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Abstract

The nonnucleoside reverse transcriptase (RT) inhibitor rilpivirine (RPV) has been co-formulated

with emtricitabine and tenofovir disoproxil fumarate for initial therapy of HIV-1-infected

individuals. RPV, formulated as a long-acting nanosuspension, will also be assessed for its ability

to prevent HIV-1 infection in resource limited settings. In this study, we determined whether any

pre-existing genetic differences occurred among different HIV-1 subtypes at residues in RT

associated with decreased virologic response to RPV. We found that the E138A substitution

occurs more frequently in subtype C (range: 5.9–7.5%) than B (range: 0–2.3%) sequences from

both treatment-naïve and -experienced individuals (p<0.01) in 4 independent genotype databases.

In one of the databases (Stanford University), E138K and E138Q were also more common in RTI-

experienced subtype C sequences (1.0% and 1.1%, respectively) than in subtype B sequences

(0.3% and 0.6%, respectively). E138A/K/Q in subtype C decreased RPV susceptibility 2.9-, 5.8-,

and 5.4-fold, respectively. Taken together, these data suggest that E138A could impact treatment

or prevention strategies that include RPV in geographic areas where subtype C infection is

prevalent.
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Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of

antiretroviral therapies used for the treatment of HIV-1 infection. Rilpivirine (RPV) is a

second generation diarylpyrimidine NNRTI (Azijn et al., 2010), that has been co-formulated

with the nucleoside RT inhibitors emtricitabine and tenofovir disoproxil fumarate for initial

therapy of HIV-1-infected individuals. A long-acting nanosuspension formulation for RPV

(RPV-LA) has also been developed (Baert et al., 2009), and is currently being assessed in an

ongoing phase IIb clinical study to determine whether it can, in combination with the

integrase inhibitor GSK1265744, maintain virologic suppression in infected individuals

(ClinicalTrials.gov Identifier: NCT01641809). Additionally, RPV-LA will be studied in the

pre-exposure prophylaxis (PrEP) setting because it has the potential to reduce reliance on

daily adherence.

Although RPV has been reported to have higher in vitro genetic barrier to resistance (Azijn

et al., 2010), at least 17 single substitutions in HIV-1 RT (L100I, K101E/P,

E138A/G/K/Q/R, V179L, Y181C/I/V, Y188L, H221Y, F227C, and M230I/L) have been

associated with a decreased virologic response to this NNRTI (Anta et al., 2013).

Unfortunately most HIV-1 drug resistance research has focused predominantly on subtype B

viruses, even though non-subtype B strains are responsible for the majority of global

infections. Specifically, HIV-1 subtype C, which predominates in Southern and Eastern

Africa, India and Nepal, is responsible for > 50% of all infections globally (Lihana et al.,

2012). Importantly, recent studies have documented increases in the prevalence of drug

resistance, especially NNRTI resistance, among treatment-naïve individuals in sub-Saharan

Africa since the inception of rollout of antiretroviral therapy (Gupta et al., 2012; Price et al.,

2011). There is also increasing evidence that naturally occurring genetic differences in

different HIV-1 subtypes can impact antiretroviral drug susceptibility and drug resistance.

For example, the V106M RT substitution, which confers resistance to the NNRTIs efavirenz

(EFV) and nevirapine (NVP), has been reported more frequently in subtype C viruses than

in subtype B (Brenner et al., 2003). Along these lines, we were interested in determining

whether other pre-existing genetic differences occurred among different HIV-1 subtypes at

residues associated with decreased virologic response to RPV.

We assessed sequences from RT inhibitor (RTI)-naïve and -experienced individuals in the

Stanford University HIV Drug Resistance database (Rhee et al., 2006) and in two

independent clinical databases. One of the clinical databases is located in Vancouver,

Canada at the BC Centre for Excellence in HIV/AIDS (Gill et al., 2010), and the other in

Johannesburg, South Africa at Lancet Laboratories. RT sequences were also analyzed from

specimens gathered during surveillance of transmitted drug resistance (TDR) in 23 countries

in Africa, Asia, and Central America that were generated by World Health Organization

(WHO)-designated genotyping laboratories (http://www.who.int/hiv/pub/drugresistance/

report2012/en/). The HIV-infected individuals included in the WHO TDR surveys were

likely recently infected and thus not previously treated with antiretroviral drugs. We found
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that the E138A substitution in HIV-1 RT occurs more frequently in subtype C than B

sequences from both treatment-naïve and -experienced individuals (Table 1). In the Stanford

University database, E138A was present in 350/17481 (2.0%) subtype B sequences and in

415/6795 (6.1%) subtype C sequences from RTI-naïve HIV-1-infected individuals

(p<0.0001). In the BC database, E138A was present in 76/3320 (2.3%) subtype B sequences

compared to 6/101 (5.9%) subtype C sequences (p=0.03). In the WHO TDR surveys, E138A

was not observed in subtype B sequences, but was present in 97/1296 (7.5%) subtype C

sequences (p<0.01). Of note, in the Stanford University database E138A was not more

common in treatment-naïve sequences of other subtypes, including subtypes A (3.2%), D

(2.3%), F (3.6%), G (1.7%), CRF01 (0.4%) or CRF02 (2.3%). However, in the WHO TDR

surveys, E138A was also more frequently observed in subtype A (6.0 %; p = 0.02), but not

in subtypes D (0 %), G (5.9 %; p = 0.22), CRF01 (0.4 %), CRF02 (2.0 %), CRF06 (0 %),

CRF07 (0 %), CRF08 (2.6 %) and CRF11 (0 %) (Supplementary Table 1). In contrast to

E138A, the frequencies of other substitutions at codon 138 (i.e., E138G/K/Q) were similar

in both subtypes B and C. E138A was also more common in subtype C than B sequences

from RTI-experienced HIV-1-infected individuals in the Stanford University and BC Centre

databases (p < 0.01 in both databases) (Table 1), but its frequency was not higher in either

subtype B or C sequences from individuals who had NRTI, but not NNRTI, containing

regimens or those who received both NRTI- and NNRTI containing regimens (Table 1).

Taken together, these data indicate that E138A is polymorphic and does not appear to be

strongly selected by prior RTI exposure. In the Stanford University HIV Database, E138K

and E138Q were also more common in subtype C than B isolates from RTI-experienced

individuals, although their overall frequencies (1.0% and 1.1%, respectively) were lower

than E138A (6.1%). Consistent with these findings, an analysis of 2578 sequences (majority

subtype C) from both naïve and RTI-experienced (but with no prior exposure to RPV or

etravirine (ETR)) HIV-1-infected individuals in the Lancet Laboratories (South African)

database revealed that 206 (8%), 43 (1.7%), 29 (1.1%) and 23 (0.9%) harbored the E138A,

G, K or Q mutations, respectively (data not shown).

Prior studies have assessed the impact of substitutions at codon 138 in RT on NNRTI

susceptibility of subtype B, but not subtype C HIV-1 (Azjin et al., 2010; Tambuyzer et al.,

2011). Therefore, we introduced the E138A, E138G, E138K, E138Q and E138R mutations

into subtype C RT, as described previously (Brehm et al., 2012), and assessed virus

susceptibility to RPV, ETR, EFV and NVP in P4/R5 cells (Table 2). For comparison, we

also phenotyped subtype B virus (LAI strain) containing the same mutations. The E138A

mutation reduced susceptibility to RPV by 5.6-fold in HIV-1 subtype B and by 2.9-fold in

HIV-1 subtype C, respectively. E138A was also found to reduce susceptibility to ETR, but

did not significantly reduce susceptibility to NVP or EFV in either subtype B or C. The

E138G/K/Q/R mutations in HIV-1 subtype B reduced susceptibility to RPV and ETR but,

with the exception of E138Q which decreased susceptibility to NVP 3.0-fold, had no impact

on susceptibility to either NVP or EFV. In subtype C RT, the E138G/K/Q/R mutations

reduced susceptibility to RPV and ETR (range: 2.7–6.8-fold). Interestingly, the E138K/Q/R

mutations in HIV-1 subtype C had noticeable effects on NVP and EFV susceptibility (2.3 to

7.1-fold).
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Collectively, our data shows that the E138A mutation in HIV-1 RT is ~3-fold more common

in naïve- and RTI-experienced isolates from individuals infected with subtype C, compared

to those infected with other subtypes, in 4 independent datasets. In the context of subtype C

RT, the E138A substitution reduces virus susceptibility to RPV. The biological cutoff

(BCO) for RPV has been set at 2.0, and a virus, such as subtype C HIV-1 containing E138,

with a fold-change in resistance above the cutoff is considered resistant. As such, these

findings suggest the possibility of higher risk of virologic failure of RPV-based therapy in

geographic regions such as sub-Saharan African in which HIV-1 subtype C infections

predominate. The higher frequency of E138A in subtype C may also compromise the

efficacy of RPV-LA as a PrEP agent in sub-Saharan Africa, although additional studies are

warranted to assess this possibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We looked for genetic differences at RPV resistance codons among HIV-1

subtypes

• E138A was found to occur more frequently in subtype C than B HIV-1

sequences

• E138A could impact RPV therapy in resource limited settings
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