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Abstract
Many epidemiological studies demonstrate that 
treatment with non-steroidal anti-inflammatory drugs 
(NSAIDs) reduce the incidence and mortality of certain 
malignancies, especially gastrointestinal cancer. The 
cyclooxygenase (COX) enzymes are well-known targets 
of NSAIDs. However, conventional NSAIDs  non-
selectively inhibit both the constitutive form COX-1, 
and the inducible form COX-2. Recent evidence 
indicates that COX-2 is an important molecular target 
for anticancer therapies. Its expression is undetectable 
in most normal tissues, and is highly induced by pro-
inflammatory cytokines, mitogens, tumor promoters and 
growth factors. It is now well-established that COX-2 
is chronically overexpressed in many premalignant, 
mal ignant , and metastast i c cancers , inc lud ing 
hepatocellular carcinoma (HCC). Overexpression of 
COX-2 in patients with HCC is generally higher in well-
differentiated HCCs compared with less-differentiated 
HCCs or h isto logica l ly normal l iver, suggest ing 
that COX-2 may be involved in the early stages of 
hepatocarcinogenesis, and increased expression of 
COX-2 in noncancerous liver tissue has been significantly 
associated with shorter disease-free survival in patients 
with HCC. 

In tumors, overexpression of COX-2 leads to an 
increase in prostaglandin (PG) levels, which affect 
many mechanisms involved in carcinogenesis, such as 
angiogenesis, inhibition of apoptosis, stimulation of 
cell growth as well as the invasiveness and metastatic 
potential of tumor cells. 

The availability of novel agents that selectively inhibit 
COX-2 (COXIB), has contributed to shedding light on the 
role of this molecule. Experimental studies on animal 
models of liver cancer have shown that NSAIDs, including 
both selective and non-selective COX-2 inhibitors, exert 

chemopreventive as well as therapeutic effects. However, 
the key mechanism by which COX-2 inhibitors affect HCC 
cell growth is as yet not fully understood. 

Increasing evidence suggests the involvement 
of molecular targets other than COX-2 in the anti-
proliferative effects of COX-2 selective inhibitors. 
Therefore, COX-inhibitors may use both COX-2-
dependent and COX-2-independent mechanisms to 
mediate their antitumor properties, although their 
relative contributions toward the in vivo  effects remain 
less clear. 

Here we review the features of COX enzymes, 
the ro le o f the express ion o f COX i so forms in 
hepatocarcinogenesis and the mechanisms by which 
they may contribute to HCC growth, the pharmacological 
properties of COX-2 selective inhibitors, the antitumor 
effects of COX inhibitors, and the rationale and feasibility 
of COX-2 inhibitors for the treatment of HCC.
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INTRODUCTION
Hepatocellular carcinoma is one of  the most common 
malignancies worldwide, accounting for approximately 6% 
of  all human cancers and 1 million deaths annually, with 
an estimated number of  new cases of  over 500 000 per 
year[1,2]. Although the clinical diagnosis and management of  
early-stage hepatocellular carcinoma (HCC) has improved 
significantly, HCC prognosis is still extremely poor and the 
cellular mechanisms contributing to hepatic carcinogenesis 
are relatively unknown. Therefore, investigating HCC 
pathogenesis and finding new diagnostic and treatment 
strategies is important.

Various r isk factors have been associated with 
HCC, such as hepatitis B (HBV) and hepatitis C (HCV) 
viral infections, alcohol consumption and aflatoxin B1 
(AFB1) intake. HBV and HCV infections are the most 
frequent underlying causes of  HCC. However, although 
a number of  experimental observations underline the 
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potential for viral products in contributing to hepatocyte 
transformation, only in a minority of  patients among 
the many suffering from chronic viral hepatitis and 
cirrhosis is there a neoplastic transformation in a given 
time lapse, suggesting that other co-oncogenic events are 
probably involved in the multistep process of  hepatocyte 
transformation in vivo. HCC development is in fact a 
complex process associated with an accumulation of  
genetic and epigenetic changes that pass through the steps 
of  initiation, promotion and progression.

Chronic inflammation is a recognized risk factor for 
carcinogenesis. Indeed it is thought to play a role in the 
pathogenesis of  several types of  cancers, such as cervical 
cancer, ovarian cancer, oesophageal adenocarcinoma, 
mesothelioma, colorectal cancer, lung cancer and also 
HCC[3]. The ability of  inflammation alone to cause 
malignancy is supported by the fact that other non-
viral, inflammatory diseases of  the liver such as alcoholic 
hepatitis, hemochromatosis, and primary biliary cirrhosis 
can also predispose to the development of  hepatocellular 
carcinoma. Therefore, hepatic inflammation, due to viral 
and also non-viral chronic liver diseases, may represent an 
early step in the development of  malignancy with genetic 
changes occurring as a later manifestation of  a prolonged 

(chronic) inflammatory process. Inflammatory-mediated 
events, such as the production of  cytokines, reactive 
oxygen species (ROS), and mediators of  the inflammatory 
pathway, such as cyclooxygenase-2 (COX-2), may therefore 
contribute to tumor formation. Recent evidence indicates 
that COX-2 is an important molecular target for anticancer 
therapies, and COX-2 inhibitors appear to have anticancer 
effects in different types of  malignancies.

Functions and structure of the 
cyclooxygenases
At least two distinct cyclooxygenases are present in 
humans, COX-1 and COX-2. COX enzymes, a lso 
referred to as prostaglandin H synthases, or prostaglandin 
endoperoxide synthases, are the rate-limiting enzymes 
that catalyze prostaglandin (PG) and thromboxane 
(TX) synthesis from 20 carbon polyunsaturated fatty 
acids, most commonly arachidonic acid (AA), which are 
released from membrane-bound phospholipids, usually 
by the action of  phospholipase enzyme A2 (Figure 1). 
Next, oxygenation of  AA by COX produces an unstable 
intermediate, prostaglandin G2 (PG2), which is converted 
to prostaglandin H2 (PGH2) by the peroxidase activity 
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Figure 1  Prostanoids biosynthetic pathway.
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of  COX. PGH2 is subsequently converted to other PGs 
(PGD2, PGE2, PGF2α, PGI2) or thromboxanes (TXA2). 
The array of  PGs produced varies according to the 
downstream enzymatic machinery present in a particular 
cell type (Figure 1).

COX enzymes are proteins with a molecular weight of  
about 68 kilodaltons (kDa) in an unmodified condition, 
which increases to 72-74 kDa after post-translation 
glycosilation[4]. The structure of  COX enzymes consists 
of  three distinct domains: an N-terminal domain with a 
conformation that is highly similar to that of  epidermal 
growth factor, a domain containing a series of  amphipathic 
helices, which comprise the membrane attachment site, 
and a C-terminal catalytic domain, which contains the 
cyclooxygenase and peroxidase active sites.

Although the two enzymes are highly similar in 
structure and enzymatic activity they have different 
genomic structures and different gene regulations and 
expressions. COX-1 was first purified and characterized in 
the 1970s and the gene was isolated in 1988[5-7], whereas 
the COX-2 gene was cloned in 1993[8]. COX-1 and 
COX-2 are encoded by separate genes located on different 
human chromosomes. The gene encoding for COX-1 
enzyme is located on chromosome 9 (9q32-9q33.3) and 
is approximately 40 kilobase (kb) pairs, contains 11 exons 
and its mRNA is 2.8 kb[9]. The gene encoding for COX-2 is 
located on chromosome 1 (1q25.2-25.3), contains 10 exons 
and is approximately 8.3 kb with a 4.5 kb transcript[10].

T he COX-1 g ene exh ib i t s t he f e a tu r e s o f  a 
housekeeping gene, it lacks a TATA box[11], and is 
generally not subject to transcriptional induction, but it 
is constitutively expressed with near-constant levels and 
activity in most tissues and cell types.

COX-2 is an inducible or early-response gene, whose 
expression is undetectable in most normal tissues. COX-2 
is highly induced in response to a broad spectrum of  
stimuli such as bacterial lipopolysaccharide (LPS)[12], 
cytokines[13], and growth factors[14,15]. The inducibility 
of  COX-2 can be explained by the presence, in the 5’
-flanking region of  its gene promoter, of  several potential 
transcription regulatory sequences, including a TATA box 
and multiple transcription factor binding sites (C/EBP, 
AP-2, SP1, NF-κB, CRE, Ets-1, PEA-3 and GATA-1)[16,17]. 
Transcriptional control of  the COX-2 gene is cell-specific, 
and it is evident that more than one pathway may co-
operate to regulate COX-2 expression. As reported by 
Araki[18], in human hepatocellular carcinoma cells, increased 
COX-2 mRNA and protein expression may result from 
the combined de-regulation of  Wnt and Ras pathways. In 
addition, in the adult liver, hepatocytes show a behavior 
pattern unique among cells that respond to inflammatory 
stresses. In contrast to fetal hepatocytes, which express 
COX-2 in response to proinflammatory stimuli[19], such as 
LPS and proinflammatory cytokines, adult hepatocytes fail 
to express COX-2 regardless of  the type of  challenge[20]. 
The presence of  high levels of  C/EBP-α seems to be 
involved in the impairment of  COX-2 expression in these 
cells when challenged with proinflammatory stimuli[20]. 
Therefore, the expression of  COX-2 associated with liver 
diseases, such as cirrhosis and HCC, could be considered a 
marker of  dedifferentiation in adult hepatocytes.

COX-2 gene expression is also subject to negative 
regulation. Indeed, COX-2 expression can be inhibited 
by glucocorticoids, IL-4, IL-13 and the anti-inflammatory 
cytokine IL-10[21-23].

COX-2 expression can also be regulated at post-
transcriptional levels in tumors. In the 3’ untranslated 
region (3’-UTR) of  the COX-2 mRNA there are multiple 
copies of  the AUUUA motif, which are known to be 
involved in the control of  both mRNA stability and 
protein translation. Such motifs represent potential targets 
by which various agents can stabilize or destabilize the 
COX-2 mRNA, and this may ultimately lead to an increase 
or decrease in enzyme activity levels. It has been shown 
that some proteins, such as tristetraprolin[24] and AUF1[25], 
which also bind to the 3’-UTR, can decrease levels of  the 
COX-2 mRNA. In contrast, other proteins such as HuR, 
a RNA binding protein prolong the half-life of  COX-2 
mRNA in colon cancer by binding to the COX-2 AU 
rich element[26,27]. High levels of  HuR protein have also 
been reported in HCC cell lines and therefore could be 
responsible for COX-2 overexpression in this tumor[28]. 

As mentioned before, hepatitis C and hepatitis B virus 
infections are the major etiological agents of  chronic 
liver diseases, which can lead to the development of  
liver cirrhosis and HCC. However, it is not well known 
how HBV and HCV are individually involved in human 
hepatocarcinogenesis. Recent studies have shown that 
both viruses are able to promote COX-2 expression. After 
integration of  the HBV DNA into the host genome, 
the expression of  the viral protein HBx upregulates 
COX-2 expression by transactivation of  the COX-2 gene 
promoter through the NF-AT transcription factor[29,30]. 
This study therefore demonstrated that COX-2 might 
be an important cellular effector of  HBx protein, which 
is often the only viral protein expressed by transformed 
hepatocytes in HCC caused by HBV infection. In addition, 
the endoplasmic reticulum stress response, due to the 
expression of  the HBV surface protein, may also lead 
to COX-2 expression through the activation of  NF-κB 
and p38 MAPK[31]. Similarly, a recent study showed that 
infection with HCV induces the production of  ROS and 
subsequent activation of  NF-κB, which in turn mediates 
COX-2 expression and subsequent PGE2 production[32]. 
These studies, therefore, provide new insights into the 
mechanisms by which hepatitis viral infection, through 
increasing COX-2 expression and PGs production, might 
be relevant to the development of  liver diseases and 
hepatocarcinogenesis.

It has been suggested that there is another COX 
enzyme formed as a splice variant of  COX-1[33], referred 
to as COX-3. COX-3 is made from the COX-1 gene but 
retains intron 1 in its mRNA. Its expression was initially 
reported in the canine cerebral cortex and in lesser 
amounts in other analyzed tissues[33]. Recent molecular 
biology studies revealed that indeed three distinct COX-1 
splicing variants exist in human tissues[34]. The most 
prevalent of  these variants, called COX-1b1, arises via 
retention of  the entire intron 1, leading to a shift in the 
reading frame and premature termination. This would 
make the expression of  a full-length protein impossible, 
therefore a catalytically active form of  the enzyme might 
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not exist in humans. However, the other two variant types, 
called COX-1b2 and COX-1b3, although retaining the 
entire intron 1, lack a nucleotide in one of  two different 
positions, thereby encoding predicted full-length and 
probably COX-active proteins, as suggested by functional 
studies, which revealed that COX-1b2 is able to catalyse 
the synthesis of  PGF2α from AA[34]. 

COX inhibitors
NSAIDs have long been known as drugs that have 
the three favorable analgesic, anti-pyretic and anti-
inflammatory effects. However, NSAIDs differ in their 
therapeutic potency, gastrointestinal side effects and COX 
inhibition ratios. NSAIDs cover a wide range in their 
ratios of  inhibitory potencies (i.e. selectivity) towards 
COX-1 and COX-2. Some NSAIDs have moderate 
selectivity for COX-1 (e.g., ketorolac, f lurbiprofen, 
ketoprofen, piroxicam), others inhibit both COX isoforms 
(dual inhibitors; e.g. indomethacin, aspirin, naproxen, 
ibuprofen), other NSAIDs favor COX-2 inhibition (e.g. 
sulindac, nimesulide etodolac, meloxicam), and finally the 
newest ones are highly selective for COX-2 (COXIB; e.g. 
celecoxib, rofecoxib, lumiracoxib, valdecoxib, etoricoxib) 
(Figure 2). Although the mechanism of  action of  the 
different COXIB is similar, their chemical structures differ. 
In addition, the pharmacokinetics and metabolism of  each 
individual COXIB are unique (Figure 2)[35,36].

COX in hepatocellular carcinoma
Strong support for a connection between COX-2 
expression and carcinogenesis has come from genetic 
studies. The number and size of  intestinal polyps 
in APCΔ716 mice, a murine model of  human familial 
adenomatous polyposis coli (FAP), were reduced in 
animals that were engineered to be also COX-2 deficient[37].  
In a separate study, homozygous deficiency of  COX-2 
reduced skin tumorigenesis in a multistage mouse skin 
model[38]. On the contrary, overexpression of  COX-2 was 
sufficient to induce tumorigenesis in transgenic mice[39-41]. 

The evidence that COX-2 may be a logical therapeutic 
t a rge t in HCC comes f rom s tud ies tha t showed 
overexpression of  COX-2 in patients with HCC[42-46]. 
COX-2 expression is generally higher in well-differentiated 
HCCs compared with less-differentiated HCCs or 
histologically normal liver, suggesting that COX-2 may be 
involved in the early stages of  hepatocarcinogenesis[42,44,46]. 
In addition, a significant correlation between COX-2 
expression and active inflammation in the adjacent 
noncancerous liver has been reported[43,47], and increased 
expression of  COX-2 in noncancerous liver tissue was 
significantly associated with shorter disease-free survival 
in patients with HCC[43]. This result is of  great importance 
from a clinical point of  view, as it suggests that COX-2 
expression may play an important role in the relapse of  
HCC after surgery. 

Furthermore, we recently reported that COX-2 
expression in the tumor tissue was significantly correlated 
to the presence of  inflammatory cells, macrophages and 
mast cells[46]. However, COX-2 expressing cells and the 
number of  both types of  inflammatory cells decreased 
with progression of  the disease, suggesting their possible 
involvement in the early stages of  hepatocarcinogenesis.

The decrease in COX-2 expression during tumor 
progression as observed in HCC is unusual. A possible 
explanation for this different behavior pattern is that, 
in some cell types, COX-2 overexpression may cause 
a growth disadvantage, as suggested by Trifan[48], who 
reported that COX-2 overexpression may induce cell cycle 
arrest in a variety of  cell types.

Although less attention has been drawn to the potential 
role of  the constitutive COX-1 enzyme in carcinogenesis, 
recent evidence supports its implication in skin and 
intestinal tumorigenesis[38,49-52]. COX-1 is up-regulated 
in human breast[53], prostate[54], cervical[55] and ovarian 
cancers[56,57]. On the other hand, loss of  the COX-1 gene 
results in reduced intestinal tumorigenesis in Min mice[49].

We recently analyzed COX-1 expression in HCC and 
the surrounding non-tumor tissues[58]. On the whole, we 
found a higher COX-1 expression in the cirrhotic liver 
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Chemistry: Sulphonamide Sulphonamide Sulphonyl Sulphonyl Phenylacetic acid
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  Plasma protein binding (%)           97           98           87             92            > 98
Metabolism
  Main pathway Oxydation CyP450

        (2C9, 3A4)
Oxydation CyP450
      (2C9, 3A4)

Cytosolic reduction Oxydation CyP450
            (3A4)

Oxydation CyP450
             (2C9)

  Urinary excretion (%)            29           70           72             60               54

SO2CH3

CH3

Cl

N
N

SO2NH2

CH3

F3C
N

N

SO2CH3

O
O

SO2NH2CH3

O
N

COOH Cl
N
H

H3C F

5116      ISSN 1007-9327      CN 14-1219/ R       World J Gastroenterol      August 28, 2006    Volume 12     Number 32

www.wjgnet.com

Figure 2  Pharmacological features of coxibs.



tissues surrounding HCC than in the tumors. However, 
in some cases COX-1 was up-regulated in the tumor 
tissues compared to the adjacent non-tumoral cirrhotic 
tissues. In well-differentiated HCC, COX-1 expression 
was significantly higher than in the poorly-differentiated 
tissues, suggesting that the presence of  COX-1 might be 
also involved in the early stages of  tumor growth.

COX inhibitors in hepatocellular 
carcinoma
Evidence from animal models
Experimental studies on animal models of  liver cancer 
have shown that NSAIDs, including both selective and 
non-selective COX-2 inhibitors, exert chemopreventive 
as well as therapeutic effects[59-64]. In the rat model of  
choline-deficient, L-amino acid-defined diet (CDAA)-
induced hepatocarcinogenesis the administration of  
aspirin or nimesulide with the diet decreased the number 
of  preneoplastic and neoplastic nodules[60,63]. In a recent 
study by Marquez-Rosado[64] treatment with celecoxib was 
highly effective in inhibiting the multiplicity and size of  
liver preneoplastic lesions induced by DEN, 2-AAF and 
partial hepatectomy. 

The therapeutical potential of  the specific COX-2 
inhibitors, such as celecoxib and meloxicam, in HCC 
generated in nude mice has also been shown[65,66]. The 
treatment significantly reduced the growth of  HCC in 
vivo by enhancing tumor cell apoptosis and reducing 
proliferation. 

Overall, these results suggest that NSAIDs and 
other selective COX-2 inhibitors may be of  value in the 
chemopreventive as well as therapeutic activities against 
liver cancer.

Evidence from “in vitro” experiments
The involvement of  COX-2 in carc inogenes is i s 
believed to be primarily mediated through its influence 
on cell proliferation, apoptosis, angiogenesis and cell 
invasiveness[67] (Figure 3).

The role of  COX-2 in the st imulat ion of  ce l l 
proliferation can be attributed to its involvement in the 
production of  prostaglandins. Indeed, evidence indicates 
that PGs promote cell proliferation, and conversely 
the growth-inhibitory effects of  COX inhibitors can 
be reversed by exogenous addition of  PGs. It has been 
demonstrated that prostaglandins increase DNA synthesis 
and cell proliferation of  rat hepatocytes[68,69], and of  human 
HCC cells[45].

On the other hand, i t has been demonstrated 
that COX-2 inhibitors are able to suppress HCC cell 
growth[44,45,58,70-74]. Several mechanisms have been proposed 
for the antitumor effects of  NSAIDs in HCC. However, 
the key mechanism by which COX-2 inhibitors affect HCC 
cell growth remains unclear. Some studies have shown that 
NSAIDs are able to inhibit HCC cell growth by cell cycle 
arrest[72,73,75], induction of  apoptosis[44,73,74] or necrosis[72].

Recent evidence indicates that pharmacological 
inhibition of  COX-1 activity by selective COX-1 inhibitors 
also blocks cell growth, promotes apoptosis and inhibits 
the cell cycle in ovarian[57], breast[76], bladder and prostate[77] 
cancer cells. In addition, a combination of  COX-1 and 
COX-2 selective inhibitors was found to suppress polyp 
formation more effectively in the intestinal tumorigenesis 
of  the Apc knockout mouse model[52]. Interestingly, we 
recently showed that the selective COX-1 inhibitor SC-560 
inhibits cell growth and induces apoptosis in HCC cells[58]. 
Moreover, the combination of  the COX-1 inhibitor with 
selective COX-2 inhibitors, resulted in additive effects 
on cell growth inhibition. These results suggest that 
both COX-1 and COX-2 inhibitors may have potential 
therapeutic implications in HCC patients.

However, i t i s s t i l l controvers ia l whether the 
antitumor effects of  COX-2 inhibitors in HCC are due 
predominantly to the inhibition of  COX-2 activity[45,58]. 
Indeed, the antineoplastic effect of  NSAIDs might not be 
mediated only by COX-2 inhibition, but NSAIDs might 
act on different molecular targets as well[78].

Increasing evidence suggests the involvement of  
molecular targets other than COX in the antitumor 
effects of  selective inhibitors also in HCC, including the 
mitogen-activated protein kinase (MAPK)[79] and the 
PI3K/Akt pathway[45,70] (Figure 4). The existence of  COX-
independent mechanisms of  NSAIDs action is further 
supported by the evidence that their antineoplastic effects 
are observed with concentrations that are greater than 

  COX-1?/COX-2

Invasiveness Cell proliferation Apoptosis Angiogenesis

Cancer

Figure 3  Effects of COX enzymes on different cellular dynamics.
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Figure 4  Molecular targets of NSAIDs in HCC.
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those necessary to fully inhibit the synthesis of  PGs, and 
by the observation that they inhibit HCC cell proliferation 
in COX-2 negative cel ls [79]. Interestingly, COX-2-
independent effects of  celecoxib have also been observed 
during hepatocarcinogenesis in vivo. In the study by 
Marquez-Rosado[64] neither COX-2 expression nor PGE2 
production were altered by celecoxib treatment, suggesting 
that celecoxib effects are mediated by COX-2/PGE2-
independent mechanisms.

COX-2 and HCC angiogenesis 
A substantial body of  evidence supports a role for 
COX-2 in angiogenesis, the “sprouting” of  capillaries 
from pre-existing vasculature, in a variety of  human 
malignancies[80-83]. COX-2 promotes angiogenesis, mainly 
through the synthesis of  prostanoids, which can induce 
tumor angiogenesis in an autocrine and/or paracrine 
fashion by stimulating the expression of  pro-angiogenic 
factors[84,85]. However, the precise role of  each individual 
prostanoid remains largely unknown.

COX-2 expression has been reported to correlate 
with tumor angiogenesis in patients with HCV- or HBV-
associated HCC[86,87]. Moreover, in a recent study we 
showed a positive correlation between COX-2 expression 
in tumor tissues of  HCC patients and the presence of  
microvessels inside the tumor mass, assessed by staining 
endothelial cells with anti-CD34 antibody[46]. In addition, 
we reported that COX-2 was the only independent 
variable that showed a positive correlation with CD34 in 
a multivariate analysis, confirming the possible role of  
COX-2 in HCC angiogenesis. These findings suggest the 
hypothesis that selective inhibition of  COX-2 by treatment 
with COXIB may contribute to inhibit HCC-associated 
angiogenesis, and thus provide an additional rational 
approach for treatment of  this malignancy.

COX-2 and invasiveness of HCC 
cells
A link between COX-2 expression and invasiveness has 
been observed in several human malignancies[88,89]. Colon 
cancer cells that constitutively expressed COX-2 acquired 
increased metastatic potential that could be reversed by 
treatment with COX inhibitors[90]. This phenotypic change 
was associated with increased expression and activation 
of  metalloproteinase-2 (MMP-2)[90]. Similarly, PGE2 

induces MMP-2 expression and activation in HCC cells[91], 
and treatment with aspirin and with the selective COX-2 
inhibitor NS-398 inhibits the HGF-induced invasiveness 
of  HCC cells[92], suggesting the key role of  the COX-2/
PGE2 pathway in tumor invasiveness of  liver cancer.

COX-2 and multidrug resistance
Growing evidence indicates that COX-2 overexpression 
can up-regulate the expression of  the Multidrug Resistance 
1 (MDR1) gene and the levels of  its product, the multidrug 
efflux pump P-glycoprotein (P-gp)[93,94]. COX-2 could 
therefore contribute to the development of  resistance 

to pharmacological treatment by the tumor cells[93,94]. 
Recently, the MDR phenotype was associated with COX-2 
overexpression in liver cancer cells[95].

It could be speculated that a selective inhibition of  
COX-2 activity could reinforce the antitumor action of  
conventional chemotherapy by acting on the expression of  
P-gp. The rationale behind the possible combination of  
traditional chemotherapy and selective COX-2 inhibitors 
is further supported by the fact that chemotherapy itself  
induces COX-2 expression[96].

Conclusion
There is compelling evidence that COX-2, and also 
COX-1, have a role in hepatocarcinogenesis, but many 
questions need to be answered. A number of  studies 
have shown that several different mechanisms may 
account for the anticancer effects of  NSAIDs, although 
the main mechanism remains unclear. The effects 
of  NSAIDs on tumor growth are most likely to be 
multifactorial, and COX-inhibitors may use both COX-2 
and non-COX-2 targets to mediate their anti-HCC 
activities. Consequently, a better understanding of  the 
COX-2-dependent and COX-2-independent pathways 
may help to optimize the use of  COX-2 inhibitors in the 
prevention and treatment of  HCC.

Recently, concern was raised about the cardiovascular 
safety of  the selective COX-2 inhibitor Rofecoxib[97,98], 
and as a consequence it was withdrawn from the USA 
market by Merck and Co. Further investigation is required 
to define the safety profile of  selective COX-2 inhibitors, 
especially when they are used at high doses and for long 
periods of  time.

An exciting, novel concept in cancer chemoprevention 
and treatment is the use of  a combination therapy. A 
combination therapy (which may allow dose reduction, 
and hence decreased systemic bioavailibility) of  NSAIDs 
or COXIBs with agents that specifically modulate 
relevant biochemical targets of  COX-2 inhibitors may 
take advantage of  synergistic growth inhibitory effects 
against cancer cel ls and could reduce the toxicity 
associated with the intake of  COX-2 inhibitors. In 
addition, the use of  COX-2 inhibitors, by their action 
on the MDR phenotype, may enhance the accumulation 
of  chemotherapy agents and decrease the resistance 
of  tumors to chemotherapeutic drugs. Indeed, several 
clinical trials are under way based on combinations 
of  COXIBs with conventional anticancer treatments 
(chemotherapy or radiotherapy) [99] and with novel 
molecular targeting compounds[100].

On the other hand, since experimental studies 
have provided evidence that PGs are the molecules 
that mediate the effects of  COX overexpression, 
other molecules involved in PG biosynthesis and 
signaling might represent potential targets. Recently, 
pharmacological inhibitors of  PGE2-EP receptors, which 
have anti-neoplastic activity, have been generated[101]. 
Therefore, PG receptors and/or PG synthases may 
represent novel targets for the prevention and treatment 
of  cancer.
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