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Tubulin inhibitors: pharmacophore modeling, virtual 
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Aim: To construct a quantitative pharmacophore model of tubulin inhibitors and to discovery new leads with potent antitumor activities.
Methods: Ligand-based pharmacophore modeling was used to identify the chemical features responsible for inhibiting tubulin 
polymerization.  A set of 26 training compounds was used to generate hypothetical pharmacophores using the HypoGen algorithm.  
The structures were further validated using the test set, Fischer randomization method, leave-one-out method and a decoy set, and the 
best model was chosen to screen the Specs database.  Hit compounds were subjected to molecular docking study using a Molecular 
Operating Environment (MOE) software and to biological evaluation in vitro.  
Results: Hypo1 was demonstrated to be the best pharmacophore model that exhibited the highest correlation coefficient (0.9582), 
largest cost difference (70.905) and lowest RMSD value (0.6977).  Hypo1 consisted of one hydrogen-bond acceptor, a hydrogen-bond 
donor, a hydrophobic feature, a ring aromatic feature and three excluded volumes.  Hypo1 was validated with four different methods 
and had a goodness-of-hit score of 0.81.  When Hypo1 was used in virtual screening of the Specs database, 952 drug-like compounds 
were revealed.  After docking into the colchicine-binding site of tubulin, 5 drug-like compounds with the required interaction with the 
critical amino acid residues and the binding free energies <-4 kcal/mol were selected as representative leads.  Compounds 1 and 3 
exhibited inhibitory activity against MCF-7 human breast cancer cells in vitro.
Conclusion: Hypo1 is a quantitative pharmacophore model for tubulin inhibitors, which not only provides a better understanding of 
their interaction with tubulin, but also assists in discovering new potential leads with antitumor activities.
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Introduction
The microtubule system of eukaryotic cells has an essential 
role in regulating cell architectures; this system is crucial dur-
ing cell division because microtubules are a key component of 
the mitotic spindle[1].  Microtubules are targeted by anticancer 
drugs and are involved in numerous essential cellular pro-
cesses, such as cell signaling, motility regulation, maintaining 
cellular shape and transporting material within the cell[1, 2].

Antimitotic agents arrest the cell cycle at the G2/M phase, 
resulting in tumor regression and apoptotic cell death[3–5].  The 
tubulin-binding agents that are regarded as classic antimitotic 
agents interfere with the dynamics of microtubules by target-
ing tubulin; these compounds are frequently used to treat 

human cancers[5].  Recently, the clinical use of some tubulin 
inhibitors, such as taxanes and vinca alkaloids, has been lim-
ited by neurotoxicity and drug resistance[5, 6].  Therefore, new 
small-molecule tubulin-binding inhibitors must be developed 
with novel modes of action[5, 7, 8].  The development of this type 
of drug is focused on the design of novel tubulin inhibitors.  

Historically, researchers have maintained a considerable 
interest in the discovery and development of novel inhibitors 
that can interfere with tubulin polymerization[9–11].  In recent 
years, researchers have been actively exploring new antitu-
bulin agents because of the toxicity and drug resistance of the 
antitubulin chemotherapy drugs[12].  Various small molecules 
have been reported as inhibitors of tubulin polymerization; 
these compounds bind to the colchicine-binding site on tubu-
lin[12–15].  Although many different tubulin inhibitors had been 
synthesized and experimentally assessed, no information is 
available regarding the discovery of structurally novel leads.  
Chemical feature-based pharmacophores and virtual library 
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screening may guide the design of novel lead candidates.  This 
study aims to construct a chemical feature-based pharma-
cophore model and identify lead candidates with antitumor 
activities.

In our study, we successfully used pharmacophore model-
ing, database screening, and molecular docking approaches 
to identify potential leads with antitumor activities.  A high-
correlation quantitative pharmacophore model was gener-
ated using the observed structure-activity relationship of 
known tubulin inhibitors.  After validation, this pharma-
cophore model was used as a 3D structural search query to 
find new classes of compounds from Specs database.  The hit 
compounds were subjected to molecular docking studies for 
refinement.  The binding free energy and molecular interac-
tions with the active site residues were considered important 
components when identifying the potential leads.  

Materials and methods
Pharmacophore model generation
The HypoGen module of Discovery Studio program (DS), 
version 2.5, from Accelrys (San Diego, CA, USA) was used to 
perform all of the pharmacophore modeling calculations.  To 
represent the structural diversity and broad activity range, 66 
compounds from literature resources[1, 2, 5, 9, 16–18] were selected 
for use in the primary data set during the 3D QSAR pharma-
cophore modeling study.  To ensure statistical relevance, 26 
compounds with the experimental activity values (IC50) were 
selected from the 66 dataset compounds for use as a training 
set; the remaining 40 compounds (Figure S1) were used as 
test-set compounds during pharmacophore validation.  To 
achieve a significant pharmacophore hypothesis, the above 
data set was selected based on the following criteria: (1) all 66 
compounds with inhibitory activity against the CEM cancer 
cell line bind at the colchicine site on tubulin to inhibit tubulin 
assembly.  (2) The data set must be widely populated, covering 
an activity range encompassing at least 4 orders of magnitude.  
The inhibitory activity values of the training-set compounds 
span five orders of magnitude, specifically from 0.52 nmol/L 
to 13 800 nmol/L, while those of test-set compounds span four 
orders of magnitude, specifically from 2.8 nmol/L to 14 900 
nmol/L.  (3) To avoid using the different standard IC50 values 
generated using different methods and labs, the inhibitory 
activity of 66 compounds used in the data set was collected 
from the same wet-lab assays and biological assessments; 
these compounds were built and subsequently geometrically 
optimized to the closest local minimum based on a Charmm-
like force field (DS).  All 26 compounds in the training set 
were submitted to 3D QSAR pharmacophore generation using 
DS.  The best conformer generation option, which involved a 
maximum number of 250 and an energy threshold of 10 kcal/
mol above the energy minimum necessary for conformation 
searching, was selected to generate multiple conformations.  
Hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), 
hydrophobic (HY) and ring aromatic (RA) features were used 
to generate ten pharmacophore models.  All other parameters 
used in the HypoGen module were kept at their default set-

tings[19, 20].  In this study, the top 10 hypothetical structures 
returned by the generation process were selected for further 
calculations.

The quality of a pharmacophore model is determined  
primarily by using two theoretical cost calculations that are 
represented in bit units.  One is the “null cost” representing 
the highest cost of a pharmacophore model with no features; 
this value estimates every activity as the averaged activity 
data from the training-set molecules.  The second cost is the 
“fixed cost,” also known as cost of an ideal model, which rep-
resents the simplest model that fits all the data perfectly.  The 
total cost should always be far from the null cost and near the 
fixed cost when developing a meaningful model.  The cost dif-
ference between the null and fixed cost values should be larger 
for a significant pharmacophore model.  A value of 40–60 bits 
in a model implies that it has 75%–90% probability of repre-
senting a true correlation within the data[19, 20].  The hypotheses 
are also evaluated based on other cost components.  The cost 
value for every hypothesis is the summation of the weight 
cost (W), the configuration cost (C) and the error cost (E).  The 
weight cost is a value that increases in a Gaussian form as the 
feature weights in a model deviate from the ideal value, which 
is two.  The configuration cost measures the entropy of the 
hypothesis space.  The error cost is the value that represents 
the root-mean-squared difference (RMSD) between the esti-
mated and experimental activity value of the training-set com-
pounds.  If the input training-set compounds are too multiplex 
owing to too much flexibility in the training-set molecules, 
an effusive number of hypotheses will be generated from the 
subtractive phase.  This configuration cost should always be 
less than 17.  The correlation coefficient of the pharmacophore 
model should be close to 1.

Pharmacophore model evaluation
The best pharmacophore model was further validated by test 
set, Fischer randomization, decoy set and leave-one-out meth-
ods.  

Test-set method
A total of 40 compounds with experimental activity data were 
selected from reported articles for the test set[1, 2, 5, 9, 16–18].  This 
method is used to elucidate whether the generated pharma-
cophore model can predict the activities of the compounds 
other than the training set and classify them correctly in their 
activity scale.  The conformation generation for the test-set 
compounds was performed using the Diverse Conformation 
Generation protocol in DS.  The different conformations of 
40 compounds were subsequently determined for pharmaco-
phore mapping using the Ligand Pharmacophore Mapping 
protocol with the Best/Flexible Search option available in DS.

Fischer randomization method
To verify whether a strong correlation exists between the bio-
logical activities and the chemical structure of the training-
set compounds, a Fischer randomization test was carried 
out.  This method generates pharmacophore hypotheses by 
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randomizing the activity data of these compounds while using 
the same parameters and features used to generate the original 
pharmacophore hypothesis.  For the Fischer’s randomization 
test, a 95% confidence level was chosen for this validation 
study, and 19 random spreadsheets were constructed[19, 20].  
During the pharmacophore generation process, if the random-
ized data set generates similar or better cost values, RMSD 
and correlation, the original hypothesis were generated by 
chance[21].

Decoy-set method
An internal database was developed using 800 compounds 
containing 43 active structures collected from the reported lit-
erature[22–32].  The database was used to evaluate the discrimi-
native ability of the best pharmacophore model when distin-
guishing the active compounds from the inactive compounds.  
A database screening was performed using the Ligand Phar-
macophore Mapping protocol available in DS.  A set of statis-
tical parameters were calculated including the total hits (Ht),  
% yield of actives, % ratio of actives, enrichment factor (E), 
false negatives, false positives, and goodness of hit score (GH).

Leave-one-out method
The generated pharmacophore hypothesis is validated using a 
leave-one-out method.  In this method, one compound is omit-
ted during the generation of a new pharmacophore model, 
and its affinity is predicted by that new model.  The model 
building and estimation cycle is repeated until each compound 
is omitted once[33].  This test verifies whether the correlation 
coefficient of the training-set compounds depends mainly on 
one particular compound[34].

Virtual screening
The CONCORD computer program (Tripos Associates, St 
Louis, MO) was used to convert the two-dimensional struc-
tures of the tested compounds from the Specs database into 
three-dimensional structures with the addition of charges.  All 
compounds in the Specs database were further filtered based 
on Lipinski’s rule of five[35–37].  A Lipinski-positive compound 
has the following qualities: (i) a molecular weight <500; (ii) 
<5 hydrogen bond donor groups; (iii) <10 hydrogen bond 
acceptor groups; (iv) an octanol/water partition coefficient 
(Log P) value <5[19, 20].  To identify any novel hit compounds, 
the validated pharmacophore model was used as a 3D query 
to screen the drug-like compounds in the Specs database.  A 
Search 3D Database protocol with Best/Flexible search option 
was applied during the database screening[19, 20].  Finally, these 
compounds were retrieved for further analysis and were 
selected based on the ligand conformations; these conforma-
tions can satisfy the binding free energy and molecular inter-
actions with the key amino acids in the active site.

Molecular docking
A Molecular Operating Environment (MOE) (Chemical Com-
puting Group Inc, Montreal, Quebec, Canada) was used for 
molecular docking.  A crystal structure of tubulin, which was 

obtained at 3.58 Å, was downloaded from the protein data 
bank (PDB ID: 1SA0).  This structure was protonated in the 
Molecular Operating Environment (MOE)[38].  The active site 
was defined with a 6 Å radius around the bound inhibitor (col-
chicine) in the tubulin crystal structure.  The triangle matcher 
algorithm of the MOE software packages was selected to dock 
the identified hit compounds into the protein active site.  The 
scoring function must comply with the following parameters: 
(1) specifying ASE Scoring to rank the poses output by the 
placement stage; (2) specifying Forcefield Refinement to relax 
the poses; (3) specifying Affinity dG Scoring to rank the poses 
using the refinement stage[39].  The free energy of binding was 
calculated from the contributions of the hydrophobic, ionic, 
hydrogen bond, and van der Waals interactions between the 
protein and the ligand, intramolecular hydrogen bonds and 
strains of the ligand.  We observed that the docking poses 
were ranked by the binding free energy calculation in the S 
field.  

Cell proliferation inhibition assay
The biological assays were performed by using an MTT 
assay against one normal human cell line (HBL100) and one 
human breast cancer cell line (MCF-7) with abundant tubulin 
expression.  The two cell lines were cultured in DMEM/1640 
medium supplemented with 10% fetal bovine serum, 200 
U/mL penicillin and 200 U/mL streptomycin.  For in vitro 
treatment, the carcinoma cells were seeded in 96-well plates 
(6000 cells/well) and incubated at 37 °C and 5% CO2.  After 
24 h, the cells were treated with a known concentration of 
each test compound for 48 h.  At the end of the drug expo-
sure period, the cells were incubated at 37 °C for 4 h to 6 h by 
adding 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT, Sigma) (20 μL/well).  Next, the medium was 
removed, and 200 μL of DMSO was added to the insoluble 
fraction.  The absorbance values at 490 nm were determined 
with a Spectramax M5 Microtiter Plate Luminometer (Molecu-
lar Devices Corporation, Sunnyvale, CA, USA).  The values 
were calculated using the percentage of growth versus the 
untreated control.  

Results and discussion
Pharmacophore modeling
To correlate the chemical structure of tubulin inhibitors quan-
titatively to their biological activity, the HypoGen algorithm, 
which is available in the 3D QSAR Pharmacophore Genera-
tion protocol of DS, was carried out.  During pharmacophore 
model generation, a training set containing 26 compounds 
(Figure 1) with activity values ranging from 0.52 to 13 800 
nmol/L was used to generate ten top-scored hypothetical 
pharmacophores.  The results for the top ten hypothetical 
pharmacophores and their statistical parameters are shown in 
Table 1.  In this study, the first hypothetical pharmacophore 
(Hypo1) is the best; this structure has the lowest total cost 
value (114.523), the largest cost difference (70.905), the lowest 
root-mean-squared difference (RMSD) value (0.6977), and the 
highest correlation coefficient (0.9582).  
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A statistical data analysis was performed to assess the 
quality of the generated hypothetical pharmacophores.  The 
two main values used for the cost analysis are the difference 
between null and fixed cost and the difference between the 
total cost and the null cost.  The fixed cost of the run was 
98.2482, which was far from the null cost of 185.428 and close 
to the total cost of 114.523.  The large difference (87.1798) 

between the fixed and null cost values suggests that Hypo1 
has more than 90% statistical significance as a model.  All the 
10 hypothetical pharmacophores were subjected to further 
assessment for their ability to predict the activity of the train-
ing-set molecules.  A value for the configuration cost below 
17 indicates that the correlation from the generated pharma-
cophores cannot be attributed to chance.  All hypotheses have 

Figure 1.  Chemical structures of tubulin inhibitors in the training set. 
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RMSD values below 2, illustrating the good predictive quality 
of these hypothetical structures.  The rule to select a hypotheti-
cal pharmacophore with the lowest total cost, a large cost dif-
ference, a high correlation coefficient and a low RMSD value 
reveals that Hypo1 has the best statistical values compared to 
the other hypothetical structures.  Therefore, Hypo1, which 
included one hydrogen-bond acceptor (HBA), one hydrogen-
bond donor (HBD), one hydrophobic feature (HY), one ring 
aromatic feature (RA) and three excluded volumes (EV), was 
chosen as the best structure for further analysis (Figure 2A).  
The 3D space and distance constraints of these features are 
represented in Figure 2B.  

Activity prediction and mapping of the training-set compounds 
on Hypo1
To verify the predictive ability of Hypo1 with the training-
set compounds, a regression analysis was used to estimate 
the activity of each training-set compound.  The experimental 
activities of the training-set compounds were classified into 
four groups: highly active (IC50<20 nmol/L, ++++), active (20≤ 
IC50<200 nmol/L, +++), moderately active (200≤IC50<2000 
nmol/L, ++), and inactive (IC50≥2000 nmol/L, +)[10].  As shown 
in Table 2, three of the twenty-six training-set compounds 
were predicted to have different activities than their experi-
mental values.  The error value is the ratio between the esti-

Table 1.  Statistical results of the top 10 pharmacophore hypotheses generated by HypoGen algorithm.  

  Hypothesis	           Total cost	            Cost differencea	    RMSD	                        Correlation	                      Features
 
	 Hypo1	 114.523	 70.905	 0.6977	 0.9582	 HBA, HBD, HY, RA, 3EV
	 Hypo2	 126.821	 58.607	 1.4805	 0.8501	 HBA, HBA, HY, RA, 2EV 
	 Hypo3	 128.250	 57.178	 1.5159	 0.8421	 HBD, HY, RA, RA, 2EV 
	 Hypo4	 129.810	 55.618	 1.5422	 0.8364	 HBD, HY, HY, RA, EV
	 Hypo5	 131.894	 53.534	 1.6062	 0.8205	 HBA, HBD, HY, RA, 2EV
	 Hypo6	 132.019	 53.409	 1.5994	 0.8226	 HBD, HY, HY, RA, EV
	 Hypo7	 132.057	 53.371	 1.6118	 0.8192	 HBA, HBD, HY, RA, 2EV
	 Hypo8	 132.409	 53.019	 1.6185	 0.8176	 HBD, HY, HY, HY, EV
	 Hypo9	 132.532	 52.896	 1.6058	 0.8212	 HBD, HY, HY, RA, EV
	 Hypo10	 133.136	 52.292	 1.6381	 0.8126	 HBD, HY, HY, HY, RA

Null cost=185.428; Fixed cost=98.2482; Configuration cost=14.3877; aCost difference=Null cost–Total cost; Abbreviations used for features: HBA, 
hydrogen-bond acceptor; HBD, hydrogen-bond donor; HY, hydrophobic region; RA, ring aromatic; EV, excluded volume.

Figure 2.  The best HypoGen pharmacophore model, Hypo1.  (A) Chemical features present in Hypo1.  (B) 3D spatial relationship and geometric 
parameters of Hypo1.  (C) Mapping of the most active compound 1 on the best pharmacophore model, Hypo1.  (D) Mapping of the least active 
compound 26 on Hypo1.  Pharmacophore features are color-coded: green, hydrogen bond acceptor (HBA); cyan, hydrophobic (HY); orange, ring aromatic 
(RA); magenta, hydrogen bond donor (HBD); gray, excluded volume (EV).
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mated and experimental activities.  An error value below 10 
signifies that the estimated activity was below one order of 
magnitude.  None of the 26 training-set compounds had an 
error value above 4.  Figure 2C and 2D map the most and least 
active compounds of the training set on Hypo1, respectively.  
Clearly, compound 1 mapped well on all of the hypothetical 
features, while compound 26 did not map on to two of the 
hypothetical features, particularly HBD and RA, signifying the 
importance of these features.  Therefore, Hypo1 is a reliable 
model that accurately estimates the experimental activity of 
the training-set compounds.

Pharmacophore validation
The best model pharmacophore (Hypo1) was further validated 
using the test-set, Fischer randomization test, leave-one-out 
and decoy-set methods.

Test-set method
The predictive ability of Hypo1 was evaluated using test-set 
predictions.  The validation process was performed using a 
test set containing 40 compounds with diverse activities and 
different functional groups.  Various conformers of these test-
set compounds were built using the same method as that used 
for the training-set compounds while using DS.  The estimated 
activity values were predicted for every test-set compound 
based on the geometric fit of these compounds over Hypo1.  
The simple regression between the experimental and esti-
mated activity values for 40 test-set compounds had a correla-
tion coefficient value of 0.9181 (Figure 3).  Thirty-five of the 
forty test-set compounds had error values below 2 (Table 3), 
similar to the experimental and estimated activity values.  A 
good correlation was observed between the experimental and 
estimated IC50 values, revealing the good predictive capacity 
of Hypo1.  

Fisher randomization method
To validate the statistical confidence of Hypo1, Fischer’s 
randomization method was performed on the training-set 
compounds.  During the validation process, the experimental 
activities of the training set were randomly mixed and the 
resulting training set was used in a HypoGen module with the 
parameters chosen when generating the original pharmaco-
phore.  To show that Hypo1 was not generated by chance with 
a 95% confidence level, a set containing 19 random spread-
sheets was generated (Figure 4).  None of the randomly gen-
erated pharmacophore models obtained from this validation 
method was produced with statistical values better than those 
of Hypo1.  The Fischer’s randomization test confirmed that 
Hypo1 was statistically robust.

Decoy-set method
An internal database containing 800 compounds was used 
during the validation process.  This database was created with 
757 inactive compounds and 43 inhibitors with known experi-

Table 2.  Experimental and estimated IC50 values of the training set 
compounds based on best pharmacophore hypothesis Hypo1.

	               IC50 (nmol/L)	                   	        Activity scalec

  Name             Experi-            
Estimated

	   Errorb         Experi-    
Estimated                        mentala                                                       mental  

 
	   1	          0.52	        0.31	 -1.7 	 ++++	 ++++
	   2	          1.9	        7.5	 +3.9 	 ++++	 ++++
	   3	          7.2	      14	 +1.9 	 ++++	 ++++
	   4	        19	      44	 +2.3 	 ++++	 +++
	   5	        30	      81	 +2.7 	 +++	 +++
	   6	        46	      60	 +1.3 	 +++	 +++
	   7	        83	    140	 +1.7 	 +++	 +++
	   8	      122	    110	 -1.1 	 +++	 +++
	   9	      192	    360	 +1.9 	 +++	 ++
	 10	      288	    190	 -1.5 	 ++	 +++
	 11	      350	    360	 +1.0 	 ++	 ++
	 12	      430	    270	 -1.6 	 ++	 ++
	 13	      555	    230	 -2.4 	 ++	 ++
	 14	      606	    320	 -1.9 	 ++	 ++
	 15	      789	    770	 -1.0 	 ++	 ++
	 16	      974	  1100	 +1.1 	 ++	 ++
	 17	   1131	    710	 -1.6 	 ++	 ++
	 18	   1640	    560	 -2.9 	 ++	 ++
	 19	   2171	 3300	 +1.5 	 +	 +
	 20	   2470	 3800	 +1.5 	 +	 +
	 21	   3000	 3400	 +1.1 	 +	 +
	 22	   4610	 3800	 -1.2 	 +	 +
	 23	   6252	 3700	 -1.7 	 +	 +
	 24	   7500	 4390	 -1.7 	 +	 +
	 25	   8140	 6900	 -1.2 	 +	 +
	 26	 13800	 9200	 -1.5 	 +	 +

a References [1, 2, 5, 9, 16–18].
b Positive value indicates that the estimated IC50 is higher than the 
experimental IC50; negative value indicates that the estimated IC50 is lower 
than the experimental IC50.
c Activity scale: IC50<20 nmol/L (Most active, ++++); 20≤IC50<200 nmol/L 
(Active, +++); 200≤IC50<2000 nmol/L (Moderately active, ++); ≥2000 
nmol/L (Inactive, +). 

Figure 3.  The correlation graph between experimental and estimated 
activity values based on Hypo1.
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mental activity.  To investigate the ability to distinguish the 
actives from inactive compounds, Hypo1 was used as a 3D 
query to screen the internal database while using the pharma-
cophore search module.  Hypo1 retrieved 49 compounds, 39 

of which were active.  The enrichment factors (E), goodness of 
hit score (GH) and other statistical values were calculated for 
Hypo1 using this database (Table 4).  The false positive value 
is 10, and the false negative value is 4.  The calculated E value 
is 14.81, indicating that this model is highly efficient for data-
base screening.  When the GH score exceeds 0.7, the model is 
very good.  This score was 0.81 for Hypo1, revealing that this 
structure could identify the active compounds.  

Leave-one-out method
The leave-one-out method was used to cross-validate the 
model.  For this method, the hypothetical pharmacophores 
were recomputed by omitting one compound at a time from 
the training set.  This process proves that the correlation coef-
ficient of Hypo1 does not depend solely on one particular 
compound.  If the corresponding one-missing hypothesis can 
correctly predict the activity of each excluded compound, the 
test is positive.  The value of the correlation coefficient, the 
feature composition of the pharmacophore and the quality of 

Table 3.  Test set compounds listed with their experimental, estimated 
activities and error values.

	                  IC50 (nmol/L)                  	        Activity scalec

  Name             Experi-            
Estimated

	   Errorb         Experi-    
Estimated                        mentala                                                       mental  

 
	   1	         2.8	           5	 +1.8 	 ++++	 ++++
	   2	         7.7	           8	 +1.0 	 ++++	 ++++
	   3	          8.9	         12	 +1.3 	 ++++	 ++++
	   4	        18	         10	 -1.8 	 ++++	 ++++
	   5	        24	         16	 -1.5 	 +++	 ++++
	   6	        57	         30	 -1.9 	 +++	 +++
	   7	        67	         17	 -3.9 	 +++	 ++++
	   8	        78	        34	 -2.3 	 +++	 +++
	   9	        94	        56	 -1.7 	 +++	 +++
	 10	        98	      110	 +1.1 	 +++	 +++
	 11	      110	        80	 -1.4 	 +++	 +++
	 12	      220	      172	 -1.3 	 ++	 +++
	 13	      225	      280	 +1.2 	 ++	 ++
	 14	      303	      230	 -1.3 	 ++	 ++
	 15	      400	      630	 +1.6 	 ++	 ++
	 16	      460	      455	 -1.0 	 ++	 ++
	 17	      482	      609	 +1.3 	 ++	 ++
	 18	      500	   1 350	 +2.7 	 ++	 ++
	 19	      510	       747	 +1.5 	 ++	 ++
	 20	      603	       242	 -2.5 	 ++	 ++
	 21	      870	      120	 -7.3 	 ++	 +++
	 22	      953	   1 360	 +1.4 	 ++	 ++
	 23	   1 319	      958	 -1.4 	 ++	 ++
	 24	   1 500	      900	 -1.7 	 ++	 ++
	 25	   1 700	   2 049	 +1.2 	 ++	 +
	 26	   1 900	   1 100	 -1.7 	 ++	 ++
	 27	   2 000	   1 602	 -1.2 	 +	 ++
	 28	   2 200	   1 898	 -1.2 	 +	 ++
	 29	   2 400	   1 300	 -1.8 	 +	 ++
	 30	   2 436	   3 043	 +1.2 	 +	 +
	 31	   2 651	   3 099	 +1.2 	 +	 +
	 32	   2 700	   2 800	 +1.0 	 +	 +
	 33	   4 300	   2 300	 -1.9 	 +	 +
	 34	   4 600	   2 578	 -1.8 	 +	 +
	 35	   7 200	   6 090	 -1.2 	 +	 +
	 36	   7 270	   8 300	 +1.1 	 +	 +
	 37	   7 370	   6 160	 -1.2 	 +	 +
	 38	   8 200	   7 500	 -1.1 	 +	 +
	 39	   8 670	 13 500	 +1.6 	 +	 +
	 40	 14 900	   9 800	 -1.5 	 +	 +

a References [1, 2, 5, 9, 16–18].
b Positive value indicates that the estimated IC50 is higher than the 
experimental IC50; negative value indicates that the estimated IC50 is lower 
than the experimental IC50.
c Activity scale: IC50<20 nmol/L (Most active, ++++); 20≤IC50<200 nmol/L 
(Active, +++); 200≤IC50<2000 nmol/L (Moderately active, ++); ≥2000 
nmol/L (Inactive, +). 

Table 4.  Statistical parameters of GH score validation for Hypo 1.

                    Parameter	                                                     Results
 
	 Total molecules in database (D)	 800
	 Total number of actives in database (A)	    43
	 Total Hits (Ht)	    49
	 Active Hits (Ha)	    39
	 % Yield of actives[(Ha/Ht)×100] 	    79.59 
	 % Ratio of actives [(Ha/A)×100]	    90.70 
	 Enrichment factor (E) [(Ha×D)/(Ht×A)]	    14.81 
	 False negatives [A-Ha]	      4.00 
	 False positives [Ht-Ha] 	    10.00 
	 Goodness of Hit Score (GH)a 	      0.81 

a GH=[(Ha/4HtA) (3A+Ht)×(1–(Ht-Ha)/(D–A))]

Figure 4.  Results of Fischer randomization test for 95% confidence level.
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the activity estimated for the excluded compound were used 
to assess the statistical test.  We did not obtain any meaning-
ful differences between Hypo1 and any of the 26 hypothetical 
structures resulting from the leave-one-out method, confirm-
ing that the correlation coefficient for Hypo1 did not depend 
solely on one particular compound in the training set at 
required confidence level.

Database screening
The steps used during the database screening are shown in 
Figure 5.  First, the concord software was used to convert the 
two-dimensional structures of the tested compounds in the 
Specs database into three-dimensional structures with the 
addition of electric charges.  Second, the preliminary screen-
ing of drug-like compounds was performed based on Lipin-
ski’s rule of five.  Consequently, 145 307 drug-like compounds 
were selected for screening with Hypo1.  The 952 compounds 
mapped on all of the pharmacophoric features present in 
Hypo1 were finally used in a molecular docking study.

Molecular docking
To further refine the retrieved hits and remove the false posi-
tives, these 952 compounds, as well as the 26 training-set 
compounds, were docked into the colchicine-binding site of 
tubulin (PDB ID: 1SA0) using the Molecular Operating Envi-
ronment (MOE) software.  The binding free energy that distin-
guishes molecules based on their interacting ability was cal-
culated for all 978 compounds.  The highly active compounds 

in the training set had binding free energy values above -3.931 
kcal/mol.  Finally, 164 compounds were selected by restricting 
the binding free energy to <-4 kcal/mol.

Because it predated the FDA, colchicine was sold in the 
United States for many years without having been reviewed 
by the FDA for safety and efficacy.  The crystal structure of 
tubulin with colchicine was obtained from the protein data 

Figure 6.  Interaction analysis.  (A) 2D interaction diagram for the binding site of tubulin with the colchicine.  Residues are annotated with their 3-letter 
amino acid code.  There are five chains in the system and its positions are prefixed with letters of the alphabet.  (B) 3D interaction diagram for the 
binding site of tubulin with the colchicine.  The active site residues are shown in stick form.  The colchicine is color-coded by cyan.  

Figure 5.  Database screening.  The flowchart of procedure used in 3D 
QSAR pharmacophore modeling.
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bank (PDB ID: 1SA0).  Ligand-protein interaction diagrams for 
the binding site of tubulin with colchicine are shown in Fig-
ure 6.  Colchicine interacted strongly with critical amino acid 
residues including Leu255, Leu248, Lys352, and Asn258 in the 
colchicine-binding site of tubulin.  Therefore, these amino acid 
residues were very important for inhibitor binding.  These 
164 compounds were selected based on the ligand conforma-
tions that could satisfy the necessary interactions with the key 
amino acids at the active site.  Finally, 5 drug-like compounds 
with the required interaction with critical amino acid residues 
and good binding free energies were selected as representa-
tive leads.  Figure 7 depicts good pharmacophore mapping of 
five hits on Hypo1.  A search for compounds using SciFinder 
Scholar and PubChem Search revealed that these hits belonged 
to the chalcone derivatives that strongly inhibited the polym-
erization of tubulin by binding to the colchicine-binding site of 
the β-tubulin subunit[40].  However, these hits had no reported 
in vitro antiproliferative activity against cancer cell lines.  
Therefore, the five hits were selected and purchased for bio-
logical validation.

In vitro antiproliferative activities
Compounds 1–5 were evaluated for in vitro cytotoxic activ-

ity against a human breast cancer cell line (MCF-7) and a 
normal human cell line (HBL100).  The preliminary results 
from the MTT assays showed that all the selected compounds 

Table 5.  Compounds selected and purchased for biological validation: inhibition of MCF-7 cell growth at 100 μmol/L concentration and IC50 of selected 
compounds.  

Compounds 	    SPECS/No	                                   Structure
	                             

% Inhibition (MCF-7)
	            IC50±SDa (μmol/L)

				                                                                                                                                       MCF-7                     HBL100
 
	 1	 AE-562/40322474	 85±3.30	 28.5±4.38	   >100

	 2	 AQ-358/42003065	 69±4.14	       NDb	      ND

	 3	 AQ-358/41842921	 81±4.86	    54±5.17	 30.7±3.2

	 4	 AE-848/10302031	 53±4.27	       ND	      ND

	 5	 AQ-358/42003072	 65±4.35	       ND	      ND

	Colchicine		  90±3.0	   4.5±6	   >100

a Concentration of compound that inhibits 50% human tumor cell growth, presented as mean±standard deviation (SD), performed at least in triplicate.
b ND indicates not determined.

Figure 7.  Pharmacophore mapping of five hits on Hypo1.  Pharmacophore 
features are color-coded: green, hydrogen bond acceptor (HBA); cyan, 
hydrophobic (HY); orange, ring aromatic (RA); magenta, hydrogen bond 
donor (HBD); gray, excluded volume (EV).  All the compounds are color-
coded by green.
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were active with various degrees of inhibition at 100 μmol/L 
(Figure 8).  The five hits exhibited at least 50% inhibition of 
MCF-7 cell proliferation.  After applying a cutoff at 80% inhi-
bition, compounds 1 and 3 were subjected to IC50 studies.  
Table 5 shows that compound 1, which has an IC50 value of 
28.5 μmol/L, exhibited stronger cytotoxicity against MCF-7 
cell line than compound 3.  As shown in Figure 9, compounds 
1, 3 and colchicine exhibited dose-dependent anti-proliferative 
activity against HBL100, while compound 1 exhibited lower 

cytotoxicity against a normal human cell line (HBL100) when 
compared to colchicine and compound 3.

Interaction analysis
To confirm the correct binding mode and ensure a geometric 
fit, compounds 1 and 3 were docked into the colchicine-bind-
ing site of tubulin (Figure 10).  Compound 1 exhibited strong 
hydrophobic interactions with Ala316, Lys254, and Thr179, as 

Figure 8.  Inhibition of MCF-7 cell growth at 100 μmol/L concentration by 
selected compounds.  The bars indicate means±SD (n=3).  Figure 9.  Dose-response curve of normal human cell (HBL100) 

growth inhibition by compounds 1 (AE-562/40322474) and 3 (AQ-
358/41842921).  The bars indicate mean±SD (n=3).

Figure 10.  Ligand-protein interaction diagrams for the binding site of tubulin with two hit compounds.  The hits are: (A) compound 1 (AE-562/40322474) 
and (B) compound 3 (AQ-358/41842921).  Residues are annotated with their 3-letter amino acid code.  There are five chains in the system and its 
positions are prefixed with letters of the alphabet.  Hydrogen-bonding interactions between the receptor and the ligand are drawn with an arrowhead to 
denote the direction of the hydrogen bond.  When the hydrogen bond is formed with the residue sidechain, the arrow is drawn in green.
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well as critical amino acid residues including Leu255, Leu248, 
Lys352, and Asn258.  Moreover, the methoxy group on this 
compound formed a hydrogen-bonding interaction with 
the side chain of Asn101 when compared to colchicine.  The 
molecular docking positions of compounds 1 and 3 in the crys-
tal structure of tubulin are represented in Figure 11.  The entire 
structure of compound 3 mapped very well onto the hydro-
phobic pocket of tubulin and formed strongly hydrophobic 
interactions with Leu255, Leu248, Lys352, and Asn258 in the 
active site.  More importantly, the two methoxy groups on this 
compound, showed a better geometric fit over the hydropho-
bic pocket and hydrogen-bonding interactions with the side 
chain of Asn101 compared to colchicine; Asn101 played a very 
important role during protein-ligand binding process, pos-
sibly explaining the stronger inhibitory activity of compounds 
1 and 3 against MCF-7 cancer cell line.  An understanding of 
this interaction between tubulin and the hit compounds will 
aid in the development of new inhibitors with potent antitu-
mor activities.  

Conclusion
In the present work, 3D pharmacophore models of tubulin 
inhibitors were developed using the HypoRefine module in 
the Discovery Studio program (DS).  The best quantitative 
pharmacophore model was Hypo1; this model was character-
ized by the lowest total cost value (114.523), the highest cost 
difference (70.905), the lowest RMSD (0.6977), and the best cor-
relation coefficient (0.9582).  Hypo1 was generated with one 
HBA, one HBD, one HY, one RA feature and three EV.  This 
pharmacophore model was further validated using the test-set 
prediction, Fischer’s randomization test, decoy-set and leave-
one-out methods.  The results of the test-set method showed 
a good correlation between the experimental and estimated 
values (correlation coefficient of 0.9181), revealing the good 
predictive ability of Hypo1.  The results of the Fischer’s ran-

domization test further confirmed the statistical confidence 
for Hypo1.  Other validation methods have provided reliable 
results regarding the strength of Hypo1.  Hypo1 was used as a 
3D query to screen the Specs database after validation.  The hit 
compounds were subsequently subjected to molecular dock-
ing studies to refine the retrieved hits.  Finally, five potential 
inhibitory leads with diverse structures and strong molecular 
interactions with the key amino acids were identified.  Bio-
logical evaluation indicated that compounds 1 and 3 showed 
relatively good inhibitory activity against a cancer cell line 
(MCF-7).  We believe that this study will not only assist in the 
development of new potent hits for antitumor inhibitors but 
also provide a better understanding of their interaction with 
tubulin.  More broadly, these results will facilitate the rational 
design of novel potent drugs.  
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