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Abstract
The application of gene transfer technologies to the 
treatment of cancer has led to the development of new 
experimental approaches like gene directed enzyme/pro-
drug therapy (GDEPT), inhibition of oncogenes and 
restoration of tumor-suppressor genes. In addition, 
gene therapy has a big impact on other fields like cancer 
immunotherapy, anti-angiogenic therapy and virotherapy. 
These strategies are being evaluated for the treatment 
of primary and metastatic liver cancer and some of them 
have reached clinical phases. We present a review on the 
basis and the actual status of gene therapy approaches 
applied to liver cancer.
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INTRODUCTION
Knowledge of  molecular mechanisms governing malignant 
transformation brings new opportunities for therapeutic 
intervention against cancer using novel approaches. One 
of  them is gene therapy. This new discipline is based on 
the transfer of  genetic material to an organism with the 
aim of  correcting a disease. The genes can be delivered 
directly into the subject, using a variety of  vehicles named 
vectors (in vivo gene therapy), or delivered into isolated cells 

in vitro that are subsequently introduced into the organism 
(ex vivo gene therapy). 

Cancer is the most frequent application of  experimen-
tal gene therapy approaches[1] for several reasons. 

First, the genetic alterations that give rise or contribute 
to the malignant transformation of  cells are being unrav-
elled with increasing detail in the last two decades, and 
this provides multiple candidate targets for gene therapy 
intervention[2]. Nevertheless, the genetic and epigenetic 
alterations that lead to an established tumor are complex 
and require special approaches that often differ from gene 
therapy applied for hereditary monogenic diseases. In 
many cases, the transfer of  genes into malignant cells is 
not performed with the intention of  correcting a genetic 
deficiency related to cancer. To be efficient, this would 
require that the selected gene plays a dominant role in the 
malignant phenotype. In addition, a technique would be 
needed that achieves successful modification of  virtually 
every cell in the tumor, something that is far from being 
realistic in the near future. Therefore, different strategies 
have been developed to introduce genes that cause the de-
struction of  the tumor by indirect mechanisms, as will be 
discussed below. 

Second, some tools initially developed as gene therapy 
vectors, such as certain viruses, are being exploited as on-
colytic agents by themselves. This means that the develop-
ment of  gene therapy approaches against cancer is activat-
ing other fields such as virotherapy and cellular therapies. 

Finally, the lack of  safe and efficient therapeutic op-
tions against many types of  cancer is fostering the devel-
opment of  new gene therapy applications for these diseas-
es. Liver cancer is a good example of  this situation. Hepa-
tocellular carcinoma (HCC) accounts for 80% of  primary 
liver tumors in adults, has an increasing incidence[3] and a 
poor 5-year survival rate of  about 7% despite treatment[4]. 
In addition, the liver is the most frequent site of  metas-
tasis, especially from gastrointestinal cancer. Potentially 
curative therapies such as liver transplantation and surgi-
cal resection can only be applied to a minority of  subjects 
because of  advanced disease at the time of  diagnosis and 
the lack of  suitable organ donors. Other regional treat-
ments may be beneficial for unresectable HCC, but recur-
rence is frequent and the long term survival rate remains 
poor. These treatments include transarterial embolization 
(TACE), percutaneous Ethanol injection, radiofrequency 
thermal ablation, microwave coagulation therapy, laser-
induced thermotherapy and radiotherapy. New protocols 
based on combinations of  regional treatments (with or 
without previous surgery) are being investigated for the 
management of  HCC, and they are showing a clear advan-
tage when compared to single treatments[5]. In this context, 
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gene therapy could be considered as a potential adjuvant 
to other therapies. The clinical trials performed so far have 
shown that the side effects are acceptable in most of  the 
cases, and that the mechanism of  action is different from 
standard treatments[6]. Therefore, choosing the right com-
bination among gene therapy approaches and conventional 
treatments may achieve a synergistic effect. Furthermore, 
the refinement of  interventional therapies for HCC such 
as TACE and PEI provides new possibilities for the deliv-
ery of  gene therapy vectors into hepatic tumors, increasing 
the effective dose and minimizing potential side effects 
derived from non-target cell transduction.

In this review we present an insight into gene therapy 
strategies against liver cancer and discuss the latest devel-
opments in the field.

RESTORATION OF TUMOR SUPPRESSOR 
GENES
This strategy is the most intuitive application of  gene 
therapy for the treatment of  HCC and other cancers. 
It is clear that the loss of  function of  certain genes 
(caused by deletions, mutations, promoter inactivation 
or other epigenetic changes) is associated with malignant 
transformation of  cells[7]. These tumor suppressor 
genes control cell proliferation and apoptosis in order to 
maintain an equilibrated turnover of  cells in each tissue. 
Under experimental conditions (mostly in vitro), it has been 
demonstrated that the restoration of  tumor suppressor 
genes can revert the malignant phenotype of  cells[8]. 
However, the therapeutic application of  this observation 
faces enormous difficulties. Cancer cells often suffer some 
degree of  genetic instability. When they lose their capacity 
to sense and repair damaged genes, mutations accumulate 
and cells with higher proliferation rate and lower sensitivity 
to apoptotic stimuli are selected sequentially. Under 
these circumstances, they may become insensitive to the 
restoration of  a particular tumor suppressor gene. On the 
other hand, this approach requires the introduction of  
the gene and the expression of  the antitumoral protein in 
virtually all cancer cells, or at least in those responsible for 
tumor maintenance. This is technically impossible with 
current gene therapy vectors, especially for solid tumors 
like HCC. 

Despite all these considerations, the transfer of  p53 
tumor suppressor gene has shown effect in several animal 
models of  cancer, including HCC[9,10]. This proof  of  
concept has stimulated the use of  p53 as a therapeutic 
gene. Mutations in p53 or alterations in its pathway have 
been described in more than 50% of  human cancers[11,12]. 
When cells lack functional p53, they are unable to stop 
the cell cycle or trigger apoptosis in response to DNA 
damage. They accumulate mutations that lead to malignant 
initiation, progression and resistance to treatments. Thus, 
the restoration of  p53 may render tumor cells sensitive 
to apoptotic stimuli, even if  they have accumulated 
other mutations. This may explain the therapeutic effect 
observed in pre-clinical models, and suggests a potential 
role of  p53 as an adjuvant to conventional therapies that 
induce apoptosis in cancer cells. 

In contrast, several clinical trials based on delivery 
of  the wild type p53 gene using different vectors have 
observed variable, and often less positive results in 
different types of  cancer such as lung, head and neck, 
bladder, ovarian and breast cancer[13]. However, a first-
generation adenoviral vector expressing the p53 cDNA 
under the control of  the CMV promoter became the 
world’s first commercially licensed gene therapy product 
(Gendicine) for the treatment of  head and neck squamous 
cell carcinoma in China[14]. In a clinical trial performed 
on 30 HCC patients, Partial Response (PR) was reported 
in 2 cases, Stabilized disease (SD) in 24 patients and 
Progressive Disease (PD) in 4 of  them. The virus was 
administered at doses of  1-2 × 1012 VP/wk for 4 wk. 
In another HCC clinical trial, Gendicine was used in 
combination with TACE (5FU, HCPT and ADM). The 
viral doses were similar (1-4 × 1012 VP/wk for 4 wk), 
starting 2-5 d after TACE. The authors reported 67.6% PR 
in the combination group versus 51.2% in the TACE-only 
group (reviewed by Peng[14]). The clinical significance of  
these results is controversial at this time, but the availability 
of  a gene-based therapy in the market with potential effect 
on HCC will probably extend its use in combination with 
other therapies and allow the identification of  synergistic 
effects. Optimization of  the vectors and the therapeutic 
regimes may be needed to increase gene transfer. For 
instance, weekly injections of  a first-generation adenoviral 
vector are most likely eliciting a strong immune response 
that blocks the infectivity of  repeated doses after 2 wk. 
A better understanding of  genetic alterations in each 
particular case of  cancer will help to predict the response 
to the restoration therapy and aid in the selection of  
candidate patients. 

In addition, new strategies are being developed to 
address the limitations of  this approach. One of  them 
relies on the fusion of  p53 with VP22, a tegument 
protein from Herpes Simplex Virus-1 (HSV-1)[15]. VP22 
is exported from the cytoplasm of  the expressing cell and 
gets incorporated by neighbouring cells by poorly defined 
mechanisms. The fusion of  VP22 with other polypeptides 
enables the intercellular spread of  the chimeric protein. 
It has been demonstrated that an adenoviral vector 
expressing the p53-VP22 fusion construct achieves 
higher transduction efficiency and therapeutic effect 
on a rat model of  HCC when compared with wild type 
p53[16]. In addition, the combination of  p53 with other 
tumor suppressor genes like p16 can cooperate to induce 
apoptosis in cancer cells[17]. 

The suppressor of  cytokine signalling 1 (SOCS-1) 
gene has been recently identified as a potential tumor 
suppressor for HCC. Its promoter is frequently inhibited 
by methylation in HCC, causing activation of  the JAK/
STAT pathway[18]. At least in vitro, the restoration of  
SOCS-1 function induces apoptosis in cancer cells. 

INHIBITION OF ONCOGENES
The rationale of  this approach is in line with the previous 
one. In this case the correction of  the imbalance between 
positive and negative proliferation signals is attempted by 
inhibiting the function of  genes implicated in the mainte-
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nance of  unrestricted cell proliferation and acquisition of  
metastatic phenotype. Many of  the drawbacks mentioned 
above can be applied here, like the need for a highly ef-
ficient gene transfer method and a dominant role of  the 
target gene in malignant transformation. The number of  
candidate oncogenes is continuously expanding as the 
knowledge of  cancer at the genomic and proteomic levels 
advances[2]. 

Hopefully, the inhibition of  oncogene expression 
will not only decrease cell proliferation, but also restore 
sensitivity of  cells to apoptotic stimuli. For instance, it 
is known that the inhibition of  the Ras oncogene, apart 
from blocking a cascade of  mitotic signals, relieves the 
repression exerted on the p53 pathway and predisposes 
cells to apoptosis[19]. This may be the case for other 
oncogenes such as the pituitary tumor transforming gene 1 
(PTTG1)[20]. 

Another example is the catalytic subunit of  Telomerase 
(Telomerase Reverse Transcriptase, TERT). Since 
telomerase function is necessary to maintain telomere 
length in each cell division, cancer cells undergoing 
unrestricted cell proliferation present activation of  
TERT expression[21]. Therefore, inhibition of  TERT 
is hypothesised to cause inhibition of  cell growth after 
several divisions, when telomeric repeats finally run out. 
However, efficient inhibition of  telomerase expression 
is able to induce apoptosis in a few days, and this is 
irrespective of  its telomer-lengthening function[22]. New 
data indicate that telomerase is also necessary to protect 
chromosome ends from being recognized as DNA 
disruptions, which would trigger apoptosis[23]. 

Different methods are used to inhibit expression of  
oncogenes. One of  them is based on the transfer of  
antisense nucleotides, artificial sequences complementary 
to the mRNA corresponding to the gene whose inhibition 
is attempted[24]. These can be short sequences (antisense 
oligonucleotides, ASO), or the full cDNA. Several 
mechanisms account for the blocking of  gene expression, 
with the most widely spread and studied being the 
degradation of  RNA-DNA hybrids by cell nucleases such 
as RNAse H. A more recent approach is RNA interference, 
another posttranscriptional gene silencing mechanism 
based on the production of  double-stranded stretches of  
RNA complementary to the target mRNA[25]. Using the 
endogenous cell machinery, the double-stranded RNA is 
processed into 21 to 23-nucleotide short interfering RNAs 
(siRNAs) that recognize the cognate mRNA and trigger its 
degradation. Alternatively, the siRNAs can be transfected 
directly. In the “triple helix” strategy, the inhibitory 
oligonucleotides (triplex-forming oligonucleotides, TFOs) 
are targeted to the cellular double-stranded DNA[26]. They 
interact with polypurine-polypyrimidine sequences in the 
minor or major grove of  genomic DNA and block gene 
expression at different levels depending on the localization 
of  the complementary sequence. They could be potentially 
used not only for gene expression modification, but also 
in gene correction strategies[27]. Finally, the expression of  
secreted or intracellular antibody-based molecules has been 
proposed to block the function of  oncogenes[28,29]. 

In the case of  HCC, the inhibition of  several genes has 
shown potential antitumor effect. Most reports provide 

proof  of  concept showing growth inhibition or induction 
of  apoptosis using HCC-derived cell lines in cell culture. 
The in vivo studies performed in animal models show 
growth retardation in tumors, especially when cancer cells 
are transfected ex vivo, but complete eradication is difficult 
when in vivo gene therapy is tested on pre-existing tumors. 

Since telomerase and Wnt pathway activation are 
frequently associated with HCC, different approaches 
including antisense molecules and siRNA have been used 
to inhibit them[30-32]. Antisense technology was also used 
against FGF-2[33], VEGF[34] and COX-2 genes[35]. The 
triplex helix approach showed similar results as antisense 
technology for the inhibition of  IGF-I and induction of  
apoptosis in HCC cells[27]. When the cells were injected 
into mice, an immune-mediated antitumor protection was 
observed. The inhibition of  PTTG1 and urokinase-type 
plasminogen activator (u-PA) has been accomplished using 
siRNA on HCC cells[20,36]. The p28-GANK oncoprotein, 
which induces hyperphosphorylation and increases 
degradation of  pRB was found to be overexpressed in 
the majority of  HCCs[37]. The repeated administration 
of  an adenoviral vector that induces the production of  
siRNA against p28-GANK caused a dramatic decrease in 
the growth of  human HCC xenografts in nude mice[38]. 
This shows that the continuous inhibition of  an oncogene 
may have a strong impact on the progression of  tumors. 
The clinical application of  this approach is challenging, 
because highly efficient long-term expression vectors will 
be needed instead of  first generation adenoviruses. 

GENE-DIRECTED ENZYME/PRO-DRUG 
THERAPY (GDEPT)
This approach is based on the transfer of  exogenous 
genes that convert a non-toxic pro-drug into a cytotoxic 
metabolite in cancer cells[39]. Once the pro-drug is 
administered systemically, transduced cells expressing the 
converting enzyme die and, in some cases, provoke the 
destruction of  surrounding cells (bystander effect). Unlike 
other gene therapy strategies, GDEPT lacks intrinsic 
tumor specificity, and relies on tumor targeting at the levels 
of  cell transfer (depending on the vectors and the route 
of  administration) and gene expression (depending on 
tumor-specific promoters)[40]. The efficacy of  a GDEPT 
system is highly influenced by the extent of  the bystander 
effect, because the fraction of  tranduced cells in a tumor is 
generally low with current gene therapy vectors[41]. 

The thymidine kinase gene from HSV-1 (HSV-TK) 
used in conjunction with the pro-drug ganciclovir (GCV) 
was the earliest and most used GDEPT system applied 
to HCC and other cancers[42]. It has shown significant 
antitumor effect in relevant animal models of  HCC, such 
as carcinogen-induced HCC in rats[43]. HSV-TK converts 
ganciclovir into the monophosphate intermediate that 
is subsequently transformed into the triphosphate form 
by cellular enzymes. This is a highly polar molecule that 
cannot diffuse outside the cell. The bystander effect of  
this system has been explained by gap junction transfer 
of  the toxic metabolite and phagocytosis of  neighbouring 
cells[44], but this local effect is weak compared to other 
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GDEPT modalities. The fusion of  TK with the VP22 
protein can amplify the effect by transfering the enzyme 
to surrounding cells[45]. Ganciclovir-triphosphate is 
incorporated into the DNA and causes apoptosis in a cell 
cycle-dependent manner, but it can cause mitochondrial 
toxicity in normal hepatocytes if  the expression of  HSV-
TK is not restricted to HCC cells[46,47]. Apart from the 
therapeutic purpose, HSV-TK can be considered a reporter 
gene for PET analysis. It has been successfully used to 
visualize transduction of  HCC with adenoviral vectors 
in humans[48]. So far, the good antitumor efficacy of  the 
HSV-TK system observed in different animal models of  
HCC has not been demonstrated in the clinical setting[42]. 
Clinical and pre-clinical studies performed on other 
cancers suggest that HSV-TK can act as an immunogen 
that cooperates in the establishment of  a systemic or at 
least local response against the tumors[49,50]. Nevertheless, 
combination with other therapies will be needed. In pre-
clinical studies the radiation-inducible Egr-1 promoter was 
used to control the expression of  HSV-TK in combination 
with radioisotopes (I131 lipiodol)[51]. Thus, the expression 
of  HSV-TK was stimulated by the internal radiation, and 
the antitumor effect of  both treatments was synergistic.

The yeast Cytosine Deaminase converts the antifungal 
drug 5-fluorocytosine (5-FC) into the cytotoxic thymidylate 
synthetase inhibitor 5-f luorouracyl (5-FU)[52]. This 
metabolite can diffuse locally and cause a wider bystander 
effect than phosphorylated ganciclovir, but the cytotoxicity 
is also cell cycle-dependent. The system has been used 
in animal models of  primary and metastasic liver cancer 
with good results[53,54]. The efficacy of  5-FU on HCC 
patients is very low, but this strategy could achieve high 
local concentrations of  the drug. In this context, toxicity 
in normal liver should be carefully evaluated. In addition, 
the conversion of  5-FC to 5-FU by the cytosine deaminase 
present in habitual enterobacteria can contribute to 
toxicity[55]. 

Other GDEPT approaches generate very potent 
DNA cross-linking agents whose effects are largely 
cell cycle-independent. These include the cytochrome 
P450/cyclophosphamide[56] and the Nitroreductase/
dinitrobenzamide CB systems. Palmer et al[57] reported 
that the intratumor administration of  a first generation 
adenoviral vector expressing Nitroreductase in HCC 
patients is safe and feasible. Transgene expression was 
dose-dependent and is supposed to be clinically relevant, 
although no pro-drug was administered to patients in this 
study. Strong immune responses against the vector and 
the therapeutic gene were observed, indicating that re-
administration of  the treatment may not be beneficial. 
Assessment of  the antitumor effect and toxicity of  this 
approach in patients receiving the pro-drug requires new 
clinical trials.

An approach closely related to GDEPT consists 
on the delivery of  the sodium iodide symporter (NIS) 
gene to cancer cells [58]. Since NIS is necessary for 
the internalization of  131I in the cell, a higher dose is 
accumulated in cells expressing NIS, as happens in 
thyrocytes, resulting in cell cycle blockade and death. Using 
this method, the extent and location of  gene transfer 
can be detected by tomography. An adenovirus vector 

expressing NIS under the control of  the CMV promoter 
has been used for the treatment of  HCC in a model of  
chemically induced tumors in rats[59]. After injection of  the 
vector in pre-existing nodules, specific accumulation of  131I 
and significant reduction in tumor volume was observed.

TARGETED EXPRESSION OF CYTOTOXIC/
PRO-APOPTOTIC GENES
This strategy is based on the selective transfer of  genes 
that will cause the destruction of  the cancer cells by 
different mechanisms. The concept is similar to GDEPT, 
but in this case the effect does not depend on any 
exogenous drugs. This can be an advantage in some 
circumstances, but on the other hand it lacks the possibility 
of  pharmocologically modulating the cytotoxicity. This 
means that the system relies mostly on the targeting 
of  gene transfer and expression into cancer cells, using 
specific surface ligands or promoters. The promoters for 
α-fetoprotein (AFP) and TERT have been used to control 
the expression or the diphtheria toxin fragment A and 
other cytotoxic genes in HCC cells[60,61], but the toxicity of  
these treatments in relevant animal models is unclear. 

Alternatively, the mechanism of  action of  the lethal 
gene can provide some tumor specificity. This is the case 
for TNF-related apoptosis inducing ligand (TRAIL). 
Unlike other members of  the TNF ligand family, such as 
FASL and TNF-α, TRAIL induces apoptosis preferentially 
on cancer cells and may have reduced hepatotoxicity[62]. 
The extracellular domain of  TRAIL works as a soluble 
cytokine (sTRAIL) and induces apoptosis of  cancer cells 
at distant locations from the producing cell. In fact, an 
AAV vector expressing sTRAIL fused with a human 
insulin signal peptide has shown potent antitumor effect 
on subcutaneous liver cancer xenografts after oral or 
intraperitoneal administration of  the vector[63]. This 
systemic effect was achieved without significant liver 
toxicity. Other vectors developed for the expression of  
TRAIL include first generation and oncolytic adenoviruses 
with enhanced infectivity in cancer cells[64,65]. Interestingly, 
the adenoviral E1A protein sensitizes cells to TRAIL-
induced apoptosis[66].

IMMUNOGENE THERAPY
The transfer of  genes with the aim to elicit an immune 
response against tumors is one of  the most extensively 
used strategies in the field of  cancer gene therapy. It is 
based on the observation that cancer cells modify their 
characteristics and their environment in order to avoid 
being detected and rejected. If  this can be reversed, the 
specificity and systemic nature of  the immune system 
offers the possibility of  controlling the primary tumor and 
block its dissemination, which is the ultimate goal of  all 
oncologic treatments. The wide repertoire of  immunogene 
therapy approaches can be grouped as follows.

Expression of immunomodulatory cytokines
Cytokines are key mediators in the function of  the 
immune system. They have been extensively used to 
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stimulate the immune response against tumors, including 
interleukin 2[67], 7[68], 12[69], 15[70], 18[71], 21[72], 23[73]and 
24[74]; interferon α[75], β[76], and γ[77]; tumor necrosis factor 
α[78]; granulocyte-macrophage colony stimulating factor 
(GM-CSF)[79], and others. Their effects on different cell 
components of  the immune system and their influence 
on the expression of  endogenous factors are extremely 
complex. Most of  these cytokines do not have an intrinsic 
tumor-specific effect, but they may enhance the precarious 
immune response against tumors if  the dose, location and 
timing are carefully controlled. For example, interleukin-12 
(IL12) promotes a T-helper cell type 1 (Th1) response with 
activation of  cytotoxic T lymphocytes and natural killer 
cells (NK)[80], together with an antiangiogenic effect[81,82]. 
These effects are largely dependent on the induction 
of  IFN-γ. The systemic administration of  recombinant 
IL12 showed potential antitumor effects in humans[83], 
but severe toxicity was observed[84] and this modality 
of  treatment was discarded. The use of  gene therapy 
vectors enables the localization of  IL12 expression to 
the tumor, especially if  vectors with liver tropism such as 
those derived from adenovirus are used[85]. The antitumor 
effect of  this strategy on different animal models of  HCC 
has been demonstrated by several groups[86,87]. Tumor 
eradication and immunologic protection against relapse 
is achieved in a significant proportion of  cases, including 
implanted tumors in syngenic animals and chemically-
induced HCC in rats. These results led to a phase I 
clinical trial that demonstrated the safety and feasibility of  
intratumor injection of  a first generation adenoviral vector 
expressing IL12 in primary and metastatic liver cancer 
patients[88]. Using these vectors, the expression of  IL12 
was very low and transient. No complete responses were 
observed, but patients with HCC had a better outcome 
than other histological groups in this trial. Based on these 
results, improvements in the vectors are being investigated. 
The use of  high-capacity adenoviral vectors carrying 
a liver-specific inducible system for the expression of  
IL12 allows the long-term expression of  the cytokine in 
response to the inducer mifepristone. Using this vector, 
the levels and duration of  cytokine expression can be 
modulated to achieve antitumor effect and avoid toxicity[89]. 
Further improvement can be achieved by using a version 
of  IL12 in which the p35 and p40 subunits are fused in a 
single protein using a short linker peptide[90]. Experiments 
performed in rats bearing HCC indicate that the single 
chain IL12 is about 1000 times more potent than the 
native protein when an equivalent adenoviral vector is used 
to deliver the gene intratumorally[87].

Other cytokines that deserve special attention are 
TNF-α and IL24 (also know as mda-7). These mol-
ecules have shown antitumor effect on animal models of  
HCC[78,91], and ongoing clinical trials suggest the potential 
therapeutic effects on other malignancies in humans[92,93]. 
IL24 is especially promising, because apart from its 
immune-regulatory activities it induces apoptosis preferen-
tially in cancer cells[94].

Taking into account the natural mechanism of  im-
mune response activation, pro-inflammatory cytokines 
and co-stimulatory signals should be combined to achieve 
an effective response and avoid anergy. It is possible that 

the accessory signals are already present in the tumor, but 
there is evidence of  enhanced antitumor effect when IL12 
is transferred together with 41BB agonists[95] or B7.1[96] in 
animal models of  HCC. The intratumoral injection of  an 
adenoviral vector expressing CD40L achieved tumor eradi-
cation on a significant proportion of  pre-existing HCC 
in a rat model[97]. This molecule is normally expressed on 
activated T cells and interacts with CD40 on the surface of  
antigen-presenting cells. 

A combination of  different cytokines may be more 
effective and less toxic than the expression of  a single 
cytokine at high levels. The injection of  adenoviral vec-
tors expressing IL12 and IP-10 (interferon-γ inducible 
protein-1) exerted a synergistic antitumor effect in a 
murine model of  colon cancer when both molecules were 
expressed locally[98]. This is in agreement with the “attrac-
tion and activation hypothesis”, in which colocalization of  
immunostimulatory (IL12) and chemoattractant factors 
(IP10) is needed. Some pre-clinical data indicate that IL15 
can increase the antitumor effect IL12 on HCC models[99]. 
Interestingly, this could happen in the absence of  IFN-γ 
function. Other combinations proposed for the treatment 
of  HCC include IL12+GM-CSF[100], IL12+MIP3α[101], and 
IL21+IL15[72]. An alternative to co-expression of  individ-
ual cytokines is the construction of  fusion proteins. You 
et al. used a retroviral vector to deliver an IL2/IL12 fu-
sion gene and demonstrated enhanced survival of  tumor-
bearing rats compared with rats treated with the individual 
cytokines[102]. The antitumor effect of  cytokines can be 
enhanced by other gene therapy approaches like GDEPT 
using HSV-TK, as demonstrated by several groups that 
employed adenoviral or retroviral vectors for gene delivery 
in HCC models[103,104]. 

Vaccination with tumor antigens and genetically modified 
cells
The transfer of  genes encoding tumor-specific antigens 
such as AFP has been used with the aim to break the 
immune tolerance against HCC[105]. The pre-clinical 
efficacy of  this approach depends on the particular animal 
model employed[106], suggesting that high variability could 
be expected in patients. A different approach consists 
on the administration of  activated effector or antigen-
loaded presenting cells to fight cancer. The efficacy 
of  these cells can be increased if  they are manipulated 
genetically to express antigens, cytokines or co-stimulatory 
molecules (ex vivo gene therapy). Syngeneic fibroblasts 
or cancer cells expressing IL12[107] or IL2 plus B7[108] 
can trigger an immune response against HCC in murine 
models. However, the use of  cancer cells as a source of  
antigens and cytokines poses obvious technical difficulties 
in the clinical setting. An attractive alternative is the 
use of  autologous dendritic cells (DC), professional 
antigen presenting cells that express the co-stimulatory 
molecules (CD80, MHC class I and Ⅱ, etc.) necessary 
for efficient activation of  effector cells. DCs expressing 
AFP[109], cytokines[110] or co-stimulatory molecules[111] 
have been successfully used in animal models of  HCC 
and gastrointestinal cancer[112]. These results encouraged 
the initiation of  a phase I clinical trial in which DCs 
expressing IL12 after ex-vivo infection with an adenoviral 
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vector were injected into the tumor mass[113]. However, it 
was demonstrated that the cells were unable to migrate to 
lymph nodes because they were sequestered into the tumor 
by local factors[114], preventing an efficient activation of  
effector cells and the establishment of  relevant antitumor  
immune responses. 

Adoptive cell therapy consists on the infusion of  
autologous T cells or killer cells that have been expanded 
and activated in vitro. In animal models, it has been 
demonstrated that T cell expansion occurs in vivo in tumor-
bearing mice that were treated with IL12[115]. The infusion 
of  these cells has antitumor effect on recipient mice, in 
synergy with in vivo gene therapy by an adenoviral vector 
expressing IL12. This suggests that immunogene therapy 
can be used in combination with adoptive T-cell therapy in 
order to increase the efficacy observed in clinical trials that 
used either strategy alone.

An important aspect that is becoming more relevant 
in recent years is the inhibition of  regulatory signals that 
control the duration and intensity of  the immune response, 
because this could enhance the efficacy of  anticancer 
immunotherapy. For instance, the blockade of  the B7-HI/
PD-1 pathway by soluble PD-1 expression improved the 
immune response against an implanted HCC in mice[116]. 

ANTI-ANGIOGENIC GENE THERAPY
The realization that tumor growth requires intense neo-
vascularization is the basis for a series of  approaches aimed 
to specifically block the cancer-induced formation of  new 
vessels[117]. Anti-angiogenic factors such as endostatin have 
been identified and have demonstrated the ability to inhibit 
tumor growth in vivo[118,119]. This strategy is supposed to be 
safe because it does not affect the mature vessels of  nor-
mal tissues. Since HCC is known to be much vascularized, 
antiangiogenic therapies may have a strong therapeutic 
benefit, probably in combination with other standard or 
experimental treatments. Gene therapy may play an impor-
tant role in this field, because anti-angiogenic factors need 
to be delivered for long period of  times to control the pro-
gression of  tumors. In fact, an adenoviral vector carrying 
the endostatin cDNA was more effective than the direct 
injection of  the protein[120]. The combination of  endostatin 
delivered by an AAV vector and chemotherapy (etoposide) 
achieved antitumor effect on metastatic liver cancer in 
mice[121]. Of  note, several strains of  bacteria have been en-
gineered as vectors to deliver endostatin into liver tumors. 
Bifidobacterimu longum administered orally increased the 
survival of  tumor-bearing mice[122], whereas attenuated 
Salmonella choleraesuis accumulates in hypoxic tissues and 
has shown antitumor effect after intraperitoneal adminis-
tration[123].

Other anti-angiogenic approaches are focused on 
blocking the VEGF receptor, which is an important 
mediator of  angiogenesis. This can be achieved by 
expressing the soluble form of  VEGF receptor (KDR/
Flk-1), which sequesters VEGF[124]. The same approach 
has been used to block the endothel ium-specif ic 
receptor Tie2, which affects direct tumor growth and 
neovascularization[125]. The Pigment Epithelium Derived 
Factor (PEDF) has been recently discovered as an anti-

angiogenic protein expressed in normal liver[126] that is 
downregulated in HCC patients, suggesting a possible 
role in tumor progression. The transfer of  PEDF has 
antitumor effects in a murine model of  HCC[127]. NK4 
is a fragment of  the Hepatocyte Growth Factor (HGF) 
that acts as a HGF antagonist and blocks angiogenesis. 
The intrasplenic administration of  an adenoviral vector 
expressing a secreted form of  NK4 caused reduction in 
the vascularization and growth of  pancreatic metastasis in 
the liver of  mice[128]. Finally, it should be mentioned that 
the inhibition of  angiogenesis may be one of  the most 
important mechanisms by which IL12 exerts its antitumor 
effect[129].

ONCOLYTIC VIRUSES
Using the cytopatic effect of  certain viruses to destroy 
cancer cells is an old idea, but the advances in viral 
vector design and production have renewed interest 
in the field of  virotherapy. The objective is to obtain a 
virus that replicates and preferentially kills cancer cells, 
leaving the surrounding normal tissues relatively intact[130]. 
This property is intrinsic to some viruses. For instance, 
Vesicular Stomatitis Virus (VSV), Measles Virus (MV) 
and Newcastle Disease Virus (NDV) are very sensitive to 
the inhibitory effects of  IFN and replicate only in cancer 
cells that have developed mechanisms to counteract IFN 
pathways. Other viruses like reovirus replicate better in 
cells that present activation of  the Ras oncogene[131]. 

On the other hand, other viruses such as Adenovirus 
or HSV can be genetically modified to make their 
replication cancer-specific. One of  the methods to 
achieve cancer specificity is the deletion of  viral functions 
necessary for replication in normal cells, but not in cancer 
cells. For instance, the adenoviral protein E1A blocks pRB 
in the cell to force activation of  the cell cycle, whereas 
E1B 55K blocks p53 to inhibit apoptosis at early times. 
Since both p53 and pRB pathways are commonly altered 
in cancer cells, adenoviruses lacking these functions will 
replicate preferentially in tumors[132,133]. Another method 
to restrict the replication of  viruses is to use tumor-
specific promoters to control the transcription of  viral 
genes important for replication, such as E1A and E4 
for adenovirus[134]. Parallel strategies have been used to 
achieve oncolytic herpes viruses[135,136]. The control of  
the γ134.5 gene expression determines the efficacy of  
HSV-1 replication in different cells, and the deletion of  the 
ribonucleotide reductase function attenuates the virus in 
normal cells[137].

An important property of  oncolytic adenoviruses is the 
possibility of  accommodating therapeutic genes and the 
ability to act as gene therapy vectors with the advantage 
of  tumor-specific amplification of  gene expression[138]. 
These genes code for pro-drug converting enzymes, 
immunostimulatory cytokines or pro-apoptotic proteins 
that enhance the oncolysis and/or achieve a systemic 
effect. 

The mutant dl1520 adenovirus (also called ONYX-015 
or CI-1042 later on) was described in 1996 as the first 
oncolytic adenovirus[139]. It contains a deletion in the 
E1B 55K gene that achieves preferential replication in 
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cancer cells by different mechanisms[140]. Although recent 
advances have yielded viruses with improved potency and 
specificity, the experience accumulated with ONYX-015 
in the laboratory and in the clinic has been extremely 
useful for the advance of  the field. The virus has shown 
partial antitumor effect on murine models of  HCC[141], 
and clinical trials for other cancers indicate a potential 
benefit when used in combination with chemotherapy[142]. 
In the case of  liver cancer, a clinical trial on HCC patients 
showed no evident antitumor effect. The first dose of  
ONYX-015 was administered intravenously and then by 
direct ultrasound-guided intratumoral injection on d 2, 15, 
16, 29 and 30[143]. The rationale of  this regime was to elicit 
an immune response against the virus that causes a local 
reaction in the tumoral site. In a separate phase II trial in 
patients with metastatic colorectal cancer the virus was 
administered intravenously, and only transient stabilization 
of  the disease could be observed in some cases[144]. When 
the virus was administered intratumorally in a different 
clinical trial for hepatobiliary tumors, transient reduction 
of  tumor markers in serum (CEA, AC19-9 or AFP) 
was observed in 50% patients, although radiological 
responses were less than 10%[145]. These results support 
the notion that ONYX-015 has limited therapeutic effect 
as monotherapy on HCC patients, especially if  systemic 
routes are used. When the virus was administered 
intravenously in combination with 5-Fluorouracil 
and leucovorin in patients with liver metastases of  
gastrointestinal cancers, 25% of  cases presented partial or 
minor (< 50%) radiological responses, with good tolerance 
and evidence of  adenovirus replication in tumors[146]. 
An independent trial in patients who had failed previous 
treatment with 5-FU suggested increased survival when 
the virus was injected in the hepatic artery in combination 
with 5-FU[147]. Interestingly, an early radiological increase 
in tumor volume was attributed to virus-induced necrosis 
rather than tumor progression in several patients. This 
should be taken into account in order to evaluate efficacy 
and avoid removal of  responding patients in clinical trials. 
To this end, PET can be a more reliable technique. Now 
clinical trials with a virus similar to ONYX-015 (H101) are 
being conducted in China. A phase III trial in squamous 
cell cancer patients showed increased response rate in 
combination with chemotherapy, and the virus has recently 
obtained approval in that country[148]. 

Other oncolytic adenoviruses have been developed, and 
show promising results (usually better than ONYX-015) 
in animal models of  HCC. However, their performance 
in clinical trials has not been tested so far. The AFP 
promoter was used to control the expression of  the E1A 
viral gene, with or without E1B 55K deletion, and this 
achieved preferential replication in AFP-producing HCC 
cells[149,150]. The same effect is observed in metastatic 
gastrointestinal cancer using a virus controlled by the 
CEA promoter[151]. A broader cancer spectrum is achieved 
when other tumor-specific promoters such as human 
TERT[152,153] and E2F-1[154] are used. The efficacy of  
these agents can be increased if  they are adapted as gene 
therapy vectors for therapeutic genes (“armed” viruses), 
because viral oncolysis usually cooperates with the effect 
of  the gene. Oncolytic adenoviruses expressing GM-

CSF[155], TRAIL[65,156], Smac[157], Cytosine Deaminase[158] and 
endostatin[159] have demonstrated better performance than 
the previous versions.

The field of  virotherapy has been enriched by the 
incorporation of  oncolytic agents derived from different 
viruses, which may solve some of  the limitations observed 
with adenovirus. For instance, HSV-1 exerts a potent 
oncolytic effect and its large genome can accommodate 
different exogenous genes, apart from the endogenous 
TK[160]. The complex genome of  HSV-1 allows multiple 
modifications that can be exploited to achieve tumor 
specificity. The G207 mutant contains a disruption in the 
UL39 gene that eliminates the ribonucleotide reductase 
function and determines preferential replication in cancer 
cells[161]. It is attenuated by deletion of  a single copy of  the 
ICP6 gene and both copies of  the γ134.5 neurovirulence 
gene, but efficient elimination of  HCC cells has been 
reported[162]. The NV1020 virus harbours a deletion over 
the joint region of  the genome, but retains the ICP6 
gene and one copy of  γ134.5[163]. A clinical trial using this 
virus is ongoing for patients with gastrointestinal cancer 
metastatic to the liver. The rRp450 HSV-1 variant carries 
the cytochrome p450 gene as a pro-drug converting 
enzyme[164]. This virus has shown promising antitumor 
effect on HCC models, although complete eradication of  
metastatic liver cancer was not observed after single or 
multiple intraportal administrations. In addition, significant 
antitumor effect has been obtained in liver cancer models 
using herpes virus expressing Cytosine deaminase[165] or 
IL12[166]. 

VSV-derived viruses are emerging as a new class of  
oncolytic agents. A single injection of  a recombinant VSV 
virus into the hepatic artery increased the survival of  rats 
bearing multifocal HCC, and multiple doses achieved long 
term survival and tumor eradication in nearly 20% of  the 
animals[167]. This strategy is being investigated in human 
patients. Interestingly, experiments performed in rats 
indicate that a prophylactic treatment with IFN-α reduces 
the toxicity of  the virus on normal tissues and elevates its 
therapeutic index[168]. 

CONCLUSION
The treatment of  hepatic malignancies (both primary 
tumors and metastatic cancer of  the liver) remains a 
challenge that needs new approaches. Gene therapy is an 
experimental discipline in continuous evolution that offers 
interesting opportunities for the treatment of  liver cancer. 
Following early excitement about gene therapy possibilities, 
the f ie ld soon real ized i ts l imitat ions and is now 
systematically addressing fundamental issues to solve them. 
The transfer of  genes to the majority of  cancer cells is 
still unrealistic for solid tumors, even with the best vectors 
available to date. Immunogene therapy approaches try to 
circumvent this limitation and extend the antitumor effect 
to distant metastases. Pre-clinical studies have validated the 
concept, but at the same time the results in animal models 
reveal that the efficacy of  immunotherapy is very limited 
in advanced liver cancer. Hence, it is not surprising that the 
results of  early phase clinical trials are apparently deceiving. 
Oncolytic adenoviruses were envisioned as autonomous 
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therapeutic agents that would seek and destroy cancer cells, 
amplifying the initial load until the tumor is eradicated. 
Now we know that they find important physical barriers 
that limit their distribution inside the tumor. Moreover, the 
immune system will control the spread of  the viruses in 
a few days and neutralize further administrations, leaving 
a narrow time frame for them to display their oncolytic 
activity. An additional obstacle for the clinical application 
of  most gene therapy approaches is the cost and technical 
difficulties of  large scale production of  the vectors.

Despite all these difficulties, gene therapy may play 
an important role as an adjuvant to other standard or 
experimental treatments against liver cancer in the near 
future. There is evidence that different gene therapy 
approaches like GDEPT or oncolytic viruses have 
synergistic effects when combined with chemotherapy or 
radiotherapy. The different mechanisms of  action favour 
these combinations and may prevent the development of  
resistance to the treatment. As the knowledge of  tumor 
immunology advances, more rational immunogene therapy 
approaches are designed. In addition, the improvement of  
invasive techniques for locoregional treatment of  HCC can 
be used to deliver gene therapy vectors inside the tumor, 
increasing their safety and efficacy. 

In summary, gene therapy will improve the management 
of  liver cancer patients in the future, probably as part of  
an individualized multimodal therapy. This will require 
close collaboration and a continuous flow of  information 
between basic, applied researchers and health care 
professionals. 
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