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Abstract

In recent years, numerous studies have provided converging evidence that word meaning is partially stored in modality-
specific cortical networks. However, little is known about the mechanisms supporting the integration of this distributed
semantic content into coherent conceptual representations. In the current study we aimed to address this issue by using
EEG to look at the spatial and temporal dynamics of feature integration during word comprehension. Specifically,
participants were presented with two modality-specific features (i.e., visual or auditory features such as silver and loud) and
asked to verify whether these two features were compatible with a subsequently presented target word (e.g., WHISTLE).
Each pair of features described properties from either the same modality (e.g., silver, tiny = visual features) or different
modalities (e.g., silver, loud = visual, auditory). Behavioral and EEG data were collected. The results show that verifying
features that are putatively represented in the same modality-specific network is faster than verifying features across
modalities. At the neural level, integrating features across modalities induces sustained oscillatory activity around the theta
range (4–6 Hz) in left anterior temporal lobe (ATL), a putative hub for integrating distributed semantic content. In addition,
enhanced long-range network interactions in the theta range were seen between left ATL and a widespread cortical
network. These results suggest that oscillatory dynamics in the theta range could be involved in integrating multimodal
semantic content by creating transient functional networks linking distributed modality-specific networks and multimodal
semantic hubs such as left ATL.
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Introduction

The embodied framework of language suggests that lexical-

semantic knowledge (i.e., word meaning) is stored in part in

modality-specific networks that are distributed across the cortex

[1–4]. For example, words denoting colors (e.g., red, green) have

been shown to engage parts of the ventral visual stream [5], while

words denoting actions (e.g., kick, pick) engage the dorsal motor

network [6]. In recent years, much has been done to understand

the automaticity, flexibility and reliability of the link between

action/perception and word meaning [5,7–10]. The current study

extends this body of literature by addressing the question of how

distributed lexical-semantic features are integrated during word

comprehension.

Although ample evidence for the link between word meaning

and perception/action systems exists, the bulk of research in this

field has reduced lexical-semantic information to one dominant

modality (e.g., vision for red and action for kick). The motivation for

focusing on single modalities is clearly methodological: by focusing

on words with a clear association to one modality, good

hypotheses can be generated for testing empirically. However,

words clearly refer to items that are experienced through multiple

modalities in the real world (e.g., a football is associated with both

a specific visual form and a specific action), and embodied

accounts of language have done little to address how multimodal

information interacts during the processing of word meaning. The

one exception to this rule has been the attempt to understand how

lexical-semantic processing can be focused flexibly on information

from one modality versus another. For example, van Dam and

colleagues [10] demonstrated that words denoting objects that are

strongly associated with both action and visual information (e.g.,

tennis ball) reliably activate both motor and visual pathways in the

cortex. Interestingly, motor pathways also responded more

strongly when participants were asked to indicate what to do with

the object rather than what it looks like. Likewise, Hoenig and

colleagues [8] have shown that even for objects with dominant

modality-specific features (e.g., actions for artifacts), the pattern of

activation in visual and motor networks is differentially modulated

if a dominant (action) or non-dominant (visual) feature is primed.

Notably, modality-specific networks show a stronger response to

the target if the prime was not a dominant feature. Taken

together, the studies by van Dam et al. [10] and Hoenig et al. [8]

suggest that word meaning is partially stored in a network of areas

that are recruited in a modality-specific and flexible way.

However, it should also be pointed out that most of this evidence

is of a correlational nature. As yet, little is known about the causal

role of modality-specific networks in lexical-semantic processing,
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and how they are related to more abstract semantic knowledge

[11,12].

While studies highlighting the flexible recruitment of different

types of modality-specific information confirm that single words

are associated with multiple types of perceptual experience, it is

still unknown how information from multiple sources in the brain

(e.g., visual and action features) is united to form a coherent

concept that is both visual and motoric. Cross-modal integration

has been studied extensively with respect to object perception [13–

16]. However, its role in forming lexical-semantic representations

has been largely neglected, even within the embodied framework.

Several theoretical perspectives have argued for the existence of

amodal integration ‘hubs’ or foci, at which information relevant

for lexical-semantic processing is combined [17,18]. Neuropsy-

chological data has provided compelling evidence that the anterior

temporal lobes (ATL) may be a good candidate for such a hub

[18,19]. Thus, there is a general acceptance that information from

distributed modality-specific networks is integrated in some way,

somewhere in the brain. However, virtually no research has looked

at what the neural mechanisms underlying semantic integration

might be in these hub regions or more widely across the brain.

One way to investigate the mechanisms underlying integration

across cortical areas is to study modulations in oscillatory power in

EEG and MEG signals that have been related to network

interactions at different cortical scales [20,21]. Specifically, low

frequency modulations (, 20 Hz) are often reported when tasks

require the retrieval and integration of information from distant

cortical sites, which is generally the case for memory and language

[22–25]. In contrast, modulations in high frequency bands (.

30 Hz) are observed when tasks require local, modality-specific,

network interactions such as saccade planning or visual object

binding [26,27]. According to this framework, the specific network

dynamics underlying the integrating of lexical-semantic features

across different modalities should be reflected in a modulation in

low frequencies.

The aim of the current study was to investigate what

mechanisms underlie the integration of semantic features across

modalities. This question was addressed in two experiments using

a dual property verification task. Participants were asked to

indicate whether a feature pair (e.g., silver, loud) is consistent with a

target word (e.g., WHISTLE). Critically, the feature pair could

either be from the same modality (e.g., both visual), or from

different modalities (e.g., visual and auditory). In Experiment 1 we

analyzed verification times for cross-modal and modality-specific

feature contexts to investigate whether integrating multimodal

semantic content, that is content, which is represented in

distributed semantic networks, incurs a processing cost. Specifi-

cally, we hypothesize that integrating features represented within a

single modality-specific network is faster than integrating features

across modalities. In Experiment 2, we used EEG to measure

changes in oscillatory neuronal activity during the target word

when participants were asked to integrate features from the same

or different modalities. Oscillatory neuronal activity could be a

neural mechanism that contributes to semantic integration by

linking modality-specific networks to multimodal convergence

zones such as ATL. In line with this idea, we hypothesize that

integrating semantic information from multiple modalities will be

reflected in enhanced low frequency oscillatory activity in

multimodal convergence zones, as well as substantial network

interaction between these regions and a widespread cortical

network.

Experiment 1

In Experiment 1 participants indicate whether two features (e.g.,

silver, loud) are consistent with a target word (e.g., WHISTLE).

Specifically, a feature pair could either be associated with

modality-specific or cross-modal semantic content. We hypothe-

size that integrating modality-specific feature pairs is faster than

integrating cross-modal feature pairs, highlighting that word

meaning is integrated more readily within modality-specific

semantic networks than across.

Methods
Participants. Sixteen healthy individuals participated in

Experiment 1 (13 female), all of which had normal or corrected

to normal vision and no known auditory deficit. The age range

was 18 to 24 (M = 19.88).

All participants were students at the University of York, and

participated on a voluntary basis. As compensation for their

participation, participants received either a financial reward or

course credits. Participants gave written informed consent

according to the Declaration of Helsinki. In addition they were

given the opportunity of a more detailed debriefing after the study.

The study was approved by the Ethics Committee of the

Psychology Department at the University of York.

Stimulus material. 120 target nouns (e.g., WHISTLE) were

each paired with two adjective features from the same (e.g., silver-

tiny), and two features from different modalities (e.g., silver-loud)

(Figure 1a). Crucially, targets were presented only in one of the

two feature contexts. That is, each participant saw 60 targets with

a modality-specific (MS) feature pair and 60 different targets with

a cross-modal (CM) feature pair. The conditions were counter-

balanced and trials were presented in a pseudo-randomized order.

In addition, 60 trials were included in which at least one feature

was false. To familiarize participants with the experiment 10

additional practice trials were presented before the start of the

experiment. Thus, each participant saw 190 target words and

feature pairs.

Since the target (WHISTLE) and one feature (silver) were the

same in both conditions, only variable features (tiny, loud) were

matched for word frequency (log-scaled, British National Corpus),

and length. In order to control for differences in semantic

association between feature pairs and targets, latent semantic

analysis (LSA) scores were extracted for each feature pair and

target combination. LSA is a measure of semantic similarity that

quantifies how commonly two or more words occur in the same

context in written texts [28]. For example highly associated words

like camel and hump yield a higher LSA score (LSA = .53) than less

highly associated words such as camel and hairy (LSA = .20). Lastly,

each feature pair was rated on a five-point scale (N = 18) for how

diagnostic and how related it is to its target word. None of these

scores differed significantly between conditions (see Table 1).

Language is inherently polysemous, and most semantic features

can be associated with multiple modalities, depending on the

context. For example, a feature like high can be used to describe

the size of a mountain (visual) or the pitch of a sound (auditory).

This issue was addressed recently in two norming studies [29,30].

Specifically, participants were asked to rate features in isolation or

as feature-concept pairs on how likely the feature is experienced

through one of five modalities (visual, haptic, auditory, olfactory,

and gustatory). The features in the current study were based on

averaged ratings from previous studies [29,30] and a small

proportion (2.6%) of additional auditory features (e.g., ticking,

quacking). Features were selected, which had been categorized as

predominantly visual, haptic, or auditory (see Figure 2).

Cross-Modal Integration of Semantic Features
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All stimuli were presented using Neurobehavioral Systems

Presentation software (www.neurobs.com) on a 22’’ TFT screen

with a screen resolution of 168061050 and a refresh rate of

60 Hz.

Procedure. Participants were seated in front of a computer

screen at a distance of 40 cm. Words were presented in light grey

on a black background with a font size of 40 pt. Each trial started

with the disappearance of a fixation cross that was presented at a

variable interval between 1500 and 2500 ms. Individual features

were presented subsequently, for 500 ms, with a 500 ms blank

screen in between. The target was presented last (Figure 1b).

Participants were instructed to indicate whether both features are

consistent with the target. Responses were provided on a button

box while the target was on the screen (2000 ms). Response times

and number of errors were measured for subsequent analyses.

Each participant saw a target only once and in one of two

conditions (CM or MS).

Results and Discussion
One participant was excluded from the analysis because

performance rates on the task were at chance. Furthermore,

outliers at three standard deviations from the mean were excluded

from the analysis.

In order to test whether participants were able to perform the

task, a one-sample t-test was conducted on the proportion of

correctly identified feature-target pairs, against a test-value of 0.5.

This test confirmed that participants’ performance on the task was

well above chance (t(14) = 15.43, p,.001) with a mean proportion

of .73 correctly recognized features.

To test for a main effect of modality-specificity, the median

reaction time was computed for each condition and participant,

and averaged separately for MS (visual, auditory, haptic) and CM

(visual-auditory, auditory-haptic, and visual-haptic) feature pairs,

resulting in two values per participant (CM and MS). The

distribution of these values across participants met the assumptions

of a paired-sample t-test. The test statistic revealed that

participants were overall slower to respond to CM (M = 981.6,

SE = 64.64) versus MS (M = 909.36, SE = 55.95) feature pairs

(t(14) = 3.65, p = .003).

The effect of modality-specificity on verification time was

further investigated for each of the three possible modality

combinations using analysis of variance (ANOVA) with repeated

measures (Figure 3). In each analysis, a CM condition (e.g., visual-

Figure 1. Experimental design of the dual property verification paradigm. A The top panel provides an overview of the design in which a
target was either paired with a cross-modal (visual-haptic [VH; HV], visual-auditory [VA; AV], auditory-haptic [AH; HA]), or modality-specific feature pair
(Visual [V], Auditory [A], Haptic [H]). The three modalities of interest were visual, haptic, and auditory. B The bottom panel depicts the time course of a
single trial. All words are presented one after the other. Therefore, features can only be fully integrated when the target appears (e.g., WHISTLE).
doi:10.1371/journal.pone.0101042.g001

Table 1. Matching of the experimental items.

Feature Pair LSA Relatedness Diagnosticity Frequency Length

Cross-modal 0.21 (.01) 3.28 (.06) 2.65 (.07) 3.88 (.07) 6.48 (.18)

Modality-specific 0.22 (.01) 3.37 (.07) 2.66 (.08) 3.87 (.08) 6.24 (.17)

p-value (p = .66) (p = .32) (p = .92) (p = .93) (p = .48)

Scores were averaged over all items in each condition. P-values were computed using independent-samples t-tests. The standard error of the mean is provided in
brackets.
doi:10.1371/journal.pone.0101042.t001
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auditory) was compared to two MS conditions (e.g., visual and

auditory). The first ANOVA tested for an effect of condition on

verification time across the visual (V), auditory (A), and visual-

auditory (VA) conditions. The test revealed a significant main

effect of condition (Wilks’ Lambda = .33, F(2,13) = 13.24, p = .001,

partial g2 = .67). Planned comparisons using a Helmert contrast

indicated that participants responded more slowly during CM

(visual-auditory) than MS feature pairs (visual and auditory,

respectively) (F(1,14) = 26.67, p,.001, partial g2 = .66). The

second ANOVA tested for a main effect of condition on

verification time across the auditory (A), haptic (H), and

auditory-haptic (AH) conditions. The results showed a significant

main effect of condition (Wilks’ Lambda = .43, F(2,13) = 8.61,

p = .004, partial g2 = .57). Planned comparisons using a Helmert

contrast revealed that participants verified CM feature pairs

(auditory-visual) more slowly than MS feature pairs (auditory and

haptic respectively) (F(1,14) = 9.22, p = .009, partial g2 = .40). The

final ANOVA was conducted to test for a main effect of condition

across the visual (V), haptic (H) and visual-haptic (VH) condition.

There was no main effect in this analysis (Wilks Lambda = .72,

F(2,13) = 2.64, p..1).

The goal of Experiment 1 was to investigate whether integrating

semantic features represented within a single modality is faster

than integrating features across modalities. The current results

suggest that this is indeed the case. Verification times for two

semantic features with respect to a target (e.g., WHISTLE) were

delayed when participants saw two features from different

modalities (e.g., silver, loud). However, this effect seems to be

restricted to visual-auditory, and auditory-haptic feature combi-

nations. A possible explanation for this finding is that visual

lexical-semantic features can be difficult to distinguish from haptic

features. This was also evident in the rating study in which features

were often rated similarly as being experienced by seeing, and

touching (Figure 2) [29,30].

Experiment 2

Experiment 2 uses EEG to investigate oscillatory dynamics

during semantic integration within, and across different modalities.

We hypothesize that integrating cross-modal semantic content will

be reflected in enhanced low frequency oscillatory activity in

multimodal semantic hubs, such as ATL, as well as substantial

network interaction between these regions and a widespread

cortical network.

Methods
Participants. For Experiment 2, 22 healthy participants (8

female) were tested, all of which had normal or corrected to

normal vision and no known auditory deficit. The age range was

between 19 and 34 (M = 21.26). Four participants were excluded

from the analysis due to excessive movement and blinking (3), and

a technical error (1). None of the participants had participated in

Experiment 1

Participants gave written informed consent according to the

Declaration of Helsinki. In addition they were given the

opportunity of a more detailed debriefing after the study. The

study was approved by the Ethics Committee of the Psychology

Department at the University of York.

Stimulus material. The stimulus materials in Experiment 2

were exactly the same as in Experiment 1.

Procedure. In Experiment 2, participants were wearing an

electrode cap that was connected via an amplifier to the recording

computer while performing the verification task. The setting was

the same as in Experiment 1. However, in order to prevent

contamination of the EEG signal from movement and response

planning [31], the task was changed such that participants only

responded in case they encountered a false feature.

Data recording and pre-processing. EEG was acquired

from 64 Ag-AgCl electrodes that were positioned on an electrode

cap according to a 10–20 system. All electrodes were re-referenced

offline to the algebraic average of the two mastoids. Horizontal

and Vertical eye movements were recorded with a set of bipolar

Figure 2. Mean of the modality ratings for visual, haptic, and auditory features. The three spider plots indicate the mean rating score
[29,30] over all features in the each of the three modalities of interest (Visual, Haptic, and Auditory).
doi:10.1371/journal.pone.0101042.g002

Figure 3. Cross-modal integration costs in verification times.
Bar graphs depict the mean verification time in the MS (Visual, Auditory,
and Haptic), and CM condition (Visual-Auditory, Auditory-Haptic, Visual-
Haptic). Error bars denote standard error of the mean (*** p,.001; **
p,.01).
doi:10.1371/journal.pone.0101042.g003
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Ag-AgCl electrodes. The signal was amplified using an ANT

amplifier with a band-pass filter between 0.5 and 100 Hz.

Impedances of the cortical electrodes were kept below 10 kV.

The signal was recorded with a sampling frequency of 500 Hz.

Offline analyses were conducted using Matlab 7.14 (Mathworks,

Natick, MA) and Fieldtrip, a Matlab toolbox for analyzing EEG/

MEG data [32]. Trials were only considered if the participant

correctly withheld the response on a target. Artifact rejection was

performed in three consecutive steps. First, muscle artifacts were

removed using semi-automatic artifact rejection. Subsequently,

extended infomax independent component analysis (ICA), with a

weight change stop criterion of ,1027, was performed to identify,

and reject ocular components. Finally, each trial was visually

inspected for any remaining artifacts. The average number of

correct trials that survived the rejection protocol did not differ

significantly between condition (MS: M = 48, SE = 1.26; CM:

M = 47, SE = 1.24; t(17) = 21.29, p = .21).

Spectral analysis. In order to estimate spectral power

changes over time, time-frequency representations (TFR) were

computed for each trial, using a 500 ms fixed sliding time window

with time steps of 50 ms, resulting in a frequency resolution of

,2 Hz. A Hanning taper was applied to each of these segments to

reduce spectral leakage. TFR’s were calculated for frequencies

between 2 and 20 Hz in steps of 2 Hz. These transformations

were performed at the individual trial level and reflect both evoked

and induced components of the signal. Subsequently, trials were

averaged for each condition and subject, and percentage signal

change was computed using a common baseline over both

conditions. The time window for the baseline was between 750

and 250 ms before the onset of the trial. The baseline

normalization procedure is equivalent to the event-related de-

synchronization technique (Pfurtscheller & Lopes da Silva, 1999),

except that positive values denote synchronization, and negative

values de-synchronization ((active-passive)/passive*100). Total

power was averaged over 6 regions of interest.

Statistical analysis. Inferential statistics on the time-fre-

quency windows following the presentation of the target word

were computed using a cluster-based permutation approach [33].

Cluster-based permutation effectively reduces the number of

comparisons by clustering neighboring samples above a given

threshold along the dimensions: time, frequency, and space. In the

current study, paired-sample t-tests were computed over subjects

for each ROI-time-frequency point (0–1000 ms, 2–20 Hz, 6

ROI). Subsequently, t-values were thresholded at a= .05. Neigh-

boring t-values above the threshold criterion were included into

the same cluster, and ranked according to the size of the cluster.

Finally, cluster-level statistics were computed by comparing the

sum of all t-values within a given cluster against a permutation

null-distribution. The null-distribution was constructed by ran-

domly permuting the conditions (iterations = 1000), and calculat-

ing the maximum cluster-level statistic for each iteration.

A similar procedure was used for the seed-based whole-brain

connectivity analysis. The difference between each condition (CM

and MS) and the baseline was computed for an early (0–500 ms)

and late (500–1000 ms) time window. The value at each location

in source space was thresholded using a permutation distribution

(a= .05, 1000 iterations), and combined with values from spatially

adjacent locations. We used a maximum statistic to control for

multiple comparisons at the cluster-level, which was equivalent to

the sensor space analysis.

Source reconstruction. Sources of oscillatory activity at the

whole-brain level were estimated using a linear beamforming

method (Gross et al., 2001; Liljeström et al., 2005). The forward

model was computed on a regular three dimensional grid

(10610610 mm spacing) using a realistic volume-conductor

model [34]. Paired-sample t-tests were computed for the difference

between conditions at each location in the brain. Subsequently, t-

values were transformed into z-values and masked at a = 0.05.

Connectivity analysis. The analysis of cortico-cortical con-

nectivity in source space was conducted for an early (0–500 ms)

and a late time window (500–1000 ms) at the frequency that

showed the strongest power difference in sensor space (,6 Hz).

The same number of trials were randomly selected for the CM and

MS condition as well as the baseline period. A cross-spectral

density (CSD) matrix was computed from the tapered Fourier

spectra of each trial and used to estimate filter coefficients for the

adaptive spatial filter. Subsequently, the Fourier spectra were

projected through these filter coefficients along the strongest dipole

orientation.

Functional connectivity between each location in the brain and

all others was estimated using the imaginary part of coherency

(ImCoh). ImCoh is only sensitive to signals at a non-zero time-lag,

and therefore insensitive to connectivity artifacts resulting from

volume conduction [35]. We computed ImCoh based on the

Fourier spectra at each location in the grid. Subsequently, a

stabilizing z-transform was applied using the inverse hyperbolic

tangent (tanh21). Since the main interest was in the functional

connectivity between nodes rather than the direction of the effect,

the absolute was computed for each of the resulting z-values.

For subsequent graph analysis, a binary adjacency matrix was

computed for each participant by thresholding with the maximum

value at which none of the nodes in any of the conditions was

disconnected to the rest of the network. Finally, the log10

transformed difference between the number of connections

(degrees) in the seed region versus baseline was computed for

each condition, and subjected to statistical testing.

Results and Discussion
The time-frequency analysis of total power revealed a sustained

increase in the theta band (4–6 Hz) and a decrease in the alpha,

and low beta band (8–20 Hz) while the target word (e.g.,

WHISTLE) was on the screen (Figure 4a). In order to test for

differences between conditions (CM.MS), a cluster-based per-

mutation approach was used [33]. In the first step of the analysis,

the clustering algorithm revealed one significant cluster (4–6 Hz,

peak at 750–850 ms) at left and central electrodes (LA, LP, MA,

MP) (Figure 4b; Figure 5). In order to control for multiple

comparisons, a maximum permutation statistic was used in which

the summed cluster t-value was compared against a permutation

distribution with 1000 iterations. The maximum statistic revealed

a significant difference between conditions at the cluster level

(p = .002, two-tailed), suggesting enhanced theta power in the

cross-modal condition. Source reconstruction of this effect

revealed a major peak in left ATL as well as left middle occipital

gyrus (MOG) (Figure 6A).

The grid point in the left ATL (mni coordinate: 249 22 230),

which was most sensitive to the power difference between conditions,

was taken as the seed for subsequent connectivity analyses. One

sample t-tests were used to test for an increase in the log-transformed

number of connections (degrees) relative to baseline in an early (0–

500 ms) and late (500–1000 ms) time window. In the early time

window, both conditions showed a significant increase in the number

of connections (CM: t(17) = .389, p,.001; MS: t(17) = .355,

p = .001, one-sided). However, in the late time window, an effect

was found only in the CM condition (CM: t(17) = 2.13, p = .024;

MS: t(17) = .56, p = .291, one-sided). Further, paired-sample t-tests

were used to test for a difference between conditions directly. A

difference between conditions was observed only in the late

Cross-Modal Integration of Semantic Features
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(t(17) = 2.36, p = .031, two-sided), but not the early time window

(t(17) = .012, p = .991, two-sided). Taken together, this suggests that

during the first 500 ms after target onset, the ATL is communicating

with a wide cortical network in both conditions (CM and MS).

However, during the second 500 ms, this effect persists only in the

CM condition (Figure 6B).

To illustrate which specific regions show enhanced functional

connectivity with the ATL, we used a whole-brain cluster-based

permutation procedure on the z-transformed ImCoh values,

comparing each condition to the baseline. This approach was

similar to the procedure we used in sensor-space. As depicted in

the top panel of figure 6C, a large cluster of nodes was connected

to the ATL in the early time window for both conditions (CM:

p = .004; MS, p = .008, one-sided). However, in the late time

window a significant difference relative to baseline was only

observed in the CM condition (p = .032, one-sided). Connections

during the second time window were found to regions that are

involved in auditory (right Heschl’s gyrus), somatosensory

(bilateral post-central gyrus), and visual object processing (right

posterior MTG), as well as medial and lateral frontal lobes.

The aim of Experiment 2 was to investigate whether integrating

semantic features over a wider cortical network is reflected in

enhanced oscillatory activity at low frequencies. Time-frequency

analysis revealed an increase in theta power (4–6 Hz) for both

conditions, which was more sustained during cross-modal

integration. This effect localized most strongly to the left ATL,

which is thought to be a major hub for integrating multimodal

semantic content [18]. Subsequent seed-based whole-brain con-

nectivity analysis confirmed that the number of connections

between the ATL and the rest of the network increases in both

CM and MS conditions during the first 500 ms. However, these

network interactions extend into the second 500 ms only in the

CM condition. Specifically, the ATL communicates with modal-

ity-specific auditory, somatosensory and high-level visual areas as

well as regions in the frontal lobe. Taken together, these findings

suggest that theta oscillations are associated with network

dynamics in a widespread cortical network. Previous research

has associated theta oscillations with lexical-semantic processing

[22,23]. However, the current study is the first to show that theta

power is sensitive to the spatial distribution of semantic features in

the cortex. The implications of these findings for semantic

processing are discussed in the next section.

General Discussion

Embodied theories of language have argued that word meaning

is partially stored in modality-specific cortical networks, converg-

Figure 4. Modulation in low frequency cortical oscillations for the target word in a cross-modal or modality-specific context. A The
top panel shows time-frequency representations, averaged over all significant clusters. The first two panels show the grand average percent signal
change with respect to the baseline. The third panel depicts the masked statistical difference between the two conditions in t-values. The contour
plot reveals one significant cluster in the theta range (4–6 Hz). B The first two bottom panels depict the topography of the effect in each condition
(4–6 Hz, peak at 750–850 ms) relative to baseline. The third panel signifies the statistical difference between conditions in t-values. Electrodes within
significant clusters are marked with dots (p = .002, cluster-corrected)
doi:10.1371/journal.pone.0101042.g004
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ing in multisensory association areas in anterior temporal, and

inferior parietal lobes [1–4,17]. The aim of the current study was

to investigate the mechanisms underlying integration of semantic

features during language processing. Two experiments are

reported in which participants were asked to verify whether two

features from the same (e.g., silver - tiny) or different modality (e.g.,

silver - loud) are consistent with a given target word (e.g.,

WHISTLE). The results from Experiment 1 show that integrating

features from the same modality is faster than integrating features

from different modalities. These findings suggest that word

meaning is integrated more readily within a single modality-

specific network than across networks. Integrating information

across networks in particular should engage multimodal conver-

gence zones. Experiment 2 shows that integrating features from

different modalities induces a sustained theta power increase in left

ATL, a putative hub for semantic convergence [18]. Low

frequency theta oscillations could reflect a neural mechanism by

which multimodal word meaning is combined locally in temporal

association cortices. However, assuming that word meaning is

partially stored in distributed cortical networks, multimodal

integration necessarily requires long-range communication be-

tween left ATL and the rest of the cortex. The seed-based

connectivity analysis in the theta range revealed that this is indeed

the case; left ATL communicates with a widespread cortical

network that includes, but is not limited to, modality-specific

regions. In other words, local theta power in left ATL reflects long-

range communication between temporal areas and the rest of the

cortex, which, according to embodied theories of semantics, is

necessary for the integration of word meaning from multiple

modality-specific semantic networks.

Integrating multimodal semantic information comes at a
cost

Experiment 1 shows that participants are faster to verify features

of a target word (e.g., WHISTLE) from the same (e.g., silver-tiny)

versus two different modalities (e.g., silver-loud), suggesting that

word meaning converges more readily within a modality-specific

semantic network than across networks. This is in line with

behavioral studies that have examined switching costs during word

comprehension [36] as well as dual property verification tasks [37]

(but see also [38]). It is also broadly in accordance with a cognitive

model proposing graded semantic convergence from modality-

specific to multimodal [39].

Figure 5. Time-frequency plots for each of the 6 ROI. The ROI were middle anterior (MA), left anterior (LA), right anterior (RA), middle posterior
(MP), left posterior (LP), and right posterior (RP) electrodes. Time-frequency representations depict the statistical difference in t-values for the target
word in the CM versus MS feature context. The contours indicate the peak of the cluster-corrected statistical difference (p = .002).
doi:10.1371/journal.pone.0101042.g005
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Theta oscillations in left ATL during multimodal semantic
feature integration

The principle by which information from distributed neural

populations is combined is a much-debated topic in neuroscience.

It has been argued that transient networks emerge from

synchronized firing of large neuronal populations, which is

recorded as oscillatory activity at the scalp [40–42]. In humans,

changes in oscillatory neuronal activity in the theta range have

been observed during different stages of memory processing, as

well as lexical-semantic retrieval [22–25,43–46]. The current study

extends previous findings to show that theta oscillations are

particularly sensitive to the integration of semantic features of an

object, which are thought to be partially represented in distributed,

modality-specific, networks [1–4].

It has been argued that modality-specific semantic networks

converge in multimodal association cortices [17,18]. For example,

there is compelling evidence from patients with semantic dementia

suggesting that ATL is involved in semantic processing at a general

level [18,19], yet little is known about the neural dynamics within

this region. Experiment 2 reports a modulation in local theta

power within left ATL when participants integrate features from

multiple modality-specific semantic networks. The connectivity

analysis of the data from Experiment 2 further revealed that theta

oscillations also participate in long-range network interactions

linking left ATL with a widespread cortical network. These

findings are an important step in bridging the gap between

anatomy and cognition; the theta rhythm could be a neural

signature reflecting transient network interactions within left ATL,

as well as between this region and distributed modality-specific

networks. Such functional networks are necessary for linking

semantic content in space and time.

Lastly, we find that the effect peaks at a very late point in time

(,750 ms), most likely reflecting the tail of a sustained oscillatory

response that is triggered much earlier in time. Importantly, we do

not argue that this is the moment when semantic integration takes

place. Rather, oscillatory dynamics in the theta range could be

involved in creating the conditions necessary for semantic

integration by linking multiple functional networks over a period

of time. The fact that cross-modal integration incurs a higher

processing demand is reflected in a longer integration window.

This is also in line with the finding that theta is the only known

oscillatory frequency which shows a linear increase during

Figure 6. Source reconstruction and connectivity analysis. A Source reconstruction of the effect in the theta band, depicted as thresholded z-
values, reveals peaks in left ATL and MOG. B Bar graphs show a significant increase in the number of connections between ATL and the rest of the
brain in the early time window (0–500 ms). In the late time window (500–1000 ms), only the CM condition shows a significant increase in the number
of connections relative to baseline. Error bars depict SEM C Results of the whole-brain connectivity analysis, seeded in the ATL (white dot).
Connectivity maps show the difference in absolute, z-transformed, imaginary coherence between each condition and the baseline. In the early time
window both conditions show a strong increase in connectivity between the ATL and a widespread cortical network. In the second time window,
only the cross-modal condition shows continuing network activity above baseline.
doi:10.1371/journal.pone.0101042.g006
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sentence processing [47]. Again, we would like to emphasize that

the primary goal of the current study was to investigate the

oscillatory dynamics, rather than the timing of semantic integra-

tion, which has been addressed extensively in previous work using

the event-related potential technique [48].

Relation to multisensory integration and cross-modal
matching

Multisensory integration is an essential component of everyday

life. For example, both visual and proprioceptive information are

required when performing goal-directed actions [49], speech

comprehension greatly benefits from visual information about lip

movements [50], and hearing the sound of an animal facilitates its

visual detection [14]. Although these examples bear a superficial

resemblance to the processes we investigated in the current study,

it should be noted that there are fundamental differences in

integrating cross-modal sensory, and lexical-semantic content

respectively. These differences are with respect to a) the time

scale and b) the directionality of information flow.

Previous studies have investigated oscillatory changes during

multisensory integration using cross-modal matching. For exam-

ple, Schneider and colleagues [13] showed that matching the

visual image of an object (e.g., picture of a sheep) to its sound (e.g.

sound of a sheep) induces an early increase in the gamma band

(40–50 Hz) between 120–180 ms. Similar findings have been

reported for haptic to auditory matching [15]. In contrast, effects

of semantic integration in language are usually observed around

400 ms [48] and at frequencies below 30 Hz [22,23,51,52]

(however, see [53]). This is not surprising given the fact that

lexical retrieval involves multiple processing stages (e.g., visual

processing of letters). In this respect, the current findings should

primarily be interpreted as reflecting language but not sensory

processing.

Another difference between sensory and semantic integration is

the directionality of information flow. While sensory processing in

a given modality is largely automatic and dependent on external

stimulation (bottom-up), retrieving modality-specific word mean-

ing requires prior experience with the referent of a word and is

highly context-dependent (top-down). For example, previous

imaging work has shown that action words do not activate the

action system to the same extent if they are presented as idiomatic

expressions (e.g., he kicked the bucket) [54] (but see [55]). Further-

more, it has been shown that neutral sentences (e.g., it is hot in here)

activate parts of the action system if presented in a context in

which they are interpreted as indirect requests (e.g., a room with a

closed window) [56]. In the current study, participants were

primed to think about a particular instance of an object (e.g., a

silver and loud whistle). In other words, the relevant information was

not directly encoded in the stimulus (a visual word), but needed to

be retrieved from memory.

In sum, imaging studies have shown that lexical-semantic

content activates modality-specific cortical networks similar to

sensory stimulation [5,7,57]. But despite their spatial similarity,

lexical-semantic and sensory processes operate at very different

time-scales and through different computations (bottom-up versus

top-down). While much is known about the mechanisms

underlying multisensory integration, the current study is among

the first to address how cross-modal semantic information is

integrated through language.

Conclusions

Previous research suggests that word meaning is partially stored

in modality-specific cortical networks. However, little is known

about the mechanisms by which distributed semantic information

is combined into a coherent conceptual representation. The

current study addresses exactly this question: What are the

mechanisms underlying cross-modal semantic integration? Partic-

ipants were asked to indicate whether two features from the same

(e.g., silver - tiny) or different modalities (e.g., silver - loud) are

consistent with a target word (e.g., WHISTLE). Experiment 1

revealed that integrating semantic features represented within a

single modality is faster than integrating features across modalities.

In Experiment 2, EEG recordings revealed sustained oscillatory

activity in the theta range, when participants were asked to

integrate features from different modalities. The effect was

localized to left ATL, a putative semantic hub that is thought to

be involved in linking multimodal semantic content [18]. While

the importance of this region for semantic processing and

integration is largely uncontested, little is known about its

mechanics. The current findings are an important step towards

bridging this gap between anatomy and function; oscillatory

dynamics in the theta range could be a neural mechanism that is

involved in establishing transient functional connections between

distributed modality-specific, and multimodal semantic networks.

Further evidence for this claim is the finding that theta oscillations

in Experiment 2 also participate in long-range interactions linking

left ATL to a widespread cortical network.
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