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Abstract

Phase—amplitude cross-frequency coupling (CFC)—where the phase of a low-frequency signal
modulates the amplitude or power of a high-frequency signal—is a topic of increasing interest in
neuroscience. However, existing methods of assessing CFC are inherently bivariate and cannot
estimate CFC between more than two signals at a time. Given the increase in multielectrode
recordings, this is a strong limitation. Furthermore, the phase coupling between multiple low-
frequency signals is likely to produce a high rate of false positives when CFC is evaluated using
bivariate methods. Here, we present a novel method for estimating the statistical dependence
between one high-frequency signal and N low-frequency signals, termed multivariate phase-
coupling estimation (PCE). Compared to bivariate methods, the PCE produces sparser estimates of
CFC and can distinguish between direct and indirect coupling between neurophysiological signals
—critical for accurately estimating coupling within multiscale brain networks.

© 2011 IEEE
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Index Terms
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|. Introduction

There is increasing interest in clarifying the role of neuronal oscillations in shaping
computation and communication in multiscale brain networks. The cognitive, systems, and
computational neuroscience communities are investigating this topic for a number of
reasons. First, neuronal oscillations or brain rhythms reflect rhythmic changes in cortical
excitability [1]. Therefore, oscillations influence local computation since neuronal activity
differs depending on its timing relative to the phase of ongoing oscillations. That is, stimulus
processing may occur faster if stimuli are presented at the right time relative to ongoing
oscillatory activity. Similarly, long-range communication may be influenced by the relative
phase difference of oscillatory activity in different areas [2]. For example, the effective
communication gain between two areas is maximized when there is an optimal phase
difference between the signals arising from these areas, such that spikes leaving one area
will arrive when the other area is maximally excitable. Furthermore, electrical brain activity
is now commonly recorded at a variety of different spatial scales, from single-neuron spikes
(action potentials) at the microscale to the EEG at the macroscale. These signals exhibit
event-related changes in distinct frequency bands, such as the delta (1-4 Hz), theta (4-8 Hz),
alpha (8-12 Hz), beta (12-30 Hz), and gamma (>30 Hz) bands. Different frequencies
provide temporal windows for processing (corresponding to the duration of one oscillatory
cycle) and coordinate groups of neurons over different spatial extent—low frequencies
modulate activity over large spatial regions in long temporal windows, while high
frequencies modulate activity over small spatial regions and short temporal windows [3].
Neuronal processing is distributed across multiple scales and may be regulated by a
hierarchy of mutually interacting neuronal oscillations [4]. Transient interactions between
different brain rhythms, termed cross-frequency coupling (CFC), can act as regulatory
structures since different groups of neurons are coordinated by distinct frequencies. Of
particular interest is the phase—amplitude CFC, which describes the dependence between the
phase of a low-frequency (LF) brain rhythm and the amplitude (or power) of high-frequency
(HF) activity (see Fig. 1). The phase—amplitude CFC has been observed in humans,
macaques, and rats [3] and correlates with behavioral performance over the course of
extended learning [5]. Thus, the phase—amplitude CFC is of interest to theorists because
CFC provides one of the few physiologically plausible mechanisms able to coordinate fast,
spike-based computation with the slower external and internal events that guide perception,
action, and learning [3].

Several different analysis methods targeting the phase—amplitude CFC have been proposed
[6], [7]. However, despite the increasing ease of multielectrode recordings, all of these CFC
methods are inherently bivariate. That is, these methods investigate the relationship between
activity in a LF and HF bands from one channel (within-channel CFC) or examine the
dependence of HF activity (amplitude or power) of one channel upon the LF activity (phase)
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of another channel (cross-channel CFC). Here, we describe a novel method for assessing the
statistical dependence of HF amplitude of one signal y upon a set of N LF phases from
signals {x1, X, ..., Xn}. In the following, we first describe how to detect the phase—
amplitude CFC using the bivariate phase-locking value (PLV) method and describe the
relation of the PLV to the von Mises probability density function (pdf). Next, we describe
the multivariate phase-coupling estimation (PCE) technique and apply it to a simple three-
signal test case involving one HF signal and two LF signals. Even in this simple case, the
bivariate PLV and multivariate PCE methods differ in their assessment of the statistical
significance and strength of CFC—differences that have an important impact upon the
inferred network structure.

Il. Assessing Cross-Frequency Coupling via the Bivariate PLV

One of the more robust yet sensitive techniques for investigating CFC is the PLV method
[6]. Importantly, this method is already familiar to neuroscientists who use it to estimate
same-frequency, cross-channel phase coupling [8]. The same mathematical approach and
statistical evaluation can be used to investigate single-channel, cross-frequency interactions
once activity from both frequency bands is expressed in terms of phase variables.
Specifically, given a (real-valued) raw signal x(t), we can filter it to produce two (complex-
valued) signals: The [X()] = X4e (8) = Agre () explifr ()] (where i= v—1), reflecting HF
activity, and T g [x(1)] = x g (1) = A_E (t) exp[id F (1)], reflecting LF activity. The filter
operator Tg [x(t)] can be implemented in a variety of mathematically equivalent ways [9];
here, we assume convolution with a complex-valued Gabor basis function with a Gaussian
envelope. Band-pass filtering followed by the Hilbert transform is another common choice.

CFC techniques are designed to assess the relationship between the phase time series 4  (t)
and amplitude time series Ay (t), but the PLV method requires both signals to be expressed
in terms of phase variables restricted to the interval [—7, 7). This is true for 4 ¢ (t) but not
for Ay (t). Therefore, the PLV method applies a second filtering operation to extract the LF
component of the HF amplitude time series: Ty [[Tur X®11 = Tor Oxue O] = Tk [Anr
(O] = Anra (©) expliGqea (D)1, where x| is the modulus or the absolute value of x. This
second-order filtering yields the time series G4ga (1), reflecting the phase of LF variations of
the amplitude time series of the HF filtered signal x (see Fig. 2). From the phase time series
Bea (t) and the phase time series 4 g (t), we can compute the actual PLV as

PLVREAL:%|Z:;16:C}7[Z' (04 pa (k) — 0, (K))]|, where N is the number of sample points
(here we only consider cases, where N is large). PLVRrga, is restricted to the real interval
(0,1], with 1 corresponding to perfect phase locking and values close to 0 corresponding to
little or no phase locking.

Finally, we can assess the statistical significance of PLVrga by comparing it to a set of
surrogate (data-shuffled) PLVs {PLVsyrrocaTE} (Se€e Fig. 3). That is, for each (integer-
valued) surrogate runs € [1, 2, ..., NsurrocaTEl, compute PLVg after randomly (circular)
shifting one of the two time series. That is (with a slight abuse of notation), take the variable
t to represent the ordered list of sample points: t = [ty :tng;mel = [t B2, -+, INgmel- Draw an
integer K from the list [1:Ntime] and then fix ts = [t tnjjer t1: tk-1]- Then A rs (1) = G r
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1 N
(ts), and PLVS:N\Zkzlexp[i (045 a (k) = 0, 5(K))]. I there are only M values in the
set {PLVsyrroGATE } that are larger than PLVgga , then the one-tailed probability of
PLVREAL being due to chance is p= M/NSURROGATE (If M =0, fix p= 1/NSURROGATE)-

The PLV method is an excellent technique for estimating the strength and significance of
instantaneous phase coupling between two brain signals, and it has been used to investigate
a multitude of different functional brain networks [10]. Nonetheless, the PLV method
suffers from two fundamental limitations that motivate the development of alternative
methods. First, the output of the PLV method is a single scalar number or index rather than a
probability distribution. This means that the PLV cannot be directly used to generate
simulated data with identical phase-coupling characteristics. However, the set of relative
phase differences used to calculate the PLV can also be used to fit a parametric pdf. One of
the simplest and most tractable pdfs over circular or phase variables is the von Mises
distribution: p(d ¢, 7) = exp[ycos(6— @)11271g (), where Iy (-) is the modified Bessel
function of the kth order. The von Mises distribution is the simplest distribution possible
given a phase angle ¢ and concentration parameter y, in that the entropy of the distribution is
maximized. The larger the value of y, the more concentrated the distribution of phases will
be around the angle ¢. Once the von Mises parameters have been fit for a set of relative
phase differences, then it is straightforward to generate synthetic data with the same phase-
coupling properties as the empirically recorded data. Furthermore, there is a monotonic
relationship between the PLV and the von Mises concentration parameter y. PLV =11 (/1o
() [2]. Each value of the PLV has a one-to-one mapping to a von Mises distribution with a
given concentration (and vice versa), thus solving this first problem.

The second and more serious problem is that the PLV method is an inherently bivariate
technique. That is, if N different local field potential (LFP) channels are simultaneously
recorded during an experiment, the PLV method requires that all possible pairs of channels
be examined separately, which can produce misleading results. For example, suppose we
have a three-node network of coupled oscillators including nodes A, B, and C. If nodes A
and B are both phase coupled to node C, then the phase value g from node A and phase
value & from node B may nonetheless appear dependent even if there is no direct influence
between nodes A and B. That is, it may be the case that p(6a, &) # p(6a) p(Gs), but p(6ha,
6| ) = p(6al &) p(6k|&c). Therefore, examining nodes A and B in isolation and ignoring
the influence of node C may produce incorrect estimates of the network structure. The ideal
case would be to fit a pdf describing the likelihood of seeing any possible N-dimensional
vector of phases. In contrast to the PLV approach, such a multivariate pdf would permit
sampling for simulations as well as avoiding issues of conditional dependence inherent in a
highly interconnected network of coupled oscillators.

lll. Assessing Cross-Frequency Coupling via the Multivariate PCE

In fact, such a multivariate phase distribution was derived recently [11]. Given an N-
dimensional vector of phases, i.e., 0= (6, &, ..., &), extracted from N distinct signals, the
maximum entropy distribution corresponding to the observed pairwise phase statistics is
given as
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N
P(ﬂK):ﬁerp [% Z Kon €08(0y — 05 — /,Lmn)J Q)

m,n=1

where the terms xmn, and Umn are the coupling parameters between channels m and n. The
Hermitian matrix K, with elements, i.e., Kmn = &mn €Xp[itmn], specifies the parameters of
the distribution, while the term Z(K) is the parameter-dependent normalization constant. An
equivalent matrix—vector expression for the probability distribution is

P(9|K):Z (1K) eap| %ZTKZ], where z is an N-dimensional vector of unit-length complex
variables, i.e., z,, = exp[ify], and T represents the conjugate transpose. Each matrix element,
i.e., Kinn = xmn eXplimnl, encodes the coupling strength between channels m and n (as the
modulus xmp) as well as the preferred phase offset between m and n (the angle Uyn). The
term x representing coupling strength in the multivariate phase distribution is analogous to
the concentration parameter y in the von Mises distribution. The normalization constant
Z(K) is a function of the coupling matrix and a general analytic formula for Z(K) has not yet
been found [11]. However, an efficient technique based on score-matching can nonetheless
be used to estimate distribution parameters from observed phase data [11]. MATLAB and
Python code to estimate the distribution are available at [12]. We call this approach the
multivariate PCE method.

The analysis flow of the multivariate PCE method is similar to the bivariate PLV approach,
except that rather than inputing one HF signal and one LF signal, we now input one HF
signal and N LF signals. Similarly, statistical significance of the estimated parameters can be
assessed using the same permutation testing technique, by shifting the one HF signal relative
to the N LF signals. Importantly, however, instead of producing a single parameter
PLVReaL or the pair of von Mises parameters (¢, ), the PCE method produces an N x N
parameter matrix K. The power of the multivariate PCE method is that it is able to separate
(or distinguish) direct from indirect coupling. That is, the direct interaction between two
oscillators m and n (n <> m) is captured by the matrix entry Kpm = xm €Xplitnm], while
indirect interactions (n <+ k <> m, k # {n, m}) are captured by the rest of the parameter
matrix K.

Just as we can map PLV onto the von Mises pdf (capturing the distribution of phase
differences due to both direct and indirect coupling), we can map K, onto a pdf
representing the influence of direct coupling alone: p(&y = 6h | Umn, Kmn) = €XP[Amn €0S(6h
= & — Umn))/270 (7mn) [2]. We term this distribution the isolated distribution, since it is the
distribution that would result if all indirect coupling were removed, isolating the two nodes
of interest from the rest of the network. Critically, proper assessment of CFC requires us to
estimate this direct coupling rather than the lumped coupling seen by the bivariate methods,
as shown by the following example.

V. Differences in CFC Estimates Obtained from the PLV and PCE Methods

Fig. 4 shows a simple case of multivariate CFC in electrocorticogram (ECoG) data recorded
from human prefrontal cortex (6.1 min, 736 391 sample points) [13]. One ECoG channel
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was filtered at HF and LF (110 and 6 Hz, respectively) to generate HF and LF signals (HFA
and LF1). A different ECoG signal was filtered at 6 Hz to generate the second LF signal
(LF2). Critically, LF1 and LF2 are strongly phase coupled [see Fig. 4(a)], and as part of an
indirect path, this LF phase coupling can influence the estimate of CFC. For example, while
the distribution of G4ea — @ g1 is more concentrated than 1000 surrogate distributions,
indicating strong CFC, the bivariate PLV and multivariate PCE methods differ on the
assessment of CFC between HFA and LF2. While the distribution of 84ga — G g2 is more
concentrated than all 1000 surrogate distributions (see Fig. 4(c), black arrow)—and would
therefore be considered significant by the PLV method at p < 0.001—PCE can explain this
concentration as being due to indirect coupling between HFA and LF2 via the intermediate
node LF1. Therefore, while the bivariate PLV method (erroneously) finds the significant
CFC between HFA and LF2, the multivariate PCE method does not. Importantly, while we
used a simple three-node example here, the multivariate PCE method can be applied to any
number of simultaneously recorded channels, as shown via simulations in [14].

V. Conclusion

We have shown that the PCE approach is an effective method to assess multivariate phase—
amplitude CFC in neurophysiological signals. Since this method employs the maximum
entropy distribution that matches pairwise phase statistics [11], the PCE approach results in
the most parsimonious coupling network that explains the observed data. The PCE method
may produce erroneous results if there exist influential but unobserved (hidden) phase
variables, but this is a concern for all currently employed methods. To our knowledge, the
PCE approach is the first inherently multivariate method for estimating CFC. In summary,
for a given set of N observed signals, the PCE is a natural extension of the PLV method to N
dimensions [2], refines assessed coupling into direct and indirect influences [2], and results
in sparser networks of coupling between signals [11].
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Fig. 1.

Example of phase—amplitude CFC in electrical activity recorded from human prefrontal
cortex. (a) Averaging segments of the raw (unfiltered) electrocorticogram signal time locked
to theta (6 Hz) troughs yields a transient theta oscillation. (b) Similar theta-trough-locked
averaging of the high gamma (HG; 145 Hz) analytic amplitude reveals that HG amplitude
undergoes fluctuations anticorrelated with the average waveform of the theta oscillation.
Modulation of HF amplitude by LF phase is the defining feature of phase—amplitude CFC.
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Analysis steps for the bivariate PLV method.
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Fig. 3.
Example of CFC detection via the bivariate PLV method. The HF/LF bands are the same as

the example in Fig. 1. (a) CFC manifests as the coupling between a LF phase variable (4 )
and a variable representing the LF phase component of the HF amplitude (64ga). The
distribution of phase differences G4ra — G (black histogram) is well fit by von Mises
distribution (gray pdf); the more concentrated the distribution of phase differences G4ga —

@ k, the larger the PLV. (b) Statistical significance of the PLV actually observed (PLVRgaL)
can be assessed via a randomized permutation test that generates an ordered list of surrogate
(data-shuffled) PLVs (see the text).
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Fig. 4.
Example in which the PLV and PCE methods differ. G4 and 4 g1 are the same signals as

in Fig. 3. 4 gy is the theta phase of a nearby (10 mm) electrode. (a) The distribution of theta
phase differences 4 g1 — G g2 is strongly concentrated. (b) PLV and PCE estimates of CFC
agree for nodes HFA and LF1, with the distributions of phase differences associated with the
PLV (black, dotted) and PCE (black, solid) falling outside the range of all surrogate
distributions (gray) generated via randomized permutation testing. (c) In contrast, PLV and
PCE generate different estimates for the CFC between nodes HFA and LF2. The PLV
method detects that the actual distribution of phase differences G4ea — G g2 (dotted black
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line, see arrow) is outside the range of the surrogate distributions (gray), indicating that
these nodes are indeed coupled. However, the PCE explains the coupling between HFA and
LF2 via an indirect chain of coupling from LF2 to LF1 to HFA. The isolated distribution of
Gea — G g2 (solid black line) represents the phase concentration due to direct coupling
between HFA and LF2 alone. Since this isolated distribution falls within the range of
surrogate distributions (gray), the CFC link between nodes HFA and LF2 is not statistically
significant. (d) Schematic illustration of the three-node network that includes HFA, LF1, and
LF2. Letters next to each link refer to the subpanel that shows the strength of coupling
between nodes.
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