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Mesenchymal stromal cells (mSCs) are presently studied for

the prophylaxis and therapy of a variety of diseases such as

acute graft-versus-host disease after allogeneic stem cell

transplantation, cardiac indications, bone degeneration,

Crohn’s disease, and organ rejection, as well as prevention

of acute renal failure in high-risk situations. mSCs appear

to function through paracrine mechanisms that exert

immunosuppressive, anti-inflammatory, anti-apoptotic,

mitogenic, and other organ-protective and repair-stimulating

actions. mSCs are either cultured in the presence of fetal calf

serum (FCS) or platelet lysate (PL). PL lysate-generated mSCs

exhibit faster doubling times, different gene expression

profiles, and more potent immunosuppressive activity

compared with FSC-generated mSCs. The utility of mSCs in

the treatment of chronic inflammatory diseases is being

evaluated in prospective studies.
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mSCs IN REGENERATIVE MEDICINE

Recent interest in cell-based therapies has renewed the
research on adult stem cells (SCs) derived from bone marrow
(BM). Mononuclear cells of the BM contain SCs that can be
purified by density centrifugation. These non-hematopoietic
SCs have been characterized through plastic adherence
and termed ‘mesenchymal’ stem or multipotent stromal cells
(mSCs). This cell population was first described by
Friedenstein et al.1–3 in 1966. These cells exhibit in vitro a
fibroblastoid phenotype and have been characterized as
progenitors of adipocytes, chondrocytes, and osteocytes.
Caplan, Prockop, and Pittinger further described them as
mutlipotent progenitors for connective tissues.4–6

The ‘Mesenchymal and Tissue Stem Cell Committee of
the International Society for cellular Therapy’ published in
a consensus statement the main criteria that define mSCs:
(1) mSCs are plastic adherent; (2) they are negative for the
hematopoietic markers CD34, CD45, CD14, and major
histocompatibility complex (MHC)-II, and positive for
CD90, CD105, CD73, and MHC-I; and (3) they differentiate
into adipo-, osteo-, and chondrogenic lineages in vitro.7

Approximately 10 years ago, several publications reported
on the ability of mSCs to differentiate across germ-layer
lineages and boundaries; specifically, they were found to
differentiate into brain, liver, kidney, heart, and muscle cells
(Table 1).8–11 Similar results were obtained with hemato-
poietic SCs (Table 2).12–16 In vitro studies showed that
induced antigen expression did match that of targeted tissues
or organs. However, this de novo expression of tissue-specific
antigens was achieved by treating mSCs with nonspecific
demethylating agents such as 5-azacytidine. However, not
entirely unexpectedly, the reproduction of these in vitro
findings in vivo proved difficult, whereas organ-protective
and regenerative effects of administrated mSCs were still
observed in injured organs.

The mechanisms that were proposed to explain the
observed effects of cellular therapy included plasticity
(Table 3), that is, differentiation of cells beyond their lineage
boundaries, cell fusion, and paracine effects. Several of the
data suggesting ‘plasticity’ of adult SCs were subsequently
explained by the phenomenon of fusion of stem with target
cells.17–20 Terada et al.17 showed that BM cells adopt the
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phenotype of other cells by spontaneous cell fusion.
Vassilopolous et al.18 and Wang et al.19 showed that cell
fusion is the principal mechanism whereby BM-derived
‘hepatocytes’ affect liver repair, whereas Villenbrink et al.20

demonstrated that myelomonocytic cells were sufficient to
support repair of the diseased liver via cell fusion.

ISOLATION AND GENERATION OF mSCs: EXPANSION OF mSCs
WITH FETAL CALF SERUM OR WITH HUMAN PLATELET
LYSATE

Expansion of mSCs with fetal calf serum (FCS) carries the
risk of infectious bovine contaminants, and they are
potentially antigenic as FCS is stored in mSCs. mSCs grown
with human platelet lysate (PL) have the advantage that
platelet donors are tested according to strict blood trans-
fusion standards. Comparison of the two expansion methods
revealed that FCS in vitro is a strong antigen even at low
concentrations, whereas such a response is not seen with
mSCs grown with PL. Comparative doubling times of
PL-expanded MSCs are much shorter (Figure 1), and the
gene expression profile of PL-grown mSCs shows lower
expression of MHC II genes, such as MHC-II DP beta 1
(HLA-DPB1), MHC-II DM alpha (HLA-DMA), MHC-II DR
alpha (HLA-DRA), MHC-II DP alpha 1 (HLA-DPA1), and
MHC-II DR beta 1 (Dw14). These expression profiles explain,
at least in part, the weaker antigenicity of PL-expanded
mSCs I allogeneic settings.

PRECLINICAL OBSERVATIONS WITH mSC THERAPY IN
REGENERATIVE MEDICINE

An example in which in vitro and in vivo results were
incongruent was reported by Jaquet et al.21 Pretreatment of

mSCs in vitro with 5-azacytidine induced both smooth-
muscle actin expression, a protein of immature cardiomyo-
cytes, and troponin T, a protein of mature cardiomyocytes.
However, no beating or contracting myogenic fibers were
detected. When these rat mSCs were injected adjacent
to ventricular cryolesions of 3� 6 mm size, an in vivo model
for acute myocardial infarction/injury, which resulted in a
significant reduction of myocardial scar area. Significantly,
there was no myogenic differentiation of injected mSCs,
that is, no mature sarcomeric organization or intercalated
disk formation by these cells, and there was no endothelial
differentiation. The authors concluded, therefore, that
paracrine actions of mSCs appeared to mediate regeneration
of this type of myocardial injury.

Similar observations were made in a rat model of
ischemia/reperfusion acute kidney injury.22–25 Significant
functional improvement was shown, leading to an earlier
normalization of serum creatinine levels, and better long-
term survival after mSC infusion. mSCs were labeled with
superparamagnetic particles of iron oxide for in vivo
tracking. Animals with acute renal failure were given
superparamagnetic particles of iron oxide-labeled mSCs
and scanned in a whole-body scanner.25 Rat mSCs were
detected immediately after administration in the cortex of
both kidneys, as revealed by signal extinction, on magnetic
resonance imaging, at these sites. The renal signal of iron-
labeled cells disappeared within 3 days of administration. On
histological examination of kidneys at 3 days post injury and
mSC infusion, no iron-labeled cells had differentiated into
tubular or endothelial cells. Despite the rapid disappearance
of administered mSCs from the kidneys, gene expression
studies comparing mSC to vehicle-treated kidney tissues
revealed strikingly altered gene expression profiles. Specifi-
cally, the kidneys of mSC-treated animals showed increased
expression of anti-apoptotic Bcl-2, anti-inflammatory inter-
leukin-10, mitogenic tissue growth factor-a, and vasculogenic
basic fibroblast growth factor. In addition, proinflammatory
genes IL-1b, TNF-a and IFN-g, and nitric oxide synthase were

Table 3 | Possible mediator mechanism that explain beneficial
effects of mSCs in cellular therapy

1 Plasticity
2 Contamination with multi-/pluripotent stem cells
3 Dedifferentiation
4 Fusion (e.g., liver, muscle)
5 Paracrine effects

Abbreviation: mSC, mesenchymal stromal cell.
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Figure 1 | Comparative growth characteristics of human
mesenchymal stromal cells (mSCs) when expanded with fetal
calf serum or platelet lysate. aMEM, a-minimum essential
Eagle’s medium.

Table 1 | Proposed differentiation of mSCs across tissue
lineage boundaries

mSCs into brain Azizi et al.8

mSCs into liver Avital et al.9

mSCs into kidney Jiang et al.10

mSCs into heart Toma et al.11

Abbreviation: mSC, mesenchymal stromal cell.

Table 2 | Proposed differentiations of hematopoietic stem
cells across tissue lineage boundaries

Adult stem cells into liver Theise et al.12

Adult stem cells into heart Orlic et al.13

Adult stem cells into muscle Ferrari et al.14

Brain into blood Bjornson et al.15

Blood into brain Mezey et al.16
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downregulated.24 In conclusion, these data provide further
clear evidence for the paracrine mode of action of mSCs in
the cytoprotection and repair of the injured kidney.

Claims regarding the plasticity of ‘adult’ SCs came from
investigations in BM transplantation. Specifically, following
transplantation, cells of donor origin were detected in other
tissues such as liver, lung, and skin, by using the Y chromosome
as a marker of male donor cells. In subsequent studies, however,
BM DNA of donor cells was found to be transported into
mature recipient cells by cell fusion or DNA transfer,26 largely
invalidating the hypothesis of transdifferentiation.

On the basis of the above and other data, an important
conclusion can be drawn: mSCs appear not to function
directly by replacing destroyed cells following their differen-
tiation into tissue-resident cells, but rather release factors
that support endogeneous regeneration by decreasing the
inflammation of injured tissue, inhibition of apoptosis, and
stimulation of mitogenesis of viable cells.

CURRENT CLINICAL STUDIES WITH mSCs

At least 60 clinical studies evaluating mSCs as prophylaxis
and therapy for various diseases are currently under way
(Table 4; http://www.clinicaltrials.gov). Major indications are
prevention and therapy of acute graft-versus-host disease
(n¼ 12), cardiac indications (n¼ 12), bone generation
(n¼ 7), treatment of BM and organ rejection (n¼ 4), and
Crohn’s disease (n¼ 4). Other indications include multiple
sclerosis, liver regeneration, and diabetes mellitus.

The working hypothesis of virtually all ongoing mSC-based
clinical studies is based on their paracrine modes of action that
collectively effect, in injured organs, immunosuppressive, anti-
inflammatory, anti-apoptotic, vasculoprotective, and mitogenic
responses, together resulting in organ protection and repair.
Finally, it is presently unknown whether the administration of
mSCs that are first predifferentiated into phenotypes of an
injured organ is advantageous.
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Table 4 | Current clinical trials with mSCs

Disease Phase

Transplant rejection (GvHD, kidney transplant) I–III
Morbus Crohn III
Acute renal failure/acute kidney injury I
Lupus nephritis I/II
Diabetes mellitus I/II–II
Chronic obstructive pulmonary disease II
Liver failure I/II
Multiple sclerosis I/II
Cardiac disease I/II–II
Bone and cartilage defects I/II–II
Osteogenesis imperfecta I
Cord blood expansion I/II

Abbreviations: GvHD, graft-versus-host disease; mSC, mesenchymal stromal cell.
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