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ABSTRACT A simple model of the kinetics of protein
folding is presented. The reaction coordinate is the "correct-
ness" of a configuration compared with the native state. The
model has a gap in the energy spectrum, a large configura-
tional entropy, a free energy- barrier between folded and
partially folded states, and a good thermodynamic folding
transition. Folding kinetics is described by a master equation.
The folding time is estimated by means of a local thermody-
namic equilibrium assumption and then is calculated both
numerically and analytically by solving the master equation.
The folding time has a maximum near the folding transition
temperature and can have a minimum at a lower temperature.

The goal of this paper is to present a simple and easily solved
generic model of the kinetics of protein folding. This model
possesses many of the characteristic features of more realistic
models.

Reviews of protein folding theory (1-3) focus on the im-
portance of the energy landscape and its roughness. Indeed,
this emphasis is necessary if one wants to understand why some
amino acid sequences fold to their native structures easily and
others get stuck in metastable states or fold to many different
structures. Here we avoid this issue and assume from the
beginning that we are dealing with a "good" sequence, one that
folds easily and has a unique native structure. Then we can
make some simplifying assumptions which allow an easy
treatment of the kinetics. The model treated here is essentially
the same as in an earlier discussion of Levinthal's paradox (4),
except that the completely folded state is treated as reversibly
accessible and not merely as an absorbing sink.
The energy landscape of a protein is its potential energy as

a function of many physical coordinates. Folding is a complex
motion of the protein on this multidimensional potential
surface. The folding process is not necessarily unique-there
may be many trajectories or sequences of events that can lead
to the native structure. In chemical kinetics one generally
prefers, when possible, to deal with a free energy as a function
of a single reaction coordinate instead of a potential energy as
a function of many coordinates. For this reason, I choose not
to describe the configuration of a protein properly by means of
its physical coordinates. Instead, I specify its configuration in
a cruder way by N discrete parameters. These parameters can
also be regarded as coordinates, but they may have only a
distant relation to physical coordinates. For example, each
parameter could characterize the immediate environment of a
particular amino acid, or a contact between nonneighboring
amino acids that occurs in the native structure, or a small set
of bond angles in a Ramachandran plot. The model treated
here does not require an exact interpretation of these param-
eters. It is a weakness of the model that no direct connection
is made with the structure of any specific protein. On the other
hand, it is a strength of the model that the results may have
some generality, at least for "good" proteins, independent of
actual structures.

Each of the N parameters can take on any one of v + 1
values. The total number of configurations is (v + 1)N. Of the
v + 1 values, one is called correct, because it corresponds to
the value that parameter has in the native protein or ground
state-for example, the right environment of a particular
amino acid, the right contact pair, or the right bond angles. The
other v values are called incorrect. The number of parameters
that have incorrect values in any particular configuration of the
protein is denoted by S. This number is a measure of the
distance of any state from the fully correct or native structure.
When S reaches 0, the protein is correctly folded. The impor-
tance of correctness as a basic property of any protein con-
figuration was recognized by Bryngelson and Wolynes (5, 6),
and current theories and computer simulations of protein
folding all make use of analogous quantities (7-12).
Thermodynamics. In this model, we assume for simplicity

that the energy of a configuration, and the different ways of
being incorrect, are determined solely by S. A simple choice for
the energy of the protein, as a function of its distance S from
the correctly folded configuration, is a "smooth funnel,"

Es = SU-eso; S = O, 1,...,N, [1]

where both U and e are assumed to be positive. Positive U
avoids the "golf course landscape" that leads to the Levinthal
paradox. Positive E, or an energy gap, is needed to compensate
for the low configurational entropy of the correctly folded
state. The energy spacing between neighboring values of S is
a constant U except for the larger energy gap U + e between
S = 0 and S = 1. This is illustrated in Fig. 1, with the arbitrary
choiceN = 100, U = 2, and e = 24. The degeneracy of the state
specified by S is the number of ways of choosing S incorrect
values,

[2]

In this model the partition function is very easy to calculate; it
is the sum of a binomial series,

Q = >gse - «Es = e'6 + (1 + ve-U)N - 1. [3]

Because it comes up frequently, we use the notationK = ve-U.
The thermal equilibrium probability of any configuration

with S > 0 is

Ps(eq) = -Ks ) [4]

and the occupancy of the correctly folded configuration is

eq)
Po(eq) = [5]

This quantity can have a quite sharp "folding transition" as a
function of temperature. This is illustrated in Fig. 2, using v =
2,N = 100, U = 2, and e = 24. (For uniformity, these numerical
values are used in all the following illustrations. Similar results

Abbreviation: LTE, local thermodynamic equilibrium.
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FIG. 1. Energy of a configuration as a function of the number of
incorrect parameters. Discrete points are connected by lines to help
the eye.

are found for different values of v, N, and s.) The value of U
is arbitrary and sets the temperature scale. Fig. 2 shows that the
midpoint of the transition occurs at T = 1.00; the occupancy
changes from Po = 0.04 at T = 1.05 to Po = 0.97 at T = 0.95.
The folding transition appears here as the result of a

competition between entropy, favoring incorrect parameters,
and energy, favoring correct parameters. Fig. 3 shows the free
energy as a function ofS at various temperatures. Note that the
free energy has a local minimum at some nonzero value of S,
another minimum at the correctly folded configuration S = 0,
and a barrier between the two minima that is caused by the
decrease of entropy as S decreases. The relative depth of the
two minima is determined by the temperature; low tempera-
tures favor the correctly folded protein. Higher temperatures
favor configurations near the other minimum, at nonzero S,
which are partially folded. It is tempting to suggest that the
"heat-denatured" state is a compact structure, since it can have
a substantial number of correct parameters, but no physical
size occurs in this model. Similar free energy curves were seen
by Sali et al. (12) in computer simulations of lattice models of
proteins.

Folding Kinetics. So far, the model has been used to
calculate equilibrium properties. To treat folding kinetics, we
need some rules for moving around on the free energy surface
that is determined by S. Whatever the rules, it is evident that
the rate of folding is going to be affected by passage through
the free energy barrier or bottleneck at S = 1. (This implies
that the transition state must look very much like the native
state, differing from it only in the incorrectness of a single
parameter.) Folding is likely to involve a random motion back
and forth between the free energy minimum of the partially
folded protein and the free energy minimum of the correctly
folded protein.
The kinetic model is based on the same general rules as in

ref. 4. It appears to be the simplest model that leads to
interesting results, and it is amenable to exact mathematical
analysis. In this model, any individual configurational param-
eter can change from correct to incorrect or from incorrect to
correct. (If one thinks in terms of actual molecular coordi-
nates, this change could involve many atoms, as in the "crank-
shaft" moves of computer simulations, and it could involve the
interactions of many atoms. We ignore these complexities
here.) Then in any transition between configurations, S can
change only by + 1 or -1. The protein does a biased nearest-
neighbor random walk on the one-dimensional lattice S = 0,
1, 2, . . ., N. The probability that the protein is located at S at
time t is denoted by Ps(t). The random walk is described by a
master equation for Ps(t) with transition rates constructed as
follows.
A transition from S to the more correct S - 1 occurs with

a rate w(S -* S - 1). This rate is the number S of incorrect
parameters that can be changed, times the rate k1 of changing
any incorrect one to a correct one,

w(S- S 1) = Skl,

0.9 0.95 1 1.05 1.1
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FIG. 2. Occupancy of the correctly folded state as a function of
temperature.

for S > 0. Generally, k1 depends on temperature; in a
kinetically rough landscape it may contain an Arrhenius factor
exp(-AE/kT). Transitions from S to the less correct S + 1
occur at the rate w(S -- S + 1) and are determined by the
requirement of detailed balance,

w(S -- S + 1)Ps(eq) = w(S + 1 -> S)Ps+1(eq).

Then for S > 0, the rate of going from S to S + 1 is

w(S->S+ 1) = (N- S)Kk1.

[7]

[8]

In this model, the state S = 0 is treated differently from the way
it was done in the earlier treatment (4),

w(O -*1) = NKkle- . [91

There, to calculate a first passage time, the state was assumed
to be fully absorbing. Now we allow a nonzero rate of escape,
exp(-13s)NKki. The limit of infinite s leads to the earlier
model.
With these rules, the master equation is

dPs w(S 1 S)Ps_i -w(S->S - 1)PSdt

+ w(S + 1 ->S)PS+j w(S ->S + 1)Ps-[10]

It is easy to verify that this master equation is solved by the
thermodynamic equilibrium distribution Ps(eq) that was given
earlier.

Estimating the Folding Time. We can estimate the folding
time as follows. Because of the large energy gap, equilibration
between the states S = 0 and S > 0 is expected to be the
rate-determining step. We guess that all states S > 0 come
rapidly to local thermodynamic equilibrium (LTE), condi-
tional on the current value of Po(t),

Ps(t) -- constant.(S)Ks,

Uz

[11]

5 10 15 20 25 30 35 40
Number Incorrect

FIG. 3. Free energy as a function of the degree of incorrectness, for
various temperatures. From top to bottom, the temperatures are T =

0.90, 0.95, 1.00, 1.05, and 1.10.
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and we find the constant from the time-dependent normal-
ization

N

EPs(t) = 1 - PO(t). [12]
S=1

Then the guessed-at solution is

Ps(t) _ )Ks(l - Po(t)), [13]

where Qo = (1 + K)N- 1. In particular this gives a relation
between Po(t) and P1(t),

P1(t) Q(l - PO(t)).

Analytic Solution. The argument based on the LTE assump-
tion is open to question. As long as there is a flow into the
native state S = 0, the LTE assumption cannot be strictly true.
However, the result agrees fairly well with what one gets from
an exact treatment of the master equation. We define a
relaxation function sp(t) by

Po(t) = Po(eq) + (PO(0) - Po(eq))p(t). [18]

In simple first-order kinetics, this function is exp(-t/Tf).
Whether or not it actually decays exponentially, a good esti-
mate of the folding time is its time integral,

Tf = dtep(t).
[14]

When this is substituted in the equation for the rate of change
of PO(t), we get

dPtdt = -kiNKe-6Po + k1P1

-k1[Q (1 -PO) -NKe -Po]p [15]

This shows a competition between the rate of gain kiNK/Qo,
which decreases as T increases, and the rate of loss k1NK
exp(- 3e), which increases as Tincreases. These two quantities
are equal at the folding temperature. Since the overall folding
rate is the sum of the gain and loss rates, it has a minimum at
the folding temperature (13).
The rate equation can be rewritten as

dP0 1
dt - -(PO - PO(eq)), [16]

where the folding time Tf (i.e., the observed relaxation time) is
the reciprocal of the folding rate,

(+ )N-(1 + K'T-
Tf- PO(eq). [17]

This folding time is smaller than the mean first passage time
to S = 0, except in the limit of infinite s. The dashed line in
Fig. 4 shows the logarithm (base 10) of the folding time as a
function of temperature. The same set of parameters (v = 2,
N = 100, U = 2, and E = 24) is used in this example, along with
the arbitrarily chosen rate k1 = 109 s-1. A rate k1 that is
independent of temperature corresponds to a hypothetical
kinetically smooth funnel-no barriers are encountered when
S decreases. (A kinetically rough funnel will be illustrated
later.) Note that the folding time has the expected maximum
near the transition temperature.

10
0

1
a
0.4

0.2 0.4 0.6 0.8 1
Temperature

FIG. 4. Logarithm (base 10) of the folding time, in seconds, as a
function of temperature. The solid line comes from the exact solution
of the master equation, the dashed line from the LTE approximation.
Both are based on the rate constant k1 = 109 s-1.

[19]

An exact expression for this quantity, in terms of definite
integrals, is derived in Appendix The folding time generally
depends on the initial state of the system; for illustrative
purposes, we take the special initial condition in which the
most incorrect state S = N is fully occupied.
To check the LTE approximation, we computed the definite

integrals numerically. The solid line in Fig. 4 shows the
temperature dependence of the logarithm (base 10) of the
folding time, for the same choice of parameters as before. The
dashed line shows the corresponding LTE estimate. There is
some deviation at low temperatures, but on the whole, the LTE
approximation appears to work quite well.
Numerical Solution. As a further test, the master equation

was solved numerically for the same choice of parameters (and
specifically for T = 0.96). The exact folding time is about 0.2
s. In a very short time period, of the order of 10-8 s, the initial
condition relaxes to a distribution resembling the prediction of
LTE. Over a very much longer time scale, of the order of 1 s,
the occupancy of the native state increases steadily to its
equilibrium value. The result of numerical integration could
not be distinguished from the solution of Eq. 16 using the exact
folding time.

Kinetically Rough Landscape. In this model, kinetic rough-
ness occurs in two ways. First, it is connected with the free
energy penalty for increasing S; this has already been taken
into account. But decreasing S can also involve climbing an
energy barrier. This can be represented by a rate k, containing
an extra Arrhenius factor, for example k, = 109 exp(-AE/kT).
Fig. 5 shows the exact folding time, for the same set of
parameters as before. The solid line is the earlier result, for AE
= 0, and the dashed line is the folding time when AE = 4. The
folding time passes through a minimum and then increases
again as the temperature decreases. In a crude sense, this is like
"glassy" behavior. Similar behavior was seen in simulations of
lattice models of proteins, in connection with first passage
times rather than folding times (14, 15).
Summary. A generic picture of protein folding kinetics has

been presented. It is based on the idea of the degree of
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FIG. 5. Logarithm (base 10) of the folding time, in seconds, as a
function of temperature. The rate constant is k, = 109 s-1 exp(-AE/
kT). The solid line uses AE = 0, and the dashed line uses AE = 4.
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correctness of a protein configuration, but not on any partic-
ular definition of correctness. It is based on a simple set of
thermodynamic rules, which lead to a free energy that has two
minima, one corresponding to the native state and the other to
an ensemble of partially folded states. The picture is based on
a simple set of kinetic rules, equivalent to a random walk in
correctness. After a short induction time, during which the
protein arrives at a LTE distribution, the overall kinetic
behavior is like that of a two-state system, and the picture
provides an estimate of the folding rate. It also allows an
analytic treatment of the kinetics, which supports the LTE
approximation. What this picture does not do is deal directly
with any individual protein; the thermodynamic and kinetic
rules may apply only approximately or qualitatively to real
proteins. The picture shows only what one might expect in a
general way for proteins that fold easily.

Appendix

Master Equation. The master equation can be solved by
standard methods of classical analysis (16). (Because t occurs
in the combination k1t, I set k1 = 1. The correct k1 is added
later.) First I introduce the generating function

N

G(t, x) = >XsPs(t).
s=o

[Al]

Then G satisfies a first-order partial differential equation with
an inhomogeneous term. Its solution has two parts, one coming
from an initial condition and the other (which vanishes if e =
0) from the inhomogeneous term,

G(t, x)

dO(t, x)
G()(t,x) - (1 - e-3e) dt' dt( ,' OQ - t'), [A2]

where the contribution from the initial condition is

( 1 +Kx - (1 -x)e-(1l+K)t
G(°)(t,x) = 0(t,x)G k, 1 + Kx + K(1 - x)e-(1+Kt) [A3]

and the function 0(t, x) is

-1 + Kx + K(l - x)e-(1+K)r~N
0(t,x) = [ 1 + K [A4]

From the definition of the generating function, Po is ob-
tained from G by settingx = 0, Po(t) = G(t, 0). Then PO satisfies
an inhomogeneous integral equation,

d0(t' , 0)
PO(t) = po(t) - (1 - e-08) dt' dt 0O(t - t'), [AS]

where, for brevity, the solution when e = 0 is denoted by po,
1 e-(lI+K)t

po(t) = 0(t, O)G 0, (1 +Ke-(l +K)t) [A6]

This equation can be solved by Laplace transforms. The
result (using z as the Laplace transform variable, and denoting
transforms by ^ ) is

1
PO = e-P + (1 - e- "-kz6(z, 0) p°- [A7]

Folding Time. To find the complete solution, one must
invert a Laplace transform, and this is a tedious undertaking.
However, there is a convenient shortcut to the folding time
which does not require a Laplace inversion. We use the
relaxation function p(t) that was defined earlier. The folding
time is the integral (restoring the factor ki)

Jx

k,Tf= dtfp(t) = lim '(z),
Jo

[A8]

which can be found from the small z behavior of Po(z). For
example, if the initial state is where the most incorrect state is
fully occupied, or Ps(O) = 8SN, then

1 [eE_1 1
Tf=:-- a2-aa,kl_j QI

where a2 and a, are given by
[ K

a2 = dt{[l + Ke-(l+K)'r- 1}I

[A9]

[AlO]

a, = dt{[1-Ke-(l +K)t - 1}. [All]

These are the integrals that were referred to in the section on
the analytic solution.

I thank William A. Eaton for helpful remarks.
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