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Abstract

Significant attention has recently been drawn to the potential link between head trauma and the development of neuro-

degenerative disease, namely chronic traumatic encephalopathy (CTE). The acute neurotrauma associated with sports-

related concussions in athletes and blast-induced traumatic brain injury in soldiers elevates the risk for future development

of chronic neurodegenerative diseases such as CTE. CTE is a progressive disease distinguished by characteristic tau

neurofibrillary tangles (NFTs) and, occasionally, transactive response DNA binding protein 43 (TDP43) oligomers, both

of which have a predilection for perivascular and subcortical areas near reactive astrocytes and microglia. The disease is

currently only diagnosed postmortem by neuropathological identification of NFTs. A recent workshop sponsored by

National Institute of Neurological Disorders and Stroke emphasized the need for premortem diagnosis, to better under-

stand disease pathophysiology and to develop targeted treatments. In order to accomplish this objective, it is necessary to

discover the mechanistic link between acute neurotrauma and the development of chronic neurodegenerative and neu-

ropsychiatric disorders such as CTE. In this review, we briefly summarize what is currently known about CTE devel-

opment and pathophysiology, and subsequently discuss injury-induced pathways that warrant further investigation.

Understanding the mechanistic link between acute brain injury and chronic neurodegeneration will facilitate the devel-

opment of appropriate diagnostic and therapeutic options for CTE and other related disorders.
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Introduction

Neurotrauma is one of the most common injuries in con-

tact sports and military conflicts.1 Each year in the United

States alone, > 1,700,000 traumatic brain injuries (TBIs) occur.2

Many of these TBIs are related to participation in contact sports,

such as football and hockey, but a high rate of neurotrauma has also

been reported for civilian and military populations in war zones.3 In

fact, the United States Department of Defense labeled blast-in-

duced TBI (bTBI) as the ‘‘signature injury’’ of the recent wars in

Iraq and Afghanistan.1 The estimated annual cost of treatment for

bTBI in the United States is 2.5 billion dollars.4 The enormous

economic burden is caused, in part, by the progressive development

of cognitive, motor, and psychiatric problems in blast-exposed

veterans and civilians.5 These clinical symptoms, emerging in

former athletes and soldiers alike, are often the first measurable

signs for the development of a chronic neurodegenerative disease

such as chronic traumatic encephalopathy (CTE).3 Clinical pre-

sentation of CTE has recently been divided into two categories:

young age of onset with primarily psychiatric and behavioral

problems, and older age of onset with primarily cognitive and

motor deficits.6 Increased awareness about CTE has prompted

widespread investigation into the progression and pathophysiology

of this disease.7

The two populations at greatest risk for development of CTE are

professional athletes and soldiers.5 It appears that individuals with

one or two copies of the apolipoprotein e4 (APOe4) allele have

poorer outcome following head trauma and are at increased risk

for developing CTE following TBI.8 Athletes exposed to sub-

concussive and concussive injury, as well as soldiers exposed

to even a single blast, can develop behavioral and psychiatric

problems within a single year following injury.9 An area in need

of further investigation is how acute neurotrauma relates to

and/or causes chronic neurodegenerative diseases in susceptible
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individuals. In this review, we examine tau-based CTE patho-

physiology and disease progression while discussing potential

mechanistic pathways that may link acute neurotrauma with

chronic neurodegenerative disease development and neurofibrillary

tangle (NFT) formation.

Neuropathological Findings in CTE

Postmortem examination is currently the only widely utilized

and accepted method by which CTE is diagnosed clinically, al-

though in vivo approaches have been identified and are currently

under development for diagnosis and tracking premortem.3,10

Common neuropathological findings of CTE include NFTs and

transactive response DNA binding protein 43 (TDP43), as well as

microglial and astrocyte activation.11 Although the mechanistic

link responsible for these pathological outcomes is not fully known,

the current understanding of the pathological progression will be

discussed in the following paragraphs.6

NFTs

Normal tau binds to tubulin and stabilizes microtubule fibrils in

neurons, thereby facilitating neurite outgrowth. When tau becomes

hyperphosphorylated, it binds to other normal tau proteins, which

leads to aggregation.12 Tau hyperphosphorylation in the central

nervous system (CNS) is common after TBI and other brain in-

juries.13 TBI can cause normal tau to dissociate from tubulin,

thereby exposing multiple phosphorylation sites.14 Hyperpho-

sphorylated tau is no longer able to bind to tubulin, and translocates

from the axon to the neuron soma.12 A primary reason for this

translocation is that normal tau is soluble, whereas hyperpho-

sphorylated tau becomes insoluble, therefore favoring a paired

helical filament arrangement that is too large to function in axons.13

The paired helical arrangement also leads to poor clearance of

hyperphosphorylated tau from the neuron.14 Accumulation of in-

soluble tau within neurons contributes to the development of tau

oligomers.15 Tau oligomers are granular intracellular buildups of

mutated tau, which precede the development of NFTs.14 When tau

phosphatases can no longer dephosphorylate oligomers efficiently,

NFTs grow and eventually mature.16 NFT maturation involves the

acetylation of the lysine residue 280.15 Once NFTs fully mature, they

affect large projecting neurons in a progressive hierarchical pattern.17

NFTs can spread to surrounding at-risk neurons through trans-syn-

aptic propagation or extracellular secretion as depicted in Figure 1.18

Propagation can occur by direct seeding of tau oligomers into the

lipid rafts of cell membranes, thus increasing cell permeability and

allowing access for the spread of larger secreted NFTs.16 After NFTs

propagate, the post-translational modifications become finalized, and

behavioral and motor symptoms begin to surface in patients.14 A

FIG. 1. Traumatic brain injury can lead to diffuse traumatic axonal injury and blood–brain barrier disruption. Shearing of axons
results in the disruption of tau binding to tubulin. Subsequent hyperphosphorylation of tau leads to formation of tau oligomers in the
neuronal soma. Eventually, neurofibrillary tangles form and are secreted into the extracellular milieu or spread to other neurons via
trans-synaptic propagation. Concurrent with axonal shearing, traumatic brain injury can cause a rapid blood pressure spike resulting in
blood–brain barrier disruption. The disruption leads to an inflammatory cascade as well as microglia and astrocyte activation. Microglia
and astrocyte activation in conjunction with tauopathy contribute to the pathology of chronic traumatic encephalopathy.
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likely reason for the symptomatic changes is that NFTs cause neu-

rons to become de-innervated, in part, because of decreased neurite

outgrowth, which ultimately leads to neuronal death.15

TDP43

Wild-type TDP43 is a nuclear RNA/DNA binding protein that

regulates the transcription of thousands of genes.19 TDP43 is pre-

dominantly found in large motor neurons throughout the CNS.20 TBI

causes an upregulation of Ca2 + -permeable a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptors, which in turn

lead to carboxy-terminal-cleaved TDP43 fragments.21 These frag-

ments translocate to the cytosol, mediated in part by the process of

ubiquitination.19 The fragments form intracellular aggregates that are

representative of several neurodegenerative diseases including:

Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral scle-

rosis, and CTE.20 Aggregates sequester RNA leading to pronounced

neurotoxicity.21 One mechanism by which neurotoxicity occurs is

TDP43 aggregate-induced misfolding of Cu/Zn superoxide dis-

mutase (SOD1), which predisposes surrounding cells to free-radical

damage.20 Associated clinical symptoms of TDP43 pathology in-

clude cognitive and motor impairment.21 Cognitive impairment may

take the form of apathy, poor impulse control, and lack of overall

executive judgment.22 It has yet to be determined exactly how

TDP43 aggregates coincide and interact with NFTs to produce the

wide spectrum of clinical CTE presentation seen in patients.18

Astrocyte activation

Astrocytes in a healthy brain provide a supporting role for

neurons.23 If brain injury occurs, astrocytes become responsive by

increasing expression of a microfilament known as glial fibrillary

acidic protein (GFAP), while simultaneously releasing cytokines

that activate nearby neurons to increase nociceptive receptivity.24

Astrocytes also trigger self-renewing neurospheres that may help in

brain recovery.23 Blast-induced TBI (bTBI), in particular, causes

increased astrocyte activation and GFAP levels within 24 h post-

injury.25 Peripheral GFAP is absorbed and sequestered from the

plasma immediately following bTBI, leading to an initial decrease

in serum levels at 6 h, but GFAP is subsequently increased by

augmented gene expression and changes in membrane permeability

at 24 h.26 The process of astrocyte activation involves an increase in

astrocyte size, number, and motility that primarily occurs in the

white matter following brain or spinal injury.24 The activation is

most pronounced in the corpus callosum, motor, and somatosensory

cortex leading to symptoms of increased impulsive behavior and

cognitive dysfunction.25 One mechanism by which astrocytes are

activated following brain injury is microglia-mediated crosstalk via

pro-inflammatory cytokines.24 These immune cells release inter-

leukin-1b and other cytokines that act on toll-like receptors (TLRs) in

astrocytes, thereby inducing astrocytes to release reactive oxygen

species (ROS).27 ROS indirectly cause excitotoxicity by decreasing

the ability of astrocytes to uptake glutamate.28 This excitotoxicity

was shown to cause changes in exploratory behavior and distinct

motor deficits in mice exposed to cortical impact TBI.29

Microglial activation

Microglia are ramified immune cells of the brain that are inactive

in healthy brains.30 Following repetitive TBI, localized cell death

activates microglia in the striatum and thalamus, which can be

measured by the markers OX6 and CD68.31 Activated microglia

have a bushy appearance with thickened processes and enlarged cell

bodies.30 Furthermore, the microglia foster the spread of neuroin-

flammation.32 Short- term activation of microglia is neuroprotective,

while chronic activation is involved in neurodegeneration.31 Chronic

activation becomes more common in an aged brain, accounting in

part for the progressive nature of neurodegenerative diseases.33 Glial

tangles (GT), for example, are prominent in the frontal and temporal

lobes of CTE brains many years after initial injury.3 A primary

reason for the persistence of microglia activation is the presence of

diffuse traumatic axonal injury (dTAI).34 dTAI can cause the upre-

gulation of surface antigens on microglia, which ultimately triggers

the release of inflammatory cytokines.32 Sensorimotor behavioral

deficits following dTAI have been reported, possibly as a result of

microglia-induced inflammatory tissue damage.34

Background on Tau

Tau isoforms and tau mutations

The gene responsible for encoding tau is microtubule-associated

protein tau (mapt) on chromosome 17.35 After tau is encoded, six

isoforms can form by various splicing of exons 2, 3, or 10 on the

microtubule-binding domain of pre-mRNA.36 The exon 10 splice

variant, hTau40, is the most important in neurodegenerative disease

development, and is found specifically in the central nervous sys-

tem.37 The isoforms consist of three (3R) or four (4R) tau repeats

inserted at the carboxyl terminus.38 Ideally, the ratio between 3R

and 4R isoforms in the brain is maintained at 1:1.39 When mutations

occur in the exon 10 splice variant, the ratio is shifted to favor an

increase in the 3R isoforms.37 Normally, apolipoprotein E in the

brain helps catalyze the proteolytic breakdown of mutated tau and

restore the ideal 3R to 4R ratio, but the APOe4 allele produces an

apolipoprotein that is ineffective in this reaction.3 When mutations

persist, they play an important role in NFT development and the

activation of astrocytes.8 The altered tau proteins have widespread

pathological consequences.18

Tau kinase overview

Tau has 79 potential binding sites, and phosphorylation of these

sites plays an important role in embryonic CNS development.40

Thirty functional sites on the normal tau protein can be phos-

phorylated in the adult brain as depicted in Figure 2, but the amount

of phosphorylation is kept to a minimum by tau phosphatases.41

In the adult brain, tau is regulated through multisite phosphoryla-

tion at serine/threonine residues by proline kinases such as extra-

cellular signal-regulated kinases (ERK1/2), cycline-dependent

kinase 5 (CDK5), and glycogen synthase kinase 3-b (GSK3-b).42

Other non- proline kinases such as protein kinase C (PKC), c-Jun

kinase ( JNK), Akt, and various tyrosine kinases play a secondary

role in tau phosphorylation.43 Following TBI, tau hyperpho-

sphorylation is increased because of an elevation in kinases com-

pared with phosphatases, as depicted in Figure 3, marking an initial

pathological change that indicates future development of chronic

neurodegeneration.44 The key tau kinases are described in Table 1,

and discussed in further detail with relation to changes caused by

TBI in the following paragraphs.

ERK1/2

ERK1/2 is dephosphorylated following a single mild TBI.45 The

dephosphorylated ERK1/2 triggers apoptosis via caspase3 activa-

tion.46 Administration of estrone after TBI triggers ERK1/2 phos-

phorylation and pro-survival.47 This hormone warrants further

investigation with regard to its potential role in ameliorating tau
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hyperphosphorylation. Estrone may initiate a neuroprotective

priming response that protects against subsequent injury.47 Other

kinases, such as p70S6K and mitogen and stress-activated protein

kinase 1, may also be involved in this neuroprotective process.48,49

Facilitation of ERK1/2 via the compound PD90859 can addition-

ally foster cell survival after brain injury.50 In addition to mediating

the complex balance between cell survival and apoptosis, ERK1/2

plays another unique role by regulating the cytoskeleton of acti-

vated astrocytes following TBI.51 ERK1/2 is, therefore, important

not only for tau hyperphosphorylation but also in the process of

reactive astrogliosis.

CDK5

Following TBI, CDK5 acutely binds to its receptor and activates

a pro-apoptotic cascade.52 Furthermore, CDK5 triggers cell-cycle

FIG. 2. Tau is regulated by multiple biochemical processes including: nitration, glycosylation, ubiquitination, acetylation, sumoy-
lation, and phosphorylation. (A) We highlight some of the key regulation sites potentially involved in the pathophysiology of chronic
traumatic encephalopathy (CTE). (B) Each site has a specific antibody of interest that can be used to detect changes in intracellular/
extracellular tau. (C) Deglycosylation allows for conversion of tau tangles into bundles of straight filaments, thus increasing the
accessibility of remaining tau located at microtubule edges. Glycosylation, however, reduces phosphorylation of protein kinase A
(PKA), cycline-dependent kinase 5 (CDK5), and glycogen synthase kinase-3b (GSK3b) decreasing formation of neurofibrillary tangles.
This example shows how post-translational modification of tau can regulate tau phosphorylation and ultimately lead to the development
of neurofibrillary tangles, a hallmark of CTE.
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activation and microglia activation following controlled cortical

impact TBI.53 The extent and duration of microglia activation

mediated by CDK5 requires further investigation. It is known that

inhibition of CDK5 with the roscovitine derivative, CR8, promotes

neuroprotection and decreased apoptosis after controlled cortical

impact.54 Additionally, roscovitine itself can improve cognitive

and motor function in Sprague–Dawley rats after TBI.55 CDK5

inhibitors even improve outcome when administered several hours

to days after TBI.56 How these inhibitors alter the progression of

tauopathies has yet to be investigated.

GSK3-b

Protein kinase B (PKB) and serum and glucocorticoid-regulated

kinase (SGK) are activated following TBI, which both subse-

quently phosphorylate GSK3-b.57,58 GSK3-b activation via its

phosphorylation has been linked to apoptosis and tau hyperpho-

sphorylation.59 Furthermore, GSK3-b upregulates N-Methyl d-

aspartate (NMDA) receptors following brain injury, causing an

exacerbation of glutamate excitotoxicity.60 Inhibition of GSK3-b
consequently reduces apoptosis and the extent of excitotoxicity.61

Humanin is a potential inhibitor of GSK3-b that increases neuro-

protection following brain injury, but further studies are still nee-

ded to elucidate the mechanism of action.62 GSK3-b is also

functionally significant in microglial migration, translocation of

monocytes across the blood–brain barrier (BBB), and inflammatory

cascades following TBI.63 GSK3-b may, therefore, be a key target

in discovering the link between acute brain injury and chronic

neurodegeneration, because of its primary roles in both microglia

migration and tau hyperphosphorylation.

PKC

The five most common isoforms of PKC (a, d, e, f, g) play

various supporting roles as serine/threonine (Ser/Thr) kinases

throughout multiple tissues in the body.64 Activation of specific

PKC isoforms (a, d, and f) is associated with perturbations in tight

junction proteins following brain injury, which ultimately leads to

increased BBB permeability.65 The disruption in the BBB further

increases PKC activity, thereby triggering the tau kinase, GSK3-

b.66 PKCg additionally activates the pro-survival tau kinase, Akt, at

several days post-injury.67 After hyperphosphorylation occurs,

PKCa maintains the phosphorylation changes by inhibiting tau

phosphatases.65 PKC prompts signal cascades that work in con-

junction with altered calcium homeostasis to propel the develop-

ment of NFTs.66 Because PKC involvement is intimately

associated with tau hyperphosphorylation and NFT formation, it

seems reasonable to investigate the role of selective PKC inhibi-

tors/activators, such as bryostatin and balonol, in the prevention of

chronic tauopathies such as CTE.68,69

FIG. 3. Neurofibrillary tangle formation involves an imbalance between tau kinase and tau phosphatase activity. If tau kinase activity
is increased, and the phosphatase activity is decreased, hyperphosphorylation persists and can result in the formation of neurofibrillary
tangles. Neurofibrillary tangles contribute to poor outcome by disrupting axonal transport and eventually causing the hierarchical spread
of neurodegeneration. Neurodegeneration ultimately causes the classic symptoms seen in patients suspected of having chronic traumatic
encephalopathy.
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JNK

JNK is increased in damaged axons following TBI.70 JNK ac-

tivity is also markedly increased in neurons and astrocytes of the

hippocampus following TBI.71 JNK signaling can cause post-

traumatic cellular damage within the brain following injury.70 JNK

additionally may phosphorylate p53, which enhances neuronal

autophagy.72 When JNK is inhibited, the extent of abnormal tau

hyperphospharylation is lessened.70 Furthermore, glucagon has

been used to inhibit JNK signaling immediately after TBI, causing

a decrease in intracranial cerebrovasodilation.73 Maintaining JNK

signaling within a tightly controlled range is not only important for

tau regulation but also for maintaining blood flow to the brain

following TBI.74

Akt

Akt produces an interesting effect following brain injury, by

phosphorylating tau at Ser212, but also inhibiting GSK3-b.75

GSK3-b activation may, therefore, be necessary for initial tau hy-

perphosphorylation; however, Akt activity maintains hyperpho-

sphorylation at later time points.43 By inhibiting GSK3-b, it is

thought that Akt triggers an antiapoptotic pathway allowing for

damaged cells to survive and propagate NFTs.75 If Akt is inhibited,

cell death will occur.76 Histone deacetylase inhibitors, such as

scriptaid, prevent the dephosphorylation of Akt, and, therefore,

increase the number of surviving neurons after TBI.77 Akt regu-

lation warrants further investigation to tease out the level of acti-

vation that is necessary for maintaining neuroprotective properties

while avoiding the spread of NFTs.

Tau phosphatases

Two phosphatases, protein phosphatase 1 and 2A, are respon-

sible for maintaining tau in a non-hyperphosphorylated state.41 If

these two phosphatases become dysfunctional or decreased, the

hyperphosphorylated tau is quickly ubiquitinated, which then pre-

disposes the neuron to increased NFT formation.78 TBI can cause a

decrease in tau phosphatases.79 In particular, protein phosphatase

2A is decreased in the hippocampus for several weeks post-TBI,

which results in dysfunctional hippocampus plasticity.80 Tau

phosphatase activity must drop by half before NFTs will begin to

develop.78 Compounds that increase tau phosphatases, such as

sodium selenate, may prove promising in slowing the progression

of tauopathies.81

Discussion

Although the postmortem pathology of CTE has been well

described, the mechanism by which acute TBI leads to initial tau

hyperphosphorylation and the eventual development of neurofi-

brillary tangles remains poorly understood. Because the term CTE

was only recently reintroduced into the medical literature in 2005,

understanding disease pathophysiology is in its infancy.82 Despite

the link between TBI and CTE being associational rather than

mechanistic at this point, the growing prevalence of this disease

among soldiers, football players, wrestlers, and other athletes

exposed to brain injuries increases the urgency for finding a

causative mechanism, and also for locating pharmacological

targets for treating this devastating disease. In the following

paragraphs, we discuss a few molecular pathways previously

Table 1. List of Tau Kinases and the Physiologic Roles in which They Function, also Highlighting

if the Overall Levels of these Kinases Are Altered by Traumatic Brain Injury (TBI)

Kinase name Site of regulation Physiological role
Activated

by TBI

Extracellular signal-
regulated kinases
(ERK1/2)

Phosphorylation of threonine-x-
tyrosine motif

Important role in growth factor
signaling, cell survival,
and apoptosis

Yes45

Cycline-dependent
kinase 5 (CDK5)

Binding to CDK Receptor 1 or
CDK Receptor 2

Plays a role in neural development,
pain signaling, and sensory
processing

Yes52

Glycogen synthase
kinase 3-b (GSK3-b)

Requires priming kinase to
phosphorylate a substrate prior
to phosphorylation at tyrosine-216.
Phosphorylation at serine-9,
however, hides the active site

Implicated in neuronal development,
glucose homeostasis, and body
pattern organization

Yes57

Protein kinase C (PKC) 3 categories based on binding at
C-terminal: conventional requires
diacylglycerol and calcium for
activation, novel requires
diacylglycerol, and atypical does
not require calcium or diacylglycerol.
Once active, the receptors for
activated C-kinase bind PKC and help
translocate it to the plasma membrane

PKC activity is involved with learning
and memory, regulation of
transcription, controlling cell growth,
and mediating immune responses

Yes68

c-Jun kinase ( JNK) Diphosphorylation of the threonine-
proline-tyrosine motif

JNKs participate in multiple stress
cascades, the inflammation response,
and reactive oxygen species formation

Yes70

Akt Akt binds to phosphatidylinositol
(3,4,5)-triphosphate on the cell
membrane and then is phosphorylated
at threonine 308 by phosphoinosotide
kinase 1

Akt plays a role in apoptosis, cellular
metabolism, and cell migration

Yes75
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associated with other forms of brain injury that warrant further

investigation following TBI.

Endoplasmic reticulum (ER) stress

The ER is responsible for the correct folding and sorting of

proteins.83 Following brain injury, the ER becomes dysfunctional,

as is evidenced by changes in bound intracellular calcium, leading

to the accumulation of unfolded proteins within the cell.84 The

increase in unfolded proteins is known as the ‘‘ER stress re-

sponse.’’85 Ischemic stroke and TBI can both cause acute activation

of the ER stress response.86 Three arms of the ER stress response

(protein kinase-like ER kinase [PERK], inositol requiring enzyme

1a [IRE1a], and activating transcription factor 6 [ATF6]) regulate

the amount of pro-apoptotic activity following injury.83 All three

arms affect the protein expression of C/EBP-homologous protein

(CHOP).84 CHOP is noteworthy for its ability to trigger apoptosis

via the activation of caspase12.86 If CHOP is maintained below

threshold by the PERK arm, neuronal apoptosis does not occur.85

When CHOP is pushed beyond threshold through activation of the

IRE1a and ATF6 arms, neuronal apoptosis does occur, and tau

hyperphosphorylation results from GSK3-b.87 Furthermore, two

downstream targets of the ATF6 arm of the ER stress pathway are

mitogen-activated protein kinase (MAPK) and JNK, which may

subsequently be involved in tau hyperphosphorylation as well.88 In

light of these findings, it may prove beneficial to utilize a phar-

macological agent that attenuates the ER stress response in a model

of TBI. Salubrinal can increase activity of the neuroprotective

PERK arm of the ER stress response and inhibit the pro-apoptotic

activity of the IRE1a arm of the ER stress response.89 Because

GSK3-b and caspase12 are increased following brain injury, it may

also be worth investigating the GSK3-b peptide inhibitors, L803-

mts and TDZD-8, and the role they may play in preventing the

development of NFTs.87,90

Glutamate excitotoxicity

Glutamate excitotoxicity is triggered following brain injury,

and results in elevated intracellular calcium, formation of ROS,

and mitochondrial failure.91 Ischemia and other forms of brain

injury can cause an increase in calcium that activates a-calcium/

calmodulin protein kinase II, leading to memory impairment via

increased AMPA receptor activity in the hippocampus.92 The

increased calcium also leads to intracellular accumulation in

neuronal mitochondria, making the organelle dysfunctional.91

Activated microglia and astrocytes concurrently release inter-

leukin-6, which triggers a further increase in intracellular cal-

cium within neurons and sensitizes NMDA receptors.93

Sensitized NMDA receptors promote auxiliary excitotoxicity

and foster the release of ROS from the mitochondria, which

can eventually cause neuronal destruction.28 Caspase3, a pro-

apoptotic factor, is increased following glutamate- induced mi-

tochondria dysfunction.86 Caspase3 can cause tau cleavage and

predisposes the neuron to NFT development.87 To stem the tide

of neuronal destruction and progressive tau changes, it seems

fitting to investigate compounds that are known to decrease the

amount of ROS such as the nicotinamide adenine dinucleotide

phosphate (NADPH)-oxidase inhibitor, apocynin.27 Further-

more, targeting mitochondrial dysfunction through p38 inhibi-

tors may also prove beneficial following head trauma.94 By

targeting key downstream pathways of glutamate excitotoxicity,

it may be possible to alleviate the potential progression to neu-

rodegeneration.

Microglial and astrocyte regulators

Neurotrauma can result in a dynamic equilibrium between

classically activated (M1) and alternatively activated (M2) mi-

croglia.31 M1 microglia are pro-inflammatory, whereas M2 mi-

croglia are anti-inflammatory.34 Targeting the activation of M2

microglia immediately following injury may prove beneficial in

preventing neurodegeneration.95 Alternatively, acutely inhibiting

M1 microglia with the noncompetitive cholinesterase inhibitor,

donepezil, has also decreased neuroinflammation and apoptosis

after TBI.96 Similarly, neurotrauma triggers two distinct responses,

pro-survival or apoptosis, in activated astrocytes, depending upon

the extent and duration of injury.25 If astrocyte activation extends

several days post-injury, it was found that nitration of tau occurs,

which may lead to a more rapid development of NFTs.97 Further-

more, mutations in tau may be occurring in activated astrocytes,

resulting in tau oligomers being subsequently secreted into the

extracellular milieu.17 Future studies are needed to characterize the

time course of astrocyte activation following TBI, and, more im-

portantly, at what point it is ideal to inhibit astrocyte activation.

Clinical Relevance and Conclusions

The Veterans Affairs Healthcare System reported that patients

exposed to repetitive blast waves have quantitative electroen-

cephalogram changes that are comparable to concussive injury.98

Similarly, the detection of repetitive concussions in athletes has

increased significantly over the past 20 years.10 The duration

between injuries may account for why certain individuals de-

velop rapidly progressive neurodegeneration and increased

phospho-tau expression.13 The Department of Defense has re-

cently invested $700,000,000 into improving clinical diagnosis

and care for the 266,810 bTBI patients who were injured from

2001 onwards.98 Likewise, the National Football League has

recently organized a new medical committee to investigate the

issue of TBI, and has started a multiprong approach for making

football safer for the players.99 Increased investigation into un-

derstanding the pathology of CTE will hopefully aid in pre-

mortem diagnosis, as well as finding viable treatment options.

The pathways mentioned in this review (ER stress, glutamate

excitotoxicty, and microglia and astrocyte modulation) appear

promising in understanding the link between acute bTBI and

CTE development. Discovering the process of tau hyperpho-

sphorylation and NFT development following TBI will likely

provide a key for unlocking the unknown mysteries of similar

progressive neurodegenerative diseases.
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