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Abstract

Concept associations can be represented by a network that consists of a set of nodes representing concepts and a set of
edges representing their relationships. Complex networks exhibit some common topological features including small
diameter, high degree of clustering, power-law degree distribution, and modularity. We investigated the topological
properties of a network constructed from co-occurrences between MeSH descriptors in the MEDLINE database. We
conducted the analysis on two networks, one constructed from all MeSH descriptors and another using only major
descriptors. Network reduction was performed using the Pearson’s chi-square test for independence. To characterize
topological properties of the network we adopted some specific measures, including diameter, average path length,
clustering coefficient, and degree distribution. For the full MeSH network the average path length was 1.95 with a diameter
of three edges and clustering coefficient of 0.26. The Kolmogorov-Smirnov test rejects the power law as a plausible model
for degree distribution. For the major MeSH network the average path length was 2.63 edges with a diameter of seven
edges and clustering coefficient of 0.15. The Kolmogorov-Smirnov test failed to reject the power law as a plausible model.
The power-law exponent was 5.07. In both networks it was evident that nodes with a lower degree exhibit higher clustering
than those with a higher degree. After simulated attack, where we removed 10% of nodes with the highest degrees, the
giant component of each of the two networks contains about 90% of all nodes. Because of small average path length and
high degree of clustering the MeSH network is small-world. A power-law distribution is not a plausible model for the degree
distribution. The network is highly modular, highly resistant to targeted and random attack and with minimal dissortativity.
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Introduction

The proliferation of scientific knowledge during the past

decades makes it difficult even for domain experts to keep abreast

of the relevant information in their specific field of interest. Life

sciences literature, nowadays referred to as the bibliome, is highly

massive and of unprecedented volume and complexity. At the time

of this writing, the MEDLINE database [1] contains over 23

million bibliographic citations with a continuous growth rate of

about 2,000–4,000 citations per day.

Associations between entities based on co-occurrence of

biomedical terms, such as chemical substances, biological

processes, diseases or genes constitute an important part of

knowledge representation. A co-occurrence approach is built on

the assumption that biomedical concepts occurring together in the

same title or abstract are in some way biologically related [2,3].

Simple linkage between concepts can be further extended by the

number of times a concept is found in a document or by closeness

between one concept and another concept in a sentence [4].

Literature mining technologies complement information extracted

from structured biomedical sources (e.g., GeneOntology) by

providing researchers with more relevant and interpretable

knowledge. A plethora of applications have been developed

exploiting co-occurrence for mining interesting patterns in

biomedical resources (e.g., BITOLA [5], iHOP [6], AliBaba [7],

EBIMed [8], FACTA [9], PLAN2L [10], STRING [11],

LAITOR [12]).

Analyzing big relational datasets requires innovative methodo-

logical approaches beyond the basic exploratory mining. Recent

years have seen an increasing interest in the study of large, real-

world, complex networks, in which graph theory is used to model

the relationships between the entities [13]. Knowledge of a

domain can be viewed as a set of concepts along with the relations

between them [14]. Interactions between concepts can be

described in terms of a graph, consisting of nodes and edges,

where the former represent concepts and the latter represent their

relationships. The graph thus created can be used to decipher the

structure of a complex network and help to identify statistically

relevant properties and interesting patterns. Empirical evidence

has revealed that complex networks exist on many scales and

spanning different fields of reality, including statistical mechanics

[15], cognitive science [16], and cell biology [17]. Real-world

networks show various nontrivial topological properties that do not
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occur in simple or random networks [18,19]. The key to

understanding such complex systems are the mechanisms that

determine the topology of their induced networks.

Complex real-world networks are characterized by two major

distinguishing properties: strong local clustering and short global

distances between nodes [18]. High local clustering refers to dense

local clusters of connections yet sparse interconnections between

clusters. Granovetter [20,21] showed in his seminal paper that

society is fragmented into clusters of individuals having similar

characteristics, and clustering is a general feature of many other

types of networks (e.g., blogosphere, online social networks). The

high degree of clustering indicates that if nodes X and Y are linked

to node Z, then X and Y are also likely to be linked to each other.

Average clustering over the set of nodes in a real-world network is

significantly higher in comparison to a random network with the

same number of nodes and edges. It has also been demonstrated

that networks with high clustering have a hierarchical organization

and modular structure [22]. In addition to strong local clustering,

a real-world network is characterized by small average shortest

path length, making it possible to connect any pair of nodes by

traversing only a few connections. This means that all nodes of a

large network are connected through relatively few intermediate

steps, despite the fact that most nodes maintain only a limited

number of connections, mostly within a clique of neighbors.

A network with these two properties is called a small-world

network. The idea of small-world networks initially emerged

through a famous experiment performed by Milgram [23] in the

late 1960s. Milgram showed that the average number of

acquaintances separating any two people in the USA is about

six. This observation was later popularized as the ‘six degrees of

separation’ phenomenon [24]. It has been demonstrated that

average shortest path length between node pairs in a network

grows logarithmically with network size [18]. Studies have shown

that the Web, scientific collaboration of research papers, film

actors, and general social networks are all examples of networks

with small-world properties.

In addition to being characterized as small-world networks, real-

world networks have been substantiated by degree distributions

that follow a highly skewed power-law distribution. Degree refers

to the number of nodes to which a given node is immediately

connected. Complex networks have no characteristic scales for

degree; hence they are called scale-free networks. In such

networks, only a few nodes have a very high number of

connections and lots of nodes are connected to a few nodes. This

phenomenon was first described by Barabási and Albert [25] who

have shown that the Web has a scale-free nature. In their

experiment more than 80% of the webpages had fewer than four

links, but a small fraction of webpages had more than 1,000. Scale-

free networks are a class of power-law networks where the high-

degree nodes tend to be connected to other high-degree nodes.

The power-law fit implies that: (i) the network has no ‘typical’

node, in the sense that a Gaussian distribution would have a mean

node; (ii) the distribution is scale-invariant. Many real-world

networks have been described with this model, including protein

networks, social interactions, and epidemic networks.

Exploiting methods and tools from modern network analysis is

part of our long-standing research interest in literature-based

discovery [26,27]. In the present paper, we are concerned with the

analysis of biomedical concept co-occurrence structure in the

framework of a complex network. In particular, we study co-

occurrence associations based on the Medical Subject Headings

(MeSH) [28] terminology. MeSH is the controlled vocabulary

utilized for indexing, cataloging, and searching articles in the

MEDLINE database. The MeSH vocabulary plays an important

role in the integration of large-scale biomedical resources.

However, the statistical properties of such language structure

have not been well studied, particularly in the setting of a complex

network. The aim of this study is to fill this gap by investigating the

topological properties of a MeSH co-occurrence network in order

to understand its global structure. In addition, the network which

we are interested in is large-scale and relation datasets of this size

have not yet been analyzed in the domain of biomedical research.

Methods

In the following section, we first introduce some basic

terminology of complex networks that we will use, provide

information about the process of data collection, and briefly

present the techniques we exploit for network analysis.

Basic Terminology
A network is represented by a graph G(V, E) that consists of a set

of nodes V representing concepts and a set of edges E representing

relationships between the nodes. The density of a network is

defined as a ratio of the number of edges to the number of all

possible edges. We can assign different weights wuv to the edges,

reflecting strength of association between nodes u and v. The

number of edges of a node i is denoted by its degree ki. A path is a

sequence of edges which connect a sequence of nodes. For a

comprehensive overview of the field of complex networks, see

reviews by Newman [18], Bales [14], or Boccaletti et al. [19].

Data Collection and Network Construction
MEDLINE [1] is the main and largest literature database in the

biomedical domain. As of this writing, it contains about 23 million

citations dating back to the late 19th century. Since the mid-

1940’s, MEDLINE citations have been manually annotated using

the MeSH vocabulary [28] by trained indexers from National

Library of Medicine. MeSH is a controlled vocabulary thesaurus

consisting of medical terms at various levels of specificity. There

are three types of MeSH terms: main headings (descriptors),

supplementary concepts, and qualifiers. Descriptors are the main

elements of the vocabulary and indicate the main contents of the

citation. For example, for a citation which reports the results of

gene expression profiling in the brains of patients who have

depressive disorder, MeSH descriptors might be ‘Brain’, ‘Depres-

sive Disorder’, ‘Gene Expression Profiling’, and ‘Humans’.

Qualifiers are assigned to descriptors inside the MeSH fields to

express a special aspect of the concept. We restrict our analysis to

descriptors only. Each MEDLINE citation is manually assigned

around 12 MeSH descriptors. In each citation, some MeSH

descriptors are designated as major MeSH descriptors. Major

descriptors represent the main topic of the citation. The 2013

MeSH, which was utilized in this study, contains 26,853

descriptors.

We processed the full MEDLINE Baseline Repository, up to the

end of 2012, which contains 20,219,186 citations. As the

distribution is in XML format, we extracted the relevant elements

and transformed them into a relational text format (i.e., one line

for each major MeSH descriptor occurrence in each citation). To

set up a co-occurrence network, we considered each MeSH term

as a node. An edge between two MeSH descriptors was defined if

they appear together in the same MEDLINE citation. Note that

we did not consider the direction of the relations (i.e., the relation

between descriptors u and v is the same as the relation between

descriptors v and u), that is, the edges are undirected. The network

was represented in edge list form. An illustrative example of the

constructed network is presented on Figure 1.

Large-Scale Structure of a Network of Co-Occurring MeSH Terms
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The collected network was post-processed to remove all non-

useful edges. Descriptors that appear highly frequently (e.g.,

Humans, Animals, Mice, etc.) and are therefore not useful were

removed. We built the list of non-useful MeSH descriptors based

on MEDLINE check tags [29]. In addition, we applied the

Pearson’s chi-square (x2) test for independence [30] for each co-

occurrence pair to obtain a statistic, which indicates whether a

particular pair of MeSH descriptors occurs together more often

than by chance. To the best of our knowledge, this technique is

novel in the network analysis community. In the following

paragraphs, we provide a detailed description of the chi-square

test for independence and its application to network reduction.

For each co-occurrence pair (u, v) we are interested in co-

occurrence frequency and also in the co-occurrences of u and v

with other terms. Complete frequency information is summarized

in a contingency table and yields four cell counts (Table 1). O11 is

the joint frequency of the co-occurrence, the number of times the

terms u and v in a co-occurrence are seen together. The cell O12 is

the frequency of pairs in which term u occurs, but term v does not

occur. Likewise, the O21 is the frequency of pairs in which term v

occurs, but term u does not occur. The cell O22 is the frequency of

pairs in which neither term u nor term v occurs. The marginal

totals are denoted with Rs and Cs with subscripts corresponding to

the rows and columns. The grand total N is the total of all four

frequencies (i.e., O11+O12+O21+O22). Next we calculated the

corresponding expected frequencies Eij for each table cell, as

demonstrated in Table 2. Given the observed and expected

frequencies for each MeSH descriptor pair, the x2 statistic was

calculated as

x2~
X2

i~1

X2

j~1

Oij{Eij

� �2

Eij

:

If an expected value was less than five, we applied Yates’s

correction for continuity by subtracting 0.5 from the difference

between each observed frequency and its expected frequency. The

limiting distribution of x2 statistic for 262 contingency table is a x2

distribution with one degree-of-freedom. If the x2 is greater than

the critical value of 3.84 (p#0.05), we can be 95% confident that a

particular MeSH relation occurs more often than by chance.

Network Analysis
We characterize the structure of the MeSH network primarily

in terms of four topological features, namely diameter, average

path length, clustering coefficient, and degree distribution.

Diameter (D) of a network is defined as the maximum distance

between all possible pairs of nodes, where distance is the minimum

number of edges on the path from one node to another. The

diameter is susceptible to outliers. Tauro et al. [31] proposed a

more robust measure called integer effective diameter (D90), which

is the minimum number of edges in which at least 90% of all

connected pairs of nodes can reach each other. Average path

length (L) is defined as the mean of the shortest paths between all

nodes in a network, namely,

L~
1

n n{1ð Þ
X

u=v
duv,

where n is the number of nodes in the network and duv is the length

of the shortest path between nodes u and v. For most real networks,

the average path length is seen to scale with the natural logarithm

of the number of vertices in the graph. In addition, compared to

random networks the average path length remains small, even if

the networks become very large.

The local clustering coefficient (Ci) express the connectedness of

the node’s neighbors with each other. More formally, Ci is the ratio

of the number of edges between its neighbors to the maximal

possible number of such edges

Ci~
2Ti

ki ki{1ð Þ ,

where Ti denotes the number of edges between the neighbors of

node i, and ki ki{1ð Þ=2 is the number of edges that would be

expected between i’s neighbors if they formed a fully connected

subgraph. The average clustering coefficient C is the average of Ci

over all nodes in the network, yielding an indicator of the strength

of connectivity within the network. The average clustering

coefficient captures the global density of interconnected nodes in

a network. C is normalized to lie in the interval [0, 1]. When C = 0,

no nodes have neighbors that are also each other’s neighbors. In a

fully connected network (i.e., every node is connected to all other

nodes), C = 1. The value of C is typically small for random

networks (i.e., Erdos-Renyi network), while most real networks

exhibit a large average C, indicating a high level of connectivity

within the network.

Let Lg be the average shortest path length of real network G and

Cg its clustering coefficient, and let Lr and Cr be the equivalent

quantities for the corresponding random network. G is said to be

Figure 1. Toy example of the constructed network. Nodes
represent MeSH descriptors. An edge between two MeSH descriptors is
defined if they appear together in the same MEDLINE citation.
Frequency of co-occurrence is represented by edge width. For example,
the pair ‘‘Medical Informatics’’ – ‘‘Gene Expression’’ occurs in many
more citations then does the pair ‘‘Principal Component Analysis’’ –
‘‘Pluripotent Stem Cells’’. Note, that we use frequency information only
for network reduction purposes (i.e., to obtain a statistic which indicates
whether a pair of descriptors occurs together more often than by
chance).
doi:10.1371/journal.pone.0102188.g001
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small-world network if Lg<L r and Cg&Cr. To express the small-

worldness of a network in one parameter, we use a small-worldness

index, first introduced by Humphries et al. [32], defined as

s~
Cg

�
Cr

Lg

�
Lr

:

By definition, a small-world network has similar path lengths

but greater clustering coefficients when compared with random

network. Thus, small-world index is s.1 if the network has the

small-world property.

The degree of a specific node is a local topological feature, and

we summarize this information into a global measure of the

network by describing the degrees of all nodes in the network in

terms of degree distribution. Spread of node degree over a network

is characterized by a distribution function P(k), which is the

probability that a randomly chosen node in a network has degree

k, formally

P kð Þ!k{a,

where a is a scaling parameter. The probability of having k

neighbors is inversely proportional to ka. A network that exhibits

power-law degree distribution is called a scale-free network. The

name ‘scale-free’ comes from the fact that there is no characteristic

value of k. Such a power law indicates that, while most nodes are

sparsely connected, some are linked to many others. Networks are

scale-free if the power law holds with an exponent 2,a#3.

In order to detect power-law behavior we used the rigorous

procedure proposed by Clauset et al. [33]. We briefly summarize

the algorithm in the next few paragraphs. In practice, the power-

law regime applies only for values greater than some minimum

lower bound value kmin. We say that the tail of the distribution

follows a power law. In this context, it is important to try to find

where to start fitting the power-law distribution. First we estimate

the parameters a and kmin of the power-law model. The maximum

likelihood estimator of the power-law exponent a is

âa~1zn
Xn

i~1

ln
ki

kmin{1=2

 !{1

,

where ki, i = 1, …, n are independent observations such that ki$

kmin. To find the best possible kmin value, we run through all values

and use each degree value as possible kmin value. We truncate all

data below selected kmin. In each iteration, we compute empirical

and theoretical cumulative distribution function (CDF). Next we

compute the Kolmogorov-Smirnov (KS) statistic by computing the

maximum absolute difference between the empirical and theoret-

ical CDF. The KS statistic is calculated as

D~ max
k§kmin

S kð Þ{P kð Þj j,

where S(k) is the CDF of the data for the observations with a value

at least kmin, and P(k) is the CDF for the best fitted model in the

region ki$kmin. The estimate kmin is then chosen as a value of ki for

which the KS statistic is the smallest.

Next, we sample a large number of power-law distributed

synthetic datasets that follow the power-law model with previously

derived scaling parameter a and lower bound kmin. In our

computations, we use 2,500 generated datasets as suggested by

Clauset et al. [33]. We fit each synthetic dataset to its own power-

law model and calculate the KS statistic as described in the

preceding paragraph. The fraction of datasets for which the KS

statistic is larger than the KS value for the empirical data

represents the p-value. If the resulting p-value is greater than 0.1

the power law is a plausible hypothesis for the data, otherwise it is

rejected.

Besides small-worldness and degree distribution, some other

measures can help in unraveling in a more detailed manner the

topology of the network. We briefly describe assortativity,

modularity, and robustness.

The assortativity coefficient of a network measures the

probability that nodes link to other nodes of similar degree [18].

The coefficient is calculated as the correlation of the degree of

node pairs for all edges in a network and ranges between 21 and

Table 1. Contingency table of observed frequencies for pairs of MeSH descriptors.

V~v V=v

U~u O11 O12 R1

U=u O21 O22 R2

C1 C2 N

Note: U = MeSH descriptor u, V = MeSH descriptor v, Oij = observed frequency, Ri = row total, Cj = column total, N = grand total. For example, cell O12 refers to the
observed frequency of pairs in which descriptor u occurs, but descriptor v does not occur.
doi:10.1371/journal.pone.0102188.t001

Table 2. Calculation of expected frequencies for pairs of MeSH descriptors.

V~v V=v

U~u E11~ R1|C1ð Þ=N E12~ R1|C2ð Þ=N

U=u E21~ R2|C1ð Þ=N E22~ R2|C2ð Þ=N

Note: U = MeSH descriptor u, V = MeSH descriptor v, Eij = expected frequency, Ri = row total of observed frequencies, Cj = column total of observed frequencies, N = grand
total of observed frequencies.
doi:10.1371/journal.pone.0102188.t002
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1. A high assortativity coefficient mean that nodes tend to connect

to nodes of similar degree, while a negative value means that nodes

likely connect to nodes with a very different degree from their own.

Complex networks often exhibit hierarchical structure or

modularity, which is characterized by clusters of nodes that are

connected to each other through a few long range links.

Hierarchical organization of the networks was examined visually

by plotting the mean clustering coefficient �CC kð Þ per degree k, as

described by Ravasz and Barabási [22].

There has been much research interest in the resilience of

networks to intentional attacks [34]. Many real-world networks are

vulnerable to targeted, but robust to random, attacks. We try to

simulate the destructive effect of targeted attack by removing the

10% of nodes with the highest degree and observe the deformation

of the giant component. Likewise we performed random attack by

random removal of 10% of the nodes.

Software
Data processing was done using custom Bash and Python

scripts. The main part of the network analysis was performed in

the R programming language for statistical computing and

graphics [35] using igraph and poweRlaw packages. Effective

diameters were computed using the SNAP library [36] in C++.

The raw data and complete source code to reproduce the results of

the analysis is freely available at https://github.com/akastrin/

kastrin2014large.

Results

In this section, we characterize the statistical properties of the

MeSH networks. Our experimentation was conducted on two

types of co-occurrence networks: (i) the full network, which consists

of all MeSH descriptors in each MEDLINE citation and (ii) on the

reduced network, which contains only major MeSH terms. First

we summarize basic descriptive statistics of the networks and then

provide derived topological features.

The full MeSH network consists of |V| = 26,385 nodes and

|E| = 36,597,350 undirected edges. After removal of check tags

the network reduced to |V| = 26,338 nodes and |E| = 36,018,814

edges. The global edge density of the network was r= 0.01. We

filter out all edges with x2 statistics lower than 3.84. After filtering

non-useful relations, the number of edges decreased to

|E| = 19,408,276. The edge density of the reduced network

increased to r= 0.06. The largest connected component (i.e., giant

component) in which any MeSH term can be reached from any

other descriptor contains all nodes of the network. Mean degree of

nodes in the giant component was c = 1473.79.

The major MeSH network consists of |V| = 23,087 nodes and

|E| = 3,292,926 edges. After removal of check tags the network

reduced to |V| = 23,039 nodes and |E| = 3,226,761 edges. The

global density of the network was r= 0.01. After filtering

redundant relations using x2 test, the number of edges reduced

to |E| = 2,097,881. The density of the reduced network was r,

0.01. A giant component comprises |V| = 23,023 nodes with

|E| = 2,097,873 edges. Density of the giant component was r,

0.01 with a mean degree of c = 182.24 nodes. We restricted all

further analysis to the giant component.

To establish the small-world property, we first examined the

average shortest path length, (effective) diameter and clustering

coefficient of both MeSH networks. The average path length

between all pairs of nodes in the full network was L = 1.95 with a

diameter of D = 3 edges and 90-percentile effective diameter of

D90 = 1.90 edges. This network exhibits relatively short average

path length relative to the number of nodes in the network. That

means that, on average, there are only about two hops from the

selected node to any other term in the network. The clustering

coefficient for exploiting network was C = 0.26.

To provide a benchmark for small-world analysis, we also

computed the average shortest-path length and clustering coeffi-

cient for a random network with size equal to the observed

network. Keeping the number of nodes and edges fixed, we

compared the results with random graphs generated according to

the Erdos-Renyi model. The average path length and clustering

coefficient for the random network was Lr = 1.94 and Cr = 0.06,

respectively. We observed that the average path length is of the

same order as the corresponding random network and the

clustering coefficient is seen to be lower than in the original

network. The clustering coefficient is about 4.71 times greater than

the clustering coefficient of a random network with the same

number of nodes and edges. The network has a small-world index

of SWI = 4.68. With small average path length and high degree of

clustering, we conclude that the full MeSH network has the small-

world property.

The pattern of statistics is similar for the major MeSH network.

The average path length was L = 2.63 edges with the diameter of

D = 7 edges and 90-percentile effective diameter of D90 = 2.90

edges. The clustering coefficient was C = 0.15. The average path

length and clustering coefficient for the appropriate random

network was Lr = 2.23 and Cr = 0.01, respectively. The network has

a small-world index of SWI = 16.36, which is considerably higher

than in the full MeSH network.

Next, we examined the degree distribution of the nodes. Figure 2

plots the complementary cumulative degree distribution of the

nodes of the network in log-log coordinates. It is evident from the

plot that the distribution decays slowly for smaller degree values,

while it decays faster for larger degrees.

It is evident from Figure 2 that the majority of the nodes have a

small degree, and a few nodes have a significantly higher degree.

For example, in the full MeSH network there are 142 nodes that

have degree greater than 10,000 and in the major MeSH network

there are 313 nodes with degree greater than 1,000. The high-

connectivity terms at the tail of the distributions can be considered

as the hubs of the network. For example, the five terms with the

highest degree in the major MeSH network are ‘Research’,

‘Child’, ‘Pharmacology’, ‘Pathology’, and ‘Toxicology’. Word

clouds with the 50 top degree MeSH terms are depicted in

Figure 3.

Besides visual inspection for power law of the degree

distribution on Figure 2, we also performed the comprehensive

statistical procedure described previously in the Method section.

For the full MeSH network the KS test rejects the power law as a

plausible model (D = 0.05, p = 0.002). We conclude that the power-

law cannot account for node degree distribution in the full MeSH

network. We also cannot adequately fit log-normal (D = 0.98, p,

0.001), Poisson (D = 0.65, p,0.001) and exponential distribution

(D = 0.05, p,0.001). In the case of the major MeSH network, the

KS test failed to reject the power-law model as a plausible model

(D = 0.02, p = 0.603). The exponent a for the best fitting power law

was a= 5.07 for nodes with cut-off degree kmin$941. However,

the linear region in the degree distribution spans a limited range of

values, which is also evident from the right panel of Figure 2; there

were only 410 observations above kmin degree. Therefore, we

cannot conclude that power law is the most plausible model for

degree distribution over the entire range of k values, although we

can state that it provides the best model for the data behavior over

a considerable portion of k values. We also achieve a very poor fit

to the data with log-normal (D = 0.57, p,0.001), Poisson

Large-Scale Structure of a Network of Co-Occurring MeSH Terms
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(D = 0.62, p,0.001) and exponential distribution (D = 0.22, p,

0.001).

Assortativity was r = 20.11 (p,0.001) and r = 20.04 (p,0.001)

for the full and major MeSH networks, respectively. Regarding

negligible assortativity, we conclude that assortative mixing was

not detected in any of the networks considered.

In Figure 4, we plot the mean clustering coefficient �CC kð Þ per

degree k to test for hierarchical architecture of the networks. It is

evident that nodes with a lower degree exhibit higher clustering

than those with a higher degree. The decay can be approximated

by power-law dependency C kð Þ*1=k, as suggested by Ravasz

and Barabási [22]. The nodes with lower degree are essential

cornerstones of smaller, densely interconnected clusters, whereas

the nodes with higher degree serves as integration units which link

together the plethora of smaller clusters into a single network [37].

In most real complex networks, a very large proportion of nodes

are connected to each other into a giant component. We showed

at the beginning of this section that a giant component includes

Figure 2. Complementary cumulative degree distribution. The plot shows degree distribution for full (left figure) and major (right figure)
MeSH networks.
doi:10.1371/journal.pone.0102188.g002

Figure 3. Wordcloud. Visual summary with 50 top degree MeSH descriptors for full (left figure) and major (right figure) MeSH networks. The text
size is proportional to the node degree.
doi:10.1371/journal.pone.0102188.g003
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nearly all nodes of the networks. In network analysis, it is

interesting to consider what happens to a giant component when

we remove some fraction of nodes. After simulated attack, where

we remove 10% of the nodes with the highest degree centrality,

the giant component of the full MeSH network contains 90% of

the nodes, while for major MeSH network the proportion of nodes

decreased to 87% of the initial set of nodes. The pattern of attack

tolerance is similar when we remove nodes randomly; the giant

component comprises 90% and 89% of the nodes for the full and

major MeSH network, respectively. Results are comparable when

we based attacks on betweenness centrality. Despite harmful

disruption, where we remove the most highly connected nodes

from both networks, the networks exhibit a high degree of

robustness.

Discussion

In this paper, we characterize the topological properties of

networks based on co-occurrence patterns between MeSH

descriptors. We conducted the analysis on networks constructed

from both full and major MeSH descriptors. The main findings

yielded by the network analysis can be summarized as follows: (i)

because of small average path length and high degree of clustering

the MeSH network is small-world, (ii) power-law distribution is not

a plausible model for the degree distribution, (iii) the network is

highly modular, highly resistant to both targeted and random

attack and with negligible dissortativity. To the best of our

knowledge, this is the first work that investigates the general

macroscopic features of a large-scale literature-derived co-occur-

rence network in the domain of biomedical research.

In general, our findings parallel results obtained in similar

studies, particularly in the field of linguistics. Regardless of the

large-scale of our networks there exists a relatively short path

connecting any pair of nodes within the network. In our case,

reaching whatever node involves about three hops on average. For

instance, in the major MeSH network we can reach any other

term starting from the descriptor ‘Depression’ within three steps

on average. In fact, a small-world network does not imply a

network where nodes are reciprocal neighbors of each other, but

are reached from each other by a small number of hops. We

expect the network to be highly clustered, because there are many

groups of related terms that are tightly interconnected. For

example, the term ‘Microarray Analysis’ is connected to ‘Tran-

scriptome’, and is also connected to ‘Gene Expression Profiling’,

and ‘Transcriptome’ and ‘Gene Expression Profiling’ are con-

nected. The small-world nature of the MeSH network can be

attributed to the rich relational structure, expressiveness, and

universality of the MeSH vocabulary. In the words of cognitive

science and linguistics in particular small-worldness also enables

fast navigation through the mental lexicon of the MeSH

vocabulary [38]. The small-world property may be necessary for

an indexer to quickly find an appropriate descriptor among a large

number of items in the vocabulary. Similarly, highly clustered

nodes could also simplify curation of the MeSH vocabulary.

Because related terms are already arranged into interconnected

clusters, it should be much easier to identify where new descriptor

should be added [39].

The most interesting finding of our study was the poor fit of the

power-law model to the degree distributions, which largely

contradicts the usual findings in co-occurrence networks [40,41].

In our case, the power-law function dominates only for a small

range of values in the tail region of the distribution for the major

MeSH network. We tried to describe the underlying generating

process of degree distribution with other common statistical

models (i.e., log-normal, Poisson, and exponential), but without a

successful fit to the data. Interestingly, similar shape of distribution

is found in the famous analysis of the Facebook network of friends,

performed by Ugander et al. [42], which is one of the largest

networks analyzed to date.

Scale-free behavior emerges from two generic mechanisms: (i)

networks grows continuously by addition of new nodes, and (ii)

new nodes attach preferentially to nodes that are already well

connected [25]. Preferential attachment (PA) means that the more

connected the node is, the more likely it is to receive new

Figure 4. Average clustering per degree. Plot shows average clustering coefficient of nodes per degree for full (left figure) and major (right
figure) MeSH networks. The nodes with a smaller degree exhibit higher clustering than those with larger degree. The decay can be approximated by
power-law dependency.
doi:10.1371/journal.pone.0102188.g004
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connections. When the rule of PA is fulfilled, the network exhibits

the entire scale-free behavior. Our results clearly suggest that the

PA model is too idealized for the MeSH network. An additional

argument against attributing the data behavior to the classical PA

model is the hierarchical structure of the examined networks, as

indicated by the high correlation between node degree and

clustering coefficient. It is known that a PA model does not simply

yield hierarchical organization [25]. On the contrary, empirical

evidence reveals that many real, complex networks have some

form of hierarchical structure [22]. This observation is in

accordance with rich hierarchical taxonomy of the MeSH

terminology. Finding the plausible parametric form (or mixture

of them) is a challenge for future work, perhaps indicating novel

co-occurrence patterns endemic to MeSH co-occurrence network.

We can envision three limitations of this work. First, the analysis

presented relies solely on co-occurrence relations. Co-occurrence

represents the simplest way to capture associations between

concepts. Co-occurrence, although commonly used, can be

interpreted only as an association rather than a substantively

meaningful relationship between concepts. Some co-occurrences

are also too general to be useful in network modeling. This

shortcoming can be overcome by the use of the SemRep system

[43] which introduces relevant semantic relationships between

concepts (e.g., LRRK2 gene causes Parkinson disease). Using

SemRep, the relationships between concepts can be described

more precisely and with greater semantic expressiveness. Second,

our analysis is based solely on static properties, disregarding a

temporal view of the network. The MeSH vocabulary is an

evolving system, where new terms are constantly created and

added to the vocabulary. Dynamic properties (e.g., shrinking

diameter, densification power law) should be examined by looking

at a series of static snapshots of the network and seeing how

statistical indices of these snapshots compare over time. Third, in

the network analysis we ignore weights on edges and treat all

relationships as equally important.

There are many possible directions for future work. One is to

extend the topological analysis on the entire UMLS terminology

[44]. Similarly, we are already working on analysis of Semantic

MEDLINE [45], a rich network of biomedical concepts and

semantic predications between them extracted from titles and

abstracts of MEDLINE citations. However, this data is massive

and the application of some measures discussed in this paper

overwhelms our current computational capabilities. Although

these analyses are mainly theoretical, they are unavoidable in the

initial stage of data understanding. Finally, the central part of our

future research is oriented toward the application of network

science in the field of literature-based discovery, where we are

interested in discovering meaningful patterns in relational data. To

this end, we are currently exploring state-of-the-art machine

learning techniques for link prediction in complex networks.

Conclusions

The aim of this work was to investigate the macroscopic features

of a large-scale co-occurrence network based on MeSH descrip-

tors. Analysis was conducted on two networks: (i) a full network

consisting of all MeSH descriptors in each MEDLINE citation and

(ii) a smaller network containing only major MeSH descriptors.

Two MeSH descriptors were connected if they appear together

within a MEDLINE citation. We proposed a methodology for

reducing the dimensionality of the network, based on the chi-

square test for independence. Using the chi-square statistic we

obtained a measure which indicates whether a particular pair of

MeSH descriptors occurs together more often than by chance.

Due to the complexity of graph algorithms (e.g., in huge network

the calculation of diameter is infeasible), dimensionality reduction

is a crucial preprocessing step. To the best of our knowledge, this

approach to network reduction is novel in the network analysis

community.

The results of this study demonstrate the small-world nature of

the MeSH networks. Both networks have small average path

length and high degree of clustering. The power law is not a

plausible model for the degree distributions observed. Both

networks demonstrated high modularity, which reflects the

inherent hierarchical organization of the MeSH vocabulary. Both

networks are highly resistant to targeted and random attacks. As

far as we know, this is the first analysis of a large-scale literature-

derived co-occurrence network in the field of biomedical research.

Deeper understanding of network dynamics is the key next step in

unraveling the anatomy of the MeSH vocabulary.

Acknowledgments

The authors would like to express their gratitude to the anonymous

reviewers for their constructive comments and insightful suggestions that

greatly improved the manuscript.

Author Contributions

Conceived and designed the experiments: AK. Performed the experiments:

AK. Analyzed the data: AK. Wrote the paper: AK TCR. Supervision: AK

DH.

References

1. PubMed (2013). Available: http://www.ncbi.nlm.nih.gov/pubmed. Accessed 19

January 2014.

2. Frijters R, van Vugt M, Smeets R, van Schaik R, de Vlieg J, et al. (2010)

Literature mining for the discovery of hidden connections between drugs, genes

and diseases. PLoS Comput Biol 6: e1000943. doi:10.1371/journal.

pcbi.1000943.

3. Stapley BJ, Benoit G (2000) Biobibliometrics: Information retrieval and

visualization from co-occurrences of gene names in Medline abstracts. Pacific

Symp Biocomput 5: 526–537.

4. Alako BTF, Veldhoven A, van Baal S, Jelier R, Verhoeven S, et al. (2005)

CoPub Mapper: Mining MEDLINE based on search term co-publication. BMC

Bioinformatics 6: 51. Available: http://www.biomedcentral.com/1471-2105/6/

51. Accessed 15 November 2013.

5. Hristovski D, Peterlin B, Mitchell JA, Humphrey SM (2005) Using literature-

based discovery to identify disease candidate genes. Int J Med Inform 74: 289–

298. Available: http://www.ijmijournal.com/article/S1386-5056(04)00165-0.

Accessed 14 January 2014.

6. Hoffmann R, Valencia A (2005) Implementing the iHOP concept for navigation

of biomedical literature. Bioinformatics 21 Suppl 2: ii252–ii258. Available:

http://bioinformatics.oxfordjournals.org/cgi/content/long/21/suppl_2/ii252.

Accessed 10 November 2013.

7. Plake C, Schiemann T, Pankalla M, Hakenberg J, Leser U (2006) AliBaba:

PubMed as a graph. Bioinformatics 22: 2444–2445. Available: http://

bioinformatics.oxfordjournals.org/cgi/content/long/22/19/2444. Accessed 10

November 2013.

8. Rebholz-Schuhmann D, Kirsch H, Arregui M, Gaudan S, Riethoven M, et al.

(2007) EBIMed–text crunching to gather facts for proteins from Medline.

Bioinformatics 23: e237–e244. Available: http://bioinformatics.oxfordjournals.

org/cgi/content/long/23/2/e237. Accessed 17 December 2013.

9. Tsuruoka Y, Tsujii J, Ananiadou S (2008) FACTA: A text search engine for

finding associated biomedical concepts. Bioinformatics 24: 2559–2560. Avail-

able: http://bioinformatics.oxfordjournals.org/cgi/content/long/24/21/2559.

Accessed 9 November 2013.

10. Krallinger M, Rodriguez-Penagos C, Tendulkar A, Valencia A (2009) PLAN2L:

A web tool for integrated text mining and literature-based bioentity relation

extraction. Nucleic Acids Res 37: W160–W165. Available: http://nar.

oxfordjournals.org/cgi/content/long/37/suppl_2/W160. Accessed 10 Novem-

ber 2013.

Large-Scale Structure of a Network of Co-Occurring MeSH Terms

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e102188

http://www.ncbi.nlm.nih.gov/pubmed
http://www.biomedcentral.com/1471-2105/6/51
http://www.biomedcentral.com/1471-2105/6/51
http://www.ijmijournal.com/article/S1386-5056(04)00165-0
http://bioinformatics.oxfordjournals.org/cgi/content/long/21/suppl_2/ii252
http://bioinformatics.oxfordjournals.org/cgi/content/long/22/19/2444
http://bioinformatics.oxfordjournals.org/cgi/content/long/22/19/2444
http://bioinformatics.oxfordjournals.org/cgi/content/long/23/2/e237
http://bioinformatics.oxfordjournals.org/cgi/content/long/23/2/e237
http://bioinformatics.oxfordjournals.org/cgi/content/long/24/21/2559
http://nar.oxfordjournals.org/cgi/content/long/37/suppl_2/W160
http://nar.oxfordjournals.org/cgi/content/long/37/suppl_2/W160


11. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, et al. (2009) STRING 8–a

global view on proteins and their functional interactions in 630 organisms.
Nucleic Acids Res 37: D412–D416. Available: http://nar.oxfordjournals.org/

cgi/content/long/37/suppl_1/D412. Accessed 10 November 2013.

12. Barbosa-Silva A, Soldatos TG, Magalhães ILF, Pavlopoulos GA, Fontaine J-F,
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