57,72-77]. 
All of  these data, when taken together, support a potential 
role for the CaSR as a modulator of  cell proliferation and 
differentiation in intestinal epithelial cells. 

Role in colon cancer 
Ingestion of  high dietary Ca2+ promotes colonic mucosal 
epithelial cell differentiation, decreases cell growth, and 
reduces the risk for development of  colorectal cancer 
(see recent summaries[78,79] and[14,15,77,80,81] and review by 
Karen Roland Cell Calcium special issue). Cancer of  
the colon and rectum is the second most frequently 
diagnosed malignancy in the United States in addition to 
being the second most common cause of  cancer-related 
death (>56 000 American deaths this year). Observations 
that demonstrate that increases in dietary calcium reduce 
the risk of  developing colon adenomas are noteworthy. 
Specifically, by increasing dietary calcium intake there has 
been: (1) a reduced risk for colorectal cancer by three-
fold in men consuming 1400-1500 mg calcium per day, 
19 year prospective study of  men working at the Western 
Electric Co., Chicago[82]; (2) a significant reduction in 
colonic crypt cell proliferation and enhanced markers of  
cell differentiation in human subjects at increased risk 
for colon cancer[81,83,84]; (3) a reduced risk of  colorectal 
adenomas in humans[85] also see[86-89]; (4) decrease in the 
incidence and number of  carcinogen-induced colonic 
tumors in virtually all studies in rats, see[90] for a review; (5) 
significantly reduced recurrence of  colorectal adenomas 
in a randomized, double-blind trial of  930 subjects[85]; (6) 
long term calcium supplements significantly suppressed 
colonic cell proliferation in adenoma patients[80]. Activation 
of  the CaSR in human carcinoma cell lines by raising 
extracellular Ca2+ promotes E-cadherin expression 
while suppressing β-catenin activation[14], both markers 
of  cell differentiation[70,71]. In addition, there has also 
been a correlation between CaSR expression and the 
stage of  differentiation n human colon tumors[14]. These 
observations provide a significant body of  evidence that 
increases in dietary Ca2+ reduce the risk of  colon cancer 
and are mediated by activation of  the CaSR. 

Role of the receptor as a nutrient sensor 
The ability of  the CaSR to be activated by l-amino 
acids has been suggested as a link between protein and 
calcium metabolism[60]. This was suggested by the direct 
relationship between dietary protein intake and renal Ca2+ 

excretion[91,92]. A diet high in protein acutely increased 
urinary Ca2+ excretion[91,92] and a low protein intake induces 
elevated parathyroid hormone levels[93]. The increased 
urinary Ca2+ excretion associated with high protein intake 
appears due to elevations in intestinal Ca2+ absorption[91-93], 
although this has not been a universal finding[94]. As 
discussed in previous sections of  this review, activation of  
the CaSR by Ca2+ stimulates gastric acid secretion, which 
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in turn would promote acid digestion of  proteins (together 
with peptidases). The release of  l-amino acids would then 
promote Ca2+ absorption in small and large intestine by 
their synergistic activation of  the Ca2+-sensing receptor. 

In summary, Figure 4 presents a current summary 
of  the potential roles of  the CaSR in gastrointestinal 
biology. Because of  the unique properties of  the CaSR 
in recognizing and responding to extracellular Ca2+

o and 
nutrients, this receptor presents a potential mechanism 
linking dietary metabolism (i.e., food digestion and nutrient 
absorption) to: (1) nutrient availability for epithelial growth 
and differentiation; and (2) protein and divalent mineral 
metabolism; (3) dietary Ca2+ intake and the associated 
reduction in risk of  colon cancer; and (4) nutrient, salt 
and fluid homeostasis. In addition, the potential effects 
of  nutrient activation of  the CaSR on intestinal motility, 
coupled to the demonstrated reduction in fluid secretion, 
would increase nutrient-epithelial contact time and thereby 
enhance absorption. Finally, the potent ability of  CaSR 
agonists to abrogate cyclic AMP-mediated fluid secretion 
by the colon has important implications for development 
of  novel oral therapies of  cyclic nucleotide dependent 
diarrheas like cholera. 
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