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Abstract

The exquisite architecture of cortex incorporates a myriad of inhibitory interneuron types. Until

recently, the dearth of techniques for cell type identification in awake animals has made it difficult

to link interneuron activity with circuit function, computation and behavior. This situation has

changed dramatically in recent years with the advent of novel tools for targeting genetically

distinct interneuron types so their activity can be observed and manipulated. The association of

different interneuron subtypes with specific circuit functions, such as gain modulation or

disinhibition, is starting to reveal canonical circuit motifs conserved across neocortical regions.

Moreover, it appears that some interneuron types are recruited at specific behavioral events and

likely control the flow of information among and within brain areas at behavioral time scales.

Based on these results we propose that interneuron function goes beyond network coordination

and interneurons should be viewed as integral elements of cortical computations serving behavior.

Introduction

Devoted to the idea that “nature delights in repeating itself”, Cajal developed the notion that

cerebral cortex may be composed of stereotypic patterns, repeated with a large diversity of

specific variations [1,2]. His research initiated the search for canonical circuit motifs:

cortical sub-networks that are repeated across areas and presumably support similar

computational functions. This line of research led to the discovery of the “cortical column”,

a vertical structure of neurons sharing similar receptive field properties in sensory cortices

[3,4] and its proposed anatomical substrate, the “cortical module” [5]. The perplexing

variety of cell types within cortex long appeared an “impenetrable jungle” [1] until recently

developed technologies for cell-type-specific targeting enabled the field to probe how
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distinct interneuron types participate in cortical circuits and what computations these circuits

support during behavior.

The main focus of our review will be on recent work that uses genetic targeting to access

specific cortical interneuron subtypes. First, we will provide a brief historical overview of

research leading to the conclusion that interneurons are central to cortical computation.

Next, we discuss two faces of interneuron function; under what conditions are they activated

(“recruitment”) and how do they affect the local circuit (“impact”). Novel techniques for cell

type identification and manipulation have finally enabled the investigation of these questions

and begun to reveal the function of interneurons in cortical computations and behavior.

Do interneurons compute? Insights from hippocampus and visual cortex

The neuronal operations that transform the inputs to a cortical area into its outputs are

referred to as ‘cortical computations’ and were traditionally investigated in terms of

principal cell function, leaving open questions about the role of interneurons. The potential

involvement of inhibitory neurons in computations has been investigated and debated

mainly in the hippocampus and the primary visual cortex (V1), two regions with well-

established single neuronal tuning properties: place cells (i.e., cells that fire in a particular

physical location) in the hippocampus and orientation and direction tuned cells of V1. In

these studies, interneuron identity was mostly inferred from high firing rate and narrow

spike width, features likely corresponding to parvalbumin (Pv) expressing basket cells [6–8].

Most place cells are sharply tuned to one or a few locations of the environment, while

inhibitory cells often have more complex, multimodal tuning properties [9,10]. The spatial

firing maps of hippocampal interneurons were initially interpreted as mere reflections of

their local presynaptic pyramidal inputs [11–13], arguing against computational roles. Later

it was discovered that hippocampal interneurons have both “on” and “off” fields, spatially

localized increases and decreases in activity, with information content comparable to that of

principal cells [9,10]. Furthermore, interneurons not only exhibit positive spatial correlation

with place cell firing, suggestive of a place cell to interneuron direction of information flow,

but sometimes also strong negative correlations [14]. Thus interneurons could contribute to

place-specific firing with “on” fields that suppress out-of-field excitation [10] and “off”

fields that allow spatially restricted excitatory input [9]. These results lead to the suggestion

that hippocampal interneurons play critical roles in determining the spatial tuning of

principal cell [10].

A parallel line of studies attempted to elucidate whether and how interneurons in sensory

cortices influence receptive field properties of principal cells. Interneurons in the visual

cortex exhibit heterogeneous tuning properties; many show broad or even no tuning,

whereas other inhibitory cells are as narrowly tuned as pyramidal cells [15–18]. Most of the

principal cells receive inhibition tuned to their preferred orientation, but in a large subset the

inhibitory input is tuned to non-preferred orientations [19]. Whether inhibitory interneurons

actually participate in shaping tuning in V1 in specific ways can be probed using

optogenetic manipulations. Two recent studies showed that Pv interneurons provide

different forms of gain control: Atallah et al. found Pv cells perform a linear transformation
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on pyramidal cell input-output curves involving both subtractive and divisive components

[20], whereas Wilson et al. found Pv cells primarily divisive [21]. In contrast, Lee et al.

showed that Pv cells sharpen tuning and thus improve perceptual discrimination [22]. These

and other studies also probed the role of somatostatin (Som) expressing interneurons in V1.

They showed that Som interneurons provide subtractive inhibition, shifting the tuning

curves of pyramidal cells [21]. In addition, Som interneurons appear to be involved in

surround suppression, the attenuation of responses at the center of a neuron’s receptive field

by stimulation of the receptive field surround [23,24].

In summary, a new consensus is emerging according to which interneurons actively

participate in cortical computations by influencing the receptive field properties of principal

neurons [20–25]. However, determining which specific transformations are performed by

which interneuron types will require further investigation.

What are the canonical inhibitory circuit motifs?

Cortical interneurons differ in the expression of protein markers (e.g. parvalbumin), in the

neuromodulators they co-release (e.g. somatostatin), in their firing patterns in response to

current injections and in many other ways [26,27]. While a discrete classification of

interneurons based on any single marker is not possible, many markers do map to

anatomically relatively homogeneous neuronal classes and can provide systematic access to

genetically homogeneous populations [26]. The identity of cells recorded in vitro was

traditionally revealed only post hoc in the course of morphological or immunocytochemical

evaluation. This made studying interneuron types tedious and characterizing rare subtypes

remained a subject of a great deal of serendipity. Recently, targeted in vitro recordings,

enabled by cell type specific expression of fluorescent markers in new transgenic rodent

models [28], allowed high-yield and more easily repeatable experiments on interneuron

connectivity. Furthermore, bidirectional optogenetic manipulations provided a powerful tool

for probing circuit functions of various interneuron types. These technological

improvements were exploited by a series of novel studies, greatly advancing our

understanding of cortical interneuron circuits.

Cortical inhibitory interneurons are classically divided into two major categories. Peri-

somatic interneurons synapse on the somata and proximal dendrites of pyramidal cells and

are thus strategically positioned to control their output. Dendrite-targeting interneurons, on

the other hand, send projections to the distal dendrites of the pyramidal cells, thus gating the

incoming information [27,29]. The two most prominent representatives of these classes are

the Pv and Som expressing interneurons (Fig. 1a–b). Perisomatic Pv cells are heavily

interconnected by chemical synapses and electric coupling promoting synchronous activity

[8,30–33]. Pv-expressing interneurons with basket morphology form recurrent loops with

pyramidal neurons, thought to be important substrates of feedback inhibition [34]. A recent

study showed that the other major basket cell type, interneurons that express cholecystokinin

(Cck), provide strong feed-forward inhibition recruited by incoming fibers in the

hippocampus [35]. A third type of perisomatic interneurons, the chandelier cells, are defined

by their extreme target specificity [36]. Because they exclusively target the spike initiation

zone of pyramidal cells they were long proposed to serve to ‘veto’ output spikes. However,
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recent studies showed that their effect on pyramidal neurons may be excitatory [37].

Determining the exact area-specific contingencies under which they provide inhibition,

excitation or shunting [37–40] will require further studies. A novel developmental genetic

approach to selectively target chandelier cells holds great promise for better understanding

their network and behavioral function [41]. As opposed to Pv neurons, the dendrite-targeting

Som interneurons largely lack within-type synaptic connections providing more

asynchronous parallel pathways onto other interneuron types as well as pyramidal cells

[8,31,32,42]. A subset of Som interneurons, Martinotti cells projecting to layer 1, participate

in local pyramidal cell–interneuron–pyramidal cell circuits by mediatinh disynaptic

inhibition from one principal cell to its excitatory neighbors [43,44]. Som interneurons were

also shown to be capable of exerting highly focal, compartmentalized control over

individual dendritic spines [45]. A subpopulation of Som expressing interneurons in layer 4

mediates disinhibition of local principal cells via Pv interneurons [46]. While these studies

suggest specific connectivity patterns within the cortical circuit, a recent report found non-

selective, nearly all-to-all connectivity from Som interneurons to local pyramidal cells in the

mouse frontal cortex [47].

Interneurons make up almost all the neurons in layer 1 and recent in vivo work demonstrated

that a major fraction disinhibits layer 2/3 pyramidal cells via Pv neurons in auditory cortex

[48]. In vitro work showed that anatomically defined cell types of layer 1 differentially

affect layer 5 pyramidal cells in sensorimotor cortices: neurogliaform cells inhibited whereas

single-bouquet cells disinhibited them [49].

Recently, three papers converged on a circuit motif controlled by cells expressing vasoactive

intestinal polypeptide (Vip; Fig. 1c) [32,50,51]. Vip expression demarcates a small

population of interneurons (~10–15%), located mostly in the supragranular cortical layers,

that are distinct from the two major interneuron populations defined by Pv and Som

expression. These neurons – as also suggested by earlier anatomical studies [52–54] –

preferentially target other types of inhibitory neurons, potentially providing disinhibitory

control by releasing pyramidal cells from inhibition. All three studies agreed that the major

target of Vip interneurons are the Som-expressing interneurons. VIP inhibition onto Pv-

expressing interneurons was found to be either comparable to [32], stronger [50] or weaker

[51] than that onto pyramidal cells but always weaker than onto Som interneurons,

suggesting that the strength of these connections may vary slightly across different cortical

areas. The Vip to Pv connection in the hippocampus and motor cortex was shown to

undergo substantial experience-related plasticity, which likely increases the variability of

connection strength [55]. Importantly, Pi et al. provided the first in vivo demonstration that

Vip interneurons generated disinhibition, impacting a functionally defined, strongly tone-

responsive subset of pyramidal cells in the auditory cortex. Taken together, the three studies

described very similar connectivity patterns for Vip interneurons in four functionally and

cytoarchitectonically different regions of the neocortex: three sensory areas, the auditory

[50], visual [32] and somatosensory [51] cortices and the prefrontal cortex [50]. Thus, the

Vip-controlled disinhibitory circuit appears to define a canonical cortical circuit motif (Fig.

2).
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Mapping the behavioral repertoire of cortical interneurons

Cortical neurons tend to show great heterogeneity in response properties during behavior

(e.g. [56–59]). For instance, even neighboring neurons in prefrontal cortex encode distinct

combinations of sensory, motor and other features with unique temporal dynamics, resulting

in the vexingly complex “cortical response zoo”, which greatly complicates the

interpretation of extracellularly recorded neural activity during behavior [56,59,60].

Similarly puzzling response diversity has been reported in sensory and motor cortices

[57,58]. Indeed, such representational heterogeneity can have computational benefits [60–

63]. However, it is not known whether response diversity is a property of a defined cortical

population, or if part of this heterogeneity can be attributed to cell-type diversity within the

recorded population. This question is particularly relevant for inhibitory interneurons

because of the large diversity of subtypes each with distinct connectivity and intrinsic

properties [27,64].

In the previous section we reviewed evidence for well-defined network functions associated

with interneuron classes; however, network function does not necessarily imply behavioral

correlates. It is conceivable, that interneuron function can only be understood with reference

to the circuit they are embedded in; for instance, by referencing interneuron activity to local

principal cells using a cross-correlation approach or registering interneuron spiking to local

field potential oscillations [29,65–68]. In this case, aligning interneuron activity to

behavioral events may not uncover specific moments of recruitment.

Recent technical developments have enabled testing these ideas [8,69–76]. For instance,

optogenetics-assisted identification of genetically defined cell types enables mapping the

behavioral correlates of rare neuron types [8,75,76]. Briefly, a defined population of neurons

is rendered light-sensitive by cell-type specific expression of a light-sensitive cation channel

(variants of channelrhodopsin; [77]) via viral delivery or transgenic approaches [28].

Neurons from the targeted cell type are then identified in extracellular recordings based on

their short latency light-evoked responses.

Applying this optogenetic tagging method, Pv- and Som-expressing interneurons were

recently investigated in the anterior cingulate cortex (ACC) of freely behaving mice (Fig.

1d–g) [8]. Mice were trained to perform a foraging task in which they had to shuttle back

and forth between a distant trigger location and a dedicated reward zone. Pv and a subset of

Som interneurons, characterized by narrow action potentials (NS-Som), showed strong

behavioral correlates of the foraging decisions: NS-Som neurons uniformly suppressed their

activity when the mice entered the reward zone (Fig. 1f–g), whereas Pv neurons, again as a

homogenous population, became phasically active when the animal left the reward zone

(Fig. 1d–e). In addition, the activity increase of Pv cells was correlated with the time the

animal had spent in the reward zone before deciding to leave. In another study, prefrontal

Pv-expressing interneurons were investigated in mice during auditory fear conditioning [78].

Pv neurons were suppressed during freezing and fear expression was causally dependent on

this effect.
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Pv-expressing interneurons have been also recorded with the juxtacellular technique in head

restrained behaving rats [74]. This study showed that while pyramidal neurons in the

forelimb area of the motor cortex have diverse behavioral correlates in relation to motor

preparation, initiation and execution, identified Pv neurons are mostly active during the

expression of voluntary movements, constituting a homogeneous group. Similarly, Lapray et

al. demonstrated that hippocampal Pv-expressing basket cells are mostly active during

movement as opposed to quiet wakefulness in freely moving rats [71].

The responses of Vip-expressing interneurons were probed in auditory cortex during an

auditory discrimination task [50]. Many Vip neurons showed auditory tuning but the

surprising observation was that they were most strongly and uniformly recruited by

reinforcement signals: with rapid phasic activation after punishment (air puff or foot shock)

and somewhat weaker but more sustained response after water reward (Fig. 1h–i) [50]. Vip

interneurons have similar circuit functions across four distinct cortical regions, which shows

they play analogous roles in distinct cortical circuits [32,50,51]; therefore, it will be

interesting to determine if they also have similar behavioral correlates across regions.

These new data, combined with our knowledge of cortical interneuron circuits, allows one to

speculate about the network and behavioral function of interneuron types. Pv neurons are

likely to control the output of their cortical area. This implies that Pv neurons should be

active when this output is formed, which is strongly region-specific. This may explain their

activation during foraging decisions in the ACC (Fig. 1d–g) [8] and their elevated firing

during movement expression in the motor cortex [74]. On the other hand, Som interneurons

are in a position to control the input to cortical pyramidal cells. Interestingly, NS-Som cells

are uniformly silent in the ACC during the exact period when incoming information might

be integrated to form a leaving decision in the foraging task [8]. In line with this proposed

role in inhibitory gating, Som neurons in the barrel cortex are suppressed during passive and

active whisker sensing [51,79]. Vip interneurons express fast ionotropic receptors for

serotonin and acetylcholine [80–83], putting them in an optimal position to rapidly relay

long-range neuromodulatory signals [84] as well as other long-range input [51]. By

disinhibiting pyramidal cells via Som interneurons, they provide a switch by which other

cortical and subcortical areas can engage cortex. These data support a new model of

interneuron function: interneurons may exert a precise control over cortical information flow

by selectively gating distinct input and output channels governed by the requirements of

ongoing behavior.

Concluding remarks

Until recently, it has been unknown whether interneurons form canonical circuit motifs

across different cortical areas. Similarly, it has been unclear whether specific types of

interneurons have signature behavioral correlates or their function can only be explored in

terms of circuit function and oscillations. New transgenic mouse lines, optogenetic tagging

and awake juxta/intracellular recording techniques enabled a series of recent studies that

have already revealed a great deal about interneuron network and behavioral functions. The

contours of a canonical cortical microcircuit are already becoming visible, revealing

different cortical interneuron subtypes in critical positions. Moreover, it appears that
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interneurons have functions beyond network coordination and certain subtypes can be

recruited at specific behavioral events. As the behavioral repertoire of different interneurons

is becoming clearer it appears that they serve to control the flow of information. These

recent breakthroughs foreshadow a deeper understanding of the logic of the cortical network

guided by studies of identified cortical cell types.
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Highlights

• Inhibitory interneurons actively participate in cortical computations

• Cortical interneurons form canonical circuits

• Cortical interneurons are recruited under specific behavioral contingencies
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Figure 1. Network effects and behavioral correlates of identified interneuron classes
ab,c, Top, spike raster and peri-stimulus time histogram (PSTH) of Pv (a), Som (b) and Vip

(c) interneurons aligned to light pulses. Bottom, PSTH of four simultaneously recorded

unidentified neurons (Pv pairs, Som pairs and Vip pairs). Pv and Som pairs are inhibited

after light pulses; Vip pairs are either inhibited (first and second PSTH) or show delayed

activation (third and fourth PSTH), indicating disinhibition. d, Schematic depicting a mouse

leaving the reward zone in a foraging task. e, Top two panels, spike raster and peri-event

time histogram (PETH) of a Pv interneuron aligned to reward zone exit. Bottom, mean z-

scored response of 14 PV neurons (shaded area indicates s.e.m.). f, Schematic depicting a

mouse entering the reward zone in a foraging task. g, Top panels, spike raster and PETH of

a NS-Som interneuron aligned to reward zone entry. Bottom, mean z-scored responses of 10

NS-Som neurons (shaded area indicates s.e.m.). h, Schematic of auditory go/no-go

discrimination task. i, Top two panels, raster plots and PETHs of a Vip interneuron aligned

to reinforcement (light green, reward; dark green, punishment; FA, false alarm). Bottom

panel, mean z-scored responses of 10 Vip interneurons. Modified from refs 8 and 50.
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Figure 2. Disinhibitory microcircuit controlled by Vip interneurons
Vip interneurons receive long-range and local excitatory inputs as well serotonergic and

cholinergic neuromodulatory projections from the dorsal raphe and nucleus basalis,

respectively. They control the activity of a cortical pyramidal cell subpopulation by

disinhibiting them mostly through Som interneurons.
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