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Abstract

In magnetic resonance imaging, complex-valued measurements are acquired in time

corresponding to spatial frequency measurements in space generally placed on a Cartesian

rectangular grid. These complex-valued measurements are transformed into a measured complex-

valued image by an image reconstruction method. The most common image reconstruction

method is the inverse Fourier transform. It is known that image voxels are spatially correlated. A

property of the inverse Fourier transformation is that uncorrelated spatial frequency measurements

yield spatially uncorrelated voxel measurements and vice versa. Spatially correlated voxel

measurements result from correlated spatial frequency measurements. This paper describes the

resulting correlation structure between voxel measurements when inverse Fourier reconstructing

correlated spatial frequency measurements. A real-valued representation for the complex-valued

measurements is introduced along with an associated multivariate normal distribution. One

potential application of this methodology is that there may be a correlation structure introduced by

the measurement process or adjustments made to the spatial frequencies. This would produce

spatially correlated voxel measurements after inverse Fourier transform reconstruction that have

artificially inflated spatial correlation. One implication of these results is that one source of spatial

correlation between voxels termed connectivity may be attributed to correlated spatial frequencies.

The true voxel connectivity may be less than previously thought. This methodology could be

utilized to characterize noise correlation in its original form and adjust for it. The exact statistical

relationship between spatial frequency measurements and voxel measurements has now been

established.

Keywords

fMRI activation; Complex-valued data; Image reconstruction; Fourier transform; k-Space

1. Introduction

In functional magnetic resonance imaging (fMRI), we apply magnetic field gradients to

encode then measure the complex-valued Fourier transformation (FT) of the effective proton

spin density (PSD) in a real-valued physical object. In fMRI, complex-valued measurements
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are acquired in spatial frequency space (usually two-dimensional), also called k-space from

the use of the k variables for its axes (kx, ky). These measurements are transformed into a

complex-valued image by an image reconstruction method. The most common image

reconstruction method is the inverse Fourier transform. These discrete complex-valued

measurements, when placed at their proper spatial frequency location, are ideally the

discrete FT of the PSD. A dis crete inverse Fourier transform (IFT) is applied to the

discretely measured signal to reconstruct a discretely measured PSD or image. The original

object or PSD is real-valued, but due to imperfections in the imaging process, a complex-

valued image of PSDs is produced (Haacke et al., 1999). These complex-valued

measurements are collected to yield a complex-valued time course in each voxel. Traditional

methods to detect brain activation utilize magnitude-only voxel time courses (Bandettini et

al., 1993; Friston et al., 1994). Work by Menon (2002) and others indicate that the generally

discarded phase portion of the fMRI voxel time courses may contain information regarding

the brain's vasculature and that the entire voxel time series either in the form of real–

imaginary or magnitude-phase should be used. Recently complex-valued methods to detect

brain activation have been introduced (Nan and Nowak, 1999; Rowe, 2005a,b; Rowe and

Logan, 2004, 2005). Preliminary work with these methods indicate that they can be used in

fMRI to postacquistion suppress venous BOLD (Nencka and Rowe, 2005, 2006; Rowe,

2005c; Rowe and Nencka, 2006). These complex-valued detection methods could be

combined with the current methods that connect spatial frequency measurements to voxel

measurements and a more natural representation of the noise utilized.

After Fourier (or non-Fourier) image reconstruction, images are complex-valued containing

a matrix of real and imaginary components of the measured effective PSD. The real part of

the complex-valued measurements in each image will be stacked on top of the imaginary

part of the measurements to form a single real-valued vector of measurements. A one-to-one

relationship will be described between the vector of complex-valued measurements in an

image and the real-valued vector with twice the dimension of stacked measurements. This

one-to-one relationship or correspondence is often called an isomorphism in the

mathematical literature. It is known that image voxel measurements are spatially correlated,

in measured fMRI data. A property of the inverse Fourier transformation is that uncorrelated

spatial frequency measurements yield spatially uncorrelated voxel measurements and vice

versa. Additionally, correlated voxel measurements result from correlated spatial frequency

measurements. The thrust of this paper is to relate the signal and noise characteristics of

spatial frequency measurements and Fourier reconstructed image measurements. It will be

shown that the true spatial correlation between voxel measurements could be inflated by

correlated noise of spatial frequency measurements and that this correlated noise between

spatial frequency measurements could be adjusted to yield an estimate of the true spatial

correlation between voxel measurements. This has many implications for fMRI including

connectivity results and activation thresholding (Logan and Rowe, 2004). There has been

much work on the physiological basis for temporal autocorrelations between spatially

separated voxels. It has been reported that there are spontaneous fluctuations in regional

cerebral blood flow (rCBF) from spatially distinct regions (Biswal et al., 1995). Further,

time-dependent changes in effective connectivity during learning have been observed

(Buchel et al., 1999).
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2. Statistical theory

In this section, the statistical properties of the complex-valued spatial frequency

measurements are described for a single time point image. The statistical properties of the

complex-valued image measurements from a complex-valued inverse Fourier transformation

of the complex-valued spatial frequency measurements are described. This is done for a one-

dimensional image where the characteristics of the transformation in terms of mean and

covariance are easier to understand then generalized for a two-dimensional image.

2.1. One dimension

Consider a one-dimensional horizontal complex-valued magnetic resonance image with px

complex-valued voxels. To obtain this image, we must measure px spatial frequencies

corresponding to the ky = 0 center line. In this one-dimensional magnetic resonance image,

complex-valued k-space measurements are taken in time but correspond to specific spatial

frequencies. We will assume that the k-space measurements are acquired from left to right.

Let sC = (sC1, . . ., sCpx)T be these px measured complex-valued spatial frequencies stacked

into a px × 1 complex-valued vector sC that is the sum of s0C, a vector of true noiseless

complex-valued spatial frequencies and ∈C, a vector of complex-valued measurement error

as in Appendix A where “T” denotes transposition. As shown in Appendix A, the

measurements can be represented as a single real-valued vector by stacking the px real

measurements upon the px imaginary measurements to yield the vector s, that is the sum of a

vector of true noiseless complex-valued spatial frequencies s0, and a vector of complex-

valued measurement error ∈. Since the vector s is what is measured with error, it is assumed

to be characterized as having a multivariate normal distribution with mean s0 and covariance

matrix Λ as described in Appendix A.

The Fourier image reconstruction process to generate a complex-valued measured image ρC

consists of pre-multiplying the measured spatial frequencies sC by the Fourier matrix ΩCx in

Eq. (A.2). As shown in Appendix A, this is equivalently represented as the pre-

multiplication if the real-valued vector of measured spatial frequencies s by the real-valued

matrix Ωx to arrive at the real-valued representation of the measured image ρ. The real-

valued representation of the measured image ρ is a linear transformation of the real-valued

representation of the measured spatial frequencies and thus normally distributed with mean

ρ0 = Ωxs0 and covariance matrix .

An example of this methodology might be useful. Although explicit analytic expressions

exist for the mean and covariance of the complex-valued transformed one-dimensional

images measurements given the mean and covariance of the one-dimensional spatial

frequency measurements, simulations were carried out to verify the analytic results in

addition to determining those for magnitude-only image measurements where closed form

analytic solutions do not exist due to the nonlinear and non one-to-one mapping. The

simulations were performed under known conditions. These can be used to precisely

characterize the signal and noise of the transformed measurements. All computations

utilized Matlab (The Mathworks, Natick, MA, USA). Data was generated to mimic a one-

dimensional magnetic resonance imaging experiment. Although this simulation is a
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mathematical ideal and possibly unrealistic, its results are useful in understanding the

properties of the described methodology. Random complex-valued error vectors of

dimension px were generated in the form of the real-valued representation. A large number,

L, of random vectors of dimension 2px for the px real measurements stacked upon the px

imaginary measurements denoted by s1, . . ., sL were generated from a normal distribution

with mean s0 and covariance . Without loss of generality, s0 = 0 while Λ1 and Λ2 are

taken to be unit variance correlation matrices. The 2 × 2 correlation matrix Λ1 is taken to

have an off diagonal correlation of ϱ1 = 0.5 while the px × px correlation matrix Λ2 is taken

to be an AR(1) correlation matrix with (i, j)th element  where ϱ2 = 0.25. The number of

randomly generated vectors was selected to be L = 106.

A value of px was chosen to be 8. Although the methodology equally applies to larger

values, they are not shown to maintain the clarity of presentation. The sample correlation

matrix from the L randomly generated one-dimensional spatial frequency vectors was

computed as displayed in Fig. 1a. Further, each random one-dimensional spatial frequency

vector was pre-multiplied by the appropriate inverse Fourier transform matrix Ωx given in

Eq. (A.3) to produce random one-dimensional images. The sample correlation matrix of the

real-valued representation ρ of the complex-valued one-dimensional image measurements

ρC was computed as displayed in Fig. 1b. The sample spatial frequency correlation matrix

matched its theoretical population correlation matrix in Eq. (A.4) and the sample image

correlation matrix matched the population value in Eq. (A.5) utilizing the previously

described theory. Further, since an analytic expression for the theoretical covariance or

correlation matrix for magnitude-only image quantities can not be found, the L vectors

containing real and imaginary image measurements of dimension 2px were converted to L

vectors of dimension px con taining magnitude-only image quantities. The sample

correlation matrix of the magnitude-only image vectors was computed for the as displayed

in Fig. 1c. Note that both complex-valued voxels and real-valued magnitude-only voxels are

correlated.

2.2. Two dimensions

In a two-dimensional echo planar magnetic resonance image, complex-valued measurements

are taken in time but correspond to specific spatial frequencies on a Cartesian (kx, ky) grid.

In a standard echo planar imaging (EPI) experiment, the measurements are taken in a “zig-

zag” pattern. For example, with positive phase encode steps, the pattern starts at the bottom

left of the grid with negative (kx, ky) values and moves from left to right, then right to left

and so on, while going from bottom to top. The left–right direction is called the frequency

encode direction while the top–bottom direction is called the phase encode direction.

We will assume that the data is collected according to this standard EPI trajectory.

Let SC be a py × px complex-valued matrix of two-dimensional measured spatial frequencies

that is the sum of S0C, a matrix of true noiseless complex-valued spatial frequencies and EC,

a matrix of complex-valued measurement error as in Appendix B. As shown in Appendix B,

the matrix of spatial frequency measurements can be represented as a single real-valued

vector by stacking the rows to form:
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where Re( ) and Im( ) denote the operators that return the real and imaginary parts of their

arguments and vec( ) denotes the the vectorization operator that stacks the columns of its

matrix argument. This vector s, is the sum of a vector of true noiseless complex-valued

spatial frequencies, s0, and a vector of complex-valued measurement error, ∈. Since the

vector s is what is measured with error, it is assumed to be characterized as having a

multivariate normal distribution with mean s0 and covariance matrix Φ as described in

Appendix B.

The Fourier image reconstruction process to generate a complex-valued measured image RC

consists of pre-multiplying the measured spatial frequencies SC by the Fourier matrix ΩCy in

Eq. (B.1) and post-multiplying it by  in Eq. (B.1). As shown in Appendix B, this is

equivalently represented as the pre-multiplication of the real-valued vector of measured

spatial frequencies s by the real-valued matrix Ω as in Eq. (B.6) to arrive at the real-valued

representation of the measured image ρ. The real-valued representation of the measured

image ρ is a linear transformation of the real-valued representation of the measured spatial

frequencies and thus normally distributed with mean ρ0 = Ωs0 and covariance matrix Γ =

ΩΦΩT. The measured py × px complex-valued image RC can be found by sequentially

putting every px elements of the vector ρR + iρI into a matrix then taking the transpose.

An example of this methodology might be useful. Although explicit analytic expressions

exist for the mean and covariance of the complex-valued transformed two-dimensional

images measurements given the mean and covariance of the two-dimensional spatial

frequency measurements, simulations were carried out to verify the analytic results in

addition to determining those for magnitude-only image measurements where closed form

analytic solutions do not exist due to the nonlinear and non one-to-one mapping. The

simulations were performed under known conditions. These can be used to precisely

characterize the signal and noise of the transformed measurements. All computations

utilized Matlab (The Mathworks, Natick, MA, USA). Data was generated to mimic a two-

dimensional magnetic resonance imaging experiment. Although this simulation is a

mathematical ideal and possibly unrealistic, its results are useful in understanding the

properties of the described methodology. A large number, L of random matrices of

dimension py × px were generated for the pypx real spatial frequency measurements stacked

upon the pypx imaginary spatial frequency measurements denoted by s1, . . ., sL that were

generated from a normal distribution with mean s0 and covariance . Without

loss of generality, s0 = 0 while Λ1, Λ2, and Λ3 are taken to be unit variance correlation

matrices. The py × py correlation matrix Λ1 is taken to be an AR(1) correlation matrix with

(i, j)th element  where ϱ1 = 0.25, the 2 × 2 correlation matrix Λ2 is taken to have an off

diagonal correlation ϱ = 0.5 while the px × px correlation matrix Λ3 is taken to be an AR(1)

correlation matrix with (i, j)th element  where ϱ3 = 0.5. The number of randomly

generated vectors was selected to be L = 106.
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A value of py = px = 8 was chosen. Although the methodology equally applies to larger

values, they are not shown to maintain the clarity of presentation. The corresponding sample

correlation matrix from the L randomly generated noisy spatial frequency matrices in vector

form was computed as displayed in Fig. 2a. Further, each random complex-valued spatial

frequency matrix in vector form was pre-multiplied by Ω in Eq. (B.6) equilavent to pre- and

post-multiplying in matrix form by the appropriate inverse Fourier transform matrices ΩCy

and  given in Eq. (B.1). The sample correlation matrix of the real-valued representation ρ

of the complex-valued image measurements R was computed as displayed in Fig. 2b. The

sample spatial frequency correlation matrix matched its theoretical population correlation

matrix in Eq. (B.8) and the sample image correlation matrix matched the population value in

Eq. (B.9) utilizing the previously described theory.

Further, since a simple closed form analytic expression for the theoretical covariance matrix

for magnitude-only image quantities cannot be found, the L matrices of dimension py = px

containing real and imaginary measurements were converted to L matrices of dimension py

× px containing magnitude-only image quantities. The sample correlation matrix of the

magnitude-only image matrices was computed using the real-valued representation as

displayed in Fig. 2c. Note that both complex-valued voxels and real-valued magnitude-only

voxels are correlated.

3. Conclusions

This paper presented the resulting spatial correlation between voxels when Fourier

reconstructing correlated spatial frequency measurements. However, the current

methodology is applicable to any linear transformation. This includes non-Fourier

reconstruction of Fourier encoded data (Cox and McCall, 2004) or non-Fourier

reconstruction of non-Fourier encoded data (Panych et al., 1996). Additionally, the

previously described Fourier Ω matrices can easily be adjusted to include phase terms as

done when adjusting for magnetic field inhomogenieties with a field map (Jezzard and

Balaban, 1995).

Spatially correlated voxels result from correlated spatial frequency measurements. These

correlation results may have implications for functional magnetic resonance imaging. In

particular, temporally autocorrelated spatial frequency measurements produce spatially

correlated voxels. This may have specific implications for functional connectivity. The true

voxel connectivity may be less than previously thought. This methodology could be utilized

to characterize noise correlation in its original form and adjust for it. The baseline spatial

correlation needs to be considered and accounted for when making statements regarding

connectivity between voxels in fMRI. Although the normal distribution has been utilized in

the present work, other statistical distributions could be used. Regardless of the chosen

statistical distribution to model the noise, the mean and covariance results are still

applicable. Additionally, some voxel correlation may be lost by the magnitude-only

procedure. Making statistical inferences, interpreting analysis results, and drawing

conclusions should be done in light of the current research.
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Appendix A. One-dimensional image

The px × 1 dimensional complex-valued spatial frequency measurements sC consisting of px

× 1 dimensional true underlying noiseless complex-valued spatial frequencies s0C and px × 1

dimensional complex-valued measurement error ∈C can be represented as

(A.1)

where i is the imaginary unit while s0R, s0I, ∈R and ∈I are px × 1 dimensional real and

imaginary vector valued parts of the true signal and measurement noise. Let ΩCx be a px × px

complex-valued matrix such as a Fourier type matrix such that

(A.2)

where ΩRx and ΩIx are real and imaginary matrix valued parts. Then, the px × 1 dimensional

complex-valued inverse Fourier transformation ρC of sC can be written (Strang, 1988) as the

pre-multiplication by the complex-valued Fourier matrix as

where ρ0R, ρ0I, ηR, and ηI are real and imaginary vector valued parts of the Fourier

transformed true signal (image) and transformed measurement noise. If ΩCx were a Fourier

matrix, it is [ΩCx]jk = κ (ωJK) where κ = 1 and ω = exp[–i2π(j–1)(k – 1)/px] for the forward

transformation while κ = 1/px and ω = exp[+i2π(j – 1)(k – 1)/px] for the inverse

transformation, where j, k = 1, . . ., px.

This pre-multiplication of a complex-valued vector by a complex-valued matrix can be

equivalently represented with the 2px dimensional real-valued representation:

(A.3)

As previously described, data collected from a scientific experiment is never precisely

known and thus contains both true signal and measurement error. Scientific measurement

error is quantified with statistical distributions and inferences drawn. In most instances, real-

valued measurements are taken and real-valued statistical distributions utilized. However, in

MRI complex-valued measurements are taken and thus a complex-valued statistical

distribution needs to be utilized. The data can be represented using a real-valued

representation and a multivariate normal distribution (Rowe, 2003). The real-valued

representation used here is very general and within this framework contains the particular
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representation used to represent the complex-valued multivariate normal distribution

(Anderson et al., 1995; Wooding, 1956). The transformation from complex-valued spatial

frequency space to image space modifies properties of both the true noiseless signal and the

measurement noise. The relationship between correlated complex-valued measurements

made in spatial frequency space and the modified correlation between inverse Fourier

transformed or reconstructed complex-valued measurements in image space is examined.

Using the real-valued representation in Eq. (A.3), let the 2px dimensional vector

 be multivariate normally distributed (Rowe, 2003) with mean and covariance

matrix:

(A.4)

Complex multivariate normal structure occurs when Λ11 = Λ22 = Ψ, –Λ12 = Υ, and  .

That is, when the covariance matrix is of a skew-symmetric form as (Wooding, 1956;

Anderson et al., 1995). The current representation is more general and less restrictive than

multivariate complex normal structure. By carrying out a multivariate transformation of

variable with the real-valued representation from s to ρ through ρ = Ωxs, the statistical

distribution of ρ is also multivariate normally distributed but with mean ρ0 given by

and covariance matrix , given by

(A.5)

where Ωx is of full rank if it is a Fourier matrix. Again, this representation is more general

and less restrictive than multivariate complex normal structure (Anderson et al., 1995;

Wooding, 1956). In the multivariate complex normal case (Anderson et al., 1995; Wooding,

1956) where Λ11 = Λ22 = Ψ, –Λ12 = Υ , and , the covariance matrix Δ is

(A.6)

where Υ is a skew symmetric matrix, ΥT = –Υ .
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It can readily be seen that if the measurement process that generates the data produces

uncorrelated real and imaginary channels, that is,  but correlated within the real

imaginary channels, then after transformation the real and imaginary channels are correlated

both between and within. It should be noted that if Υ = 0 and Ψ = ψ2Ipx, then 

where δ = ψ2/px for the inverse transformation and δ = ψ2px for the forward transformation.

The Kronecker product ⊗ was utilized which multiplies every element of its first matrix

argument by its entire second matrix argument.

The above specific multivariate complex normal structure could alternatively be developed

utilizing the complex multivariate normal distribution (Anderson et al., 1995; Wooding,

1956). A property of the complex multivariate normal distribution is that if sC ~ NC (s0C,

ΛC), then ρC = ΩCxsC is also complex normal distributed, ρC ~ NC (ΩCxs0C,

) where ΛC = Ψ + iΥ and “H” denotes the Hermitian or

complex conjugate transpose.

After image reconstruction, the usual procedure is to convert from real and imaginary

images to magnitude and phase images. The phase is generally discarded in fMRI and

magnitude-only time course data are analyzed. The conversion from real and imaginary

images to magnitude and phase images is a nonlinear transformation and thus the joint

distribution of the magnitude image measurements is not straightforward. On an individual

basis, the measured magnitude quantity in voxel j in each magnitude image is

where ρ0Rj and ρ0Ij are the means in the real and imaginary parts while ηRj and ηIj are the

zero mean real and imaginary Gaussian error terms with variances Δjj and Δpx+j, px+j, j =

1, . . ., px, generally assumed to be the same. It is well known (Gudbjartsson and Patz, 1995;

Rice, 1954; Rowe and Logan, 2004) that the measured magnitude voxel intensity mj is

Ricean distributed with parameters , being the pixel magnitude intensity in

the absence of noise, and Δj = Δjj = Δpx+j,px+j, being the equal variances of the real and

imaginary parts. The population correlation between Ricean distributed magnitude image

measurements will be examined through simulation.

Appendix B. Two-dimensional image

The py × px dimensional complex-valued spatial frequency measurements SC consisting of

py × px dimensional true under lying noiseless complex-valued spatial frequencies S0C and

py × px dimensional complex-valued measurement error EC can be represented as
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where i is the imaginary unit while S0R, S0I, ER and EI are real and imaginary matrix valued

parts of the true spatial frequencies signal and measurement noise. Let ΩCx and ΩCy be px ×

px and py × py Fourier matrices such that

(B.1)

where ΩRy and ΩRx are real while ΩIy and ΩIx are imaginary matrix valued parts.

Then, the py × px complex-valued inverse Fourier transformation RC of SC can be written as

where

are real and imaginary matrix valued parts of the inverse Fourier transformed true signal

(image) and measurement noise. Each row in the curled bracket part of the expression for RC

is a one-dimensional complex-valued transformation:

(B.2)

as in the previous one-dimensional case where  represents the jth row in SC that is px

dimensional, j = 1, . . ., py. The complex matrices ΩCy and ΩCx can be Fourier matrices. This

preand post-multiplication of a complex-valued matrix by complex-valued matrices could be

equivalently represented with a similar real-valued representation. This could be

accomplished by forming a py × 2px dimensional matrix where a given row j, is ( )

a real-valued representation of the rows of SC. This real-valued matrix is then post-

multiplied by . The resultant real-valued matrix is then reformed into a complex-valued

matrix and another real-valued representation made from the columns to form a 2py × px

matrix. This new real-valued representation is then pre-multiplied by Ωy and the resultant

real-valued matrix is then reformed into a complex-valued matrix being the measured two-

dimensional image. In the procedure just described, it is difficult to keep track of individual

measurements and the correlations between other measurements within the array.
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A simple representation from matrix algebra can be utilized to assist with this endeavor. It is

known (Harville, 1999) that the vectorization of the triple product of conformable matrices

A, B, and C can be written as

which translates to our application as

where vec is the vectorization operator that stacks the columns of its matrix argument and

.

As previously noted, the matrix of spatial frequency measurements can be described with a

real-valued representation. The large Kronecker product can be represented as

(B.3)

(B.4)

(B.5)

(B.6)

The complex-valued image vector can be represented as ρC = ΩCsC. We can pre-multiply the

complex-valued spatial frequency vector by this complex-valued matrix as in the one

dimensional image case, or equivalently with a similar real-valued representation:

(B.7)

where the real-valued vector of spatial frequencies is formed by

while Re( ) and Im( ) denote the operators that return the real and imaginary parts of their

arguments and vec( ) denotes the vectorization operator that stacks the columns of its matrix

argument.

The Fourier image reconstruction process to generate a complex-valued measured image RC

consists of pre-multiplying the measured spatial frequencies SC by the Fourier matrix ΩCy in
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Eq. (B.1) and post-multiplying it by ΩT
Cx in Eq. (B.1). As shown above, this is equivalently

represented as the pre-multiplication of the real-valued vector of measured spatial

frequencies s by the real-valued matrix Ω in Eq. (B.6) to arrive at the real-valued

representation of the measured image ρ. The vector s is assumed to be characterized as

having a multivariate normal distribution with mean s0 and covariance matrix Φ denoted as

(B.8)

The real-valued representation of the measured image ρ is a linear transformation of the real-

valued representation of the measured spatial frequencies and thus normally distributed with

mean ρ0 = Ωs0 and covariance matrix Γ = ΩΦΩT denoted as

(B.9)

The measured py × px complex-valued image RC can be found by sequentially putting every

px elements of the vector ρR + iρI into a matrix then taking the transpose.

In terms of complex-valued matrices, the mean of the transformed variables can be written

as

as previously defined but the covariance of the transformed measurements is not easily

represented with complex numbers and requires the larger real-valued representation.

Again, after image reconstruction, the usual procedure is to convert from real and imaginary

images to magnitude and phase images. The phase is generally discarded in fMRI and

magnitude-only time course data is analyzed. The conversion from real and imaginary

images to magnitude and phase images is a nonlinear not one-to-one transformation and thus

the joint distribution of the magnitude-only image quantities is not straightforward. However

an approximation to the correlation of the square of the magnitudes, or in general any

quadratic form exists. Further, the correlation of squared magnitudes is a good

approximation to the correlation of magnitudes. If any pair of random variables is

transformed by the same function (here the square root), their correlation remains roughly

the same, by a Taylor series expansion argument.

On an individual basis, the measured magnitude quantity in voxel (i, j) in each magnitude

image is

where R0Rjk and R0Ijk are the means in the real and imaginary parts, NRjK and NIjk are the

zero mean real and imaginary Gaussian error terms with variances Γjpx+k,jpx+k and

Γpxpy+jpx+k,pxpy+jpx+k, j = 1, . . ., px = 1, . . ., py, generally assumed to be the same.
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It is well known (Gudbjartsson and Patz, 1995; Rice, 1954; Rowe and Logan, 2004) that the

measured magnitude voxel intensity mj is Ricean distributed with parameters

, being the pixel magnitude intensity in the absence of noise, and

Γpxpy+jpx+k,pxpy+jpx+k, being the equal variances of the real and imaginary parts. The

population correlation between Ricean distributed magnitude image measurements will be

examined through simulation.
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Fig. 1.
Correlation maps, px = 8, L = 106. (a) Correlation between complex spatial frequency

measurements, Corr(s, s). (b) Correlation between complex image voxel measurements,

Corr(r, r). (c) Correlation between magnitude image voxel measurements, Corr(m, m).
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Fig. 2.
Correlation maps, px = py = 8, L = 106. (a) Correlation between complex spatial frequency

measurements, Corr(s, s). (b) Correlation between complex image voxel measurements,

Corr(r, r). (c) Correlation between magnitude image voxel measurements, Corr(m, m).
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