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Opinion Statement

The adult mammalian heart has limited capacity for generation, so a major injury such as a

myocardial infarction results in the permanent loss of up to one billion cardiomyocytes. The field

of cardiac cell therapy aims to replace these lost contractile units with de novo cardiomyocytes to

restore lost systolic function and prevent progression to heart failure. Arguably the ideal cell for

this application is the human cardiomyocyte itself, which can electromechanically couple with

host myocardium and contribute active systolic force. Pluripotent stem cells from both human

embryonic or induced pluripotent lineages are attractive sources for cardiomyocytes, and

preclinical investigation of these cells is in progress. Recent work has focused on efficient

generation and purification of cardiomyocytes, tissue engineering efforts, and examining the

consequences of cell transplantation from mechanical, vascular, and electrical standpoints. Here

we discuss historical and contemporary aspects of pluripotent stem cell-based cardiac cell therapy,

with an emphasis on recent preclinical studies with translational goals.
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Introduction

Despite significant improvements in medical management, heart disease still claims one life

every 40 seconds in the United States and is now the number one cause of mortality

worldwide[1]. The adult heart lacks robust intrinsic regenerative capabilities, and any major

injury to the myocardium results in the replacement of muscle with non-functional scar

tissue, reduced contractile performance, and the initiation of a vicious cycle of adverse

remodeling. Motivated by this challenge, a number of investigators began experimenting

with exogenous cell transplantation in the early 1990s with the goal of remuscularizing the

infarcted heart [2,3]. Early proof-of-concept experiments with neonatal and fetal

cardiomyocytes showed that stable grafts of new myocardium could be formed in injured

hearts [4,5], but these cell sources have obvious ethical and practical limitations that prevent

clinical use. Skeletal myoblasts were next investigated as an alternative source of striated

muscle tissue [6,7], but subsequent work raised concerns about arrhythmias [8–10] and

efficacy [11] with this cell source. More recently, a variety of bone marrow-derived cell

types have been explored in preclinical and clinical studies, but these cells do not generate

significant numbers of de novo cardiomyocytes, and any beneficial contractile effects likely

result from indirect mechanisms such as paracrine signaling [12,13].

If the ultimate goal of cardiac cell therapy is to regenerate human myocardium, then no cell

type is better suited to the task than the human cardiomyocyte itself, as it is capable of

electrically integrating with host muscle and generating systolic force. However, the initial

practical challenge was to identify a suitable source for obtaining large quantities of

phenotypically unambiguous cardiomyocytes. The isolation of human embryonic stem cells

(hESCs) in 1998 [14] and human induced pluripotent stem cells (hiPSCs) a decade later [15]

represented potential solutions to this problem. Here, we review the current status of cardiac

repair using pluripotent stem cell-derived cardiomyocytes (PSC-CM), with an emphasis on

recently published work that is aimed at moving this emerging technology towards clinical

translation.

Sources of Pluripotent Stem Cells

Pluripotent hESCs are derived from preimplantation-stage human blastocysts donated after

in vitro fertilization efforts [14]. In addition to political and ethical concerns, these cells also

pose a practical challenge for therapeutic applications because their differentiated progeny

will evoke an immune response from allogeneic recipients [16,17]. Some of these

limitations are avoided at least in principle by the use of hiPSCs, which are derived by

reprogramming somatic cells (e.g. dermal fibroblasts) to a pluripotent state [15]. While this

reprogramming was initially accomplished by the forced over-expression of key stem cell-

related transcription factors delivered via integrating viral vectors, a number of virus-free

alternative approaches have since been developed including reprogramming via recombinant

proteins [18], mRNA [19], non-integrating episomal vectors [20], and even small molecules

[21].

Significant attention has been focused on comparing hESCs, hiPSCs, and their differentiated

progeny. The Loring group has extensively investigated the genotype of hESC and hiPSC
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lines and found that both demonstrate similar degrees of genomic instability, underscoring

the need for thorough characterization and validation before clinical application [22,23].

Toivonen and colleagues compared multiple hESC and hiPSC lines for transgene persistence

and their ability to differentiate into cardiomyocytes and other lineages [24], and they

reported differences in both differentiation potential and transgene silencing. Subsequent

work by Sepac and colleagues found similar differences across several hESC and hiPSC

lines in terms of cardiomyogenic potential [25]. While other studies have also highlighted

potential epigenetic differences [26,27], it is nonetheless reassuring that differentiated

hESC- and hiPSC-CMs seem to share a nearly identical functional phenotype [28,29].

Parthenogenetic stem cells are another pluripotent stem cell type that may avoid many of the

ethical objections associated with hESCs, with the added potential benefit of reduced

immune rejection since they display the HLA profile of only a single donor [30]. Although

to our knowledge no one has characterized cardiomyocytes from human parthenogenetic

stem cells, Didié and colleagues recently showed that cardiomyocytes from mouse

parthenogenetic stem cells have a phenotype very similar to their counterparts from mouse

ESCs and iPSCs [31]. These authors also showed that cardiomyocytes derived from mouse

parthenogenetic stem cells integrated electrically with host myocardium and improved

contractile function following transplantation in a mouse infarct model [31].

Generation and Enrichment of Cardiomyocytes from Pluripotent Stem Cells

hESC-CMs were first isolated from serum-stimulated embryoid bodies (EBs) [32,33] and

later derived by co-culture with mouse endodermal cells [34]. Early differentiation protocols

were inefficient with cardiomyocyte yields below 1%, but more recent directed cardiac

differentiation protocols have resulted in dramatically improved cardiac purities (~30–70%

cardiomyocytes) [35,36]. Additional refinements to these protocols include the addition of

extracellular matrix proteins [37], modulation of Wnt signaling [38], and optimization of

activin-nodal signaling [39]. These advancements now permit the reliable production of

large quantities of relatively pure cardiomyocytes and give reason for optimism that the

scaled production of clinical-grade cells for cardiac repair will be possible in the near future.

If an even higher degree of cardiomyocyte purity is required, subsequent enrichment steps

are possible. Arguably the most successful strategy has been genetic selection using a

cardiac-specific promoter that drives expression of a fluorescent protein and/or antibiotic

resistance. Early proof of concept for genetic selection came from work by Field and

colleagues using mouse ESC-CMs [40,41], and other groups have more recently extended

this approach to human cells [42–44]. hESC-CMs have also been enriched based on sorting

for surface markers (e.g. SIRPA [45], VCAM1 [46] and EMILIN2 [47]), via light-scattering

properties via Raman micro-spectroscopy [48], and by differences in metabolic status[49].

While the latter approaches avoid the need for genetic modification, they are currently

limited by cell yield and throughput. It remains to be determined what threshold of purity

will be deemed acceptable for future clinical therapies.
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The Phenotype of Stem Cell-Derived Cardiomyocytes

By light microscopy, early human PSC-CMs appear as small, nondescript, mononucleated

cells of variable size and shape [29,32–34]. They express sarcomeric proteins including α-

actinin, cardiac troponins I and T, α- and β-myosin heavy chains, atrial- and ventricular-

myosin light chains, desmin, and tropomyosin [29,33,34,50,51]. Ultrastructurally, PSC-CMs

show poorly organized sarcomeres and intercalated discs [28,50]. Interestingly, PSC-CMs

show robust proliferative activity characteristic of early chamber myocardium, with cell

cycle activity slowly tapering off over several weeks of in vitro maturation [52,53].

PSC-CMs have significant automaticity and exhibit action potentials (APs) that have been

classified as either nodal- or ventricular-like [34,54]. In both subtypes, early hESC-CMs

show immature AP properties (i.e. a more rapid spontaneous rate, a slow AP upstroke, and a

depolarized maximum diastolic potential), but these parameters improve somewhat with

prolonged duration in culture [54,55]. In voltage-clamp studies, hESC-CMs exhibit most of

the major cardiac ion currents, including fast sodium, L- and T-type Ca2+, pacemaker, and

transient outward and inward rectifier K+ currents [34,55–57]. Depolarization in these cells

is dominated by Na+ influx via the NaV1.5 channel, and this current is at least partially

responsible for their spontaneous electrical activity [57]. As in adult cardiomyocytes,

depolarization activates L-type Ca2+ channels in hESC-CMs, which results in a Ca2+ influx

that is amplified by release from sarcoplasmic reticulum stores [56,58,59]. Recent data from

our group indicates that this calcium-induced-calcium release process operates via a tight

“local control” mechanism, similar to that of adult myocardium [56].

The first measurements of hESC-CM contractility were performed by Binah and colleagues

using videomicroscopic contraction analysis of EBs [60,61]. While the use of EBs has some

limitations (including low cardiomyocyte purity and heterogeneity in size and shape), these

investigators showed that hESC-CMs had relatively immature contractile properties,

including a negative force-frequency relationship. Our own group later used

videomicroscopy to quantify both the magnitude and kinetics of spontaneous contractions of

individual hESC- and hiPSC-CMs, and we found that these cardiomyocytes had contraction

amplitudes of ~5% after ~25 days of in vitro maturation [28]. Hazeltine and colleagues used

traction force microscopy to show that force production by hESC-CMs increased with

culture on stiffer substrates [62]. Other groups have used atomic force microscopy to

directly measure contractile force generation by PSC-CMs and reported values of ~0.2nN

per cell [63,64]. By any measure, however, the forces generated by immature PSC-CMs

appear miniscule: approximately10- to 100-fold lower than those of mature adult

cardiomyocytes. This remains a major challenge for the field, and much additional work will

be required to identify scalable methods for enhancing the mechanical properties of PSC-

CMs.

Cardiac Tissue Engineering

Motivated in part by this increasing recognition of the immature functional properties of

PSC-CMs under two-dimensional monoculture conditions, a number of groups have

explored cardiac tissue engineering as a means of imposing both maturation and
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multicellular organization [65–67]. In pioneering experiments, Zimmermann and

Eschenhagen first seeded primary rat cardiomyocytes in hydrogels [68], and several groups

have subsequently applied this general approach to PSC-CMs and fibrin-based hydrogels

[69–72]. This technique allows constructs to be prepared in almost any pattern, including as

an injectable delivery vehicle [73]. Working independently, both the Murry and Martin

groups showed that static stretch induces an increase in cardiomyocyte alignment and

maturation within collagen-based hydrogel constructs [70,74]. In an interesting variation on

this approach, the Radisic group exposed their constructs, cylindrical-shaped “biowires” of

hPSC-CMs and non-cardiac supportive cells, to electrical field stimulation [75], and they

found this promoted a more mature structural and electrophysiological phenotype. Recently,

Bursac and colleagues seeded hESC-CMs into fibrin-based hydrogels over a PDMS

template to form relatively large three-dimensional patches, and the resultant constructs

exhibited force generation and conduction velocity measures that far exceed those

previously reported [72].

Engineered tissue constructs can also be created by seeding PSC-CMs into three-

dimensional scaffolds specifically designed for the inclusion of supporting non-cardiac cell

types. The Gepstein group was among the first to compare outcomes with hESC-CMs alone

versus a “tri-cell” mixture of hESC-CMs, endothelial cells and fibroblasts, by seeding both

cell preparations into a poly-L-lactic acid (PLLA) scaffold [76]. Both expressed cardiac

markers, but scaffolds seeded with the tri-cell combination showed far greater vascular

organization in vitro. Qualitatively similar results were observed in vivo following

engraftment in healthy rat hearts [77].

Two alternatives to the preceding artificial scaffold-based strategies are the use of

decellularized native heart tissue [78] and scaffold-free tissue constructs [79–81]. Lu and

colleagues seeded multipotent cardiovascular progenitors from hiPSCs into decellularized

mouse hearts and found that the resultant constructs exhibited spontaneous contractile

activity and responded appropriately to chemical agonists [78]. In pursuing the scaffold-free

approach, the Murry group showed that hESC-CMs and supportive non-myocyte cell types

will spontaneously aggregate to form viable cardiac patches [79–81]. It remains to be seen if

either of these approaches are scalable for human applications.

Taken collectively, these studies suggest a potential role for tissue engineering in future

therapeutic applications, but the identity of the most appropriate construct for achieving

cardiac repair remains uncertain.

In Vivo Studies

Small Animal Models

Early in vivo proof-of-concept for the use of PSCs in cardiac repair came from the Field

group, who showed that genetically-selected mESC-CMs formed stable myocardial grafts

following transplantation in the hearts of dystrophic mice [82]. Xiao and colleagues later

extended this work by microdissecting mESC-CMs from spontaneously beating EBs and

transplanting them into a rat infarct model [83]. Somewhat surprisingly, in the absence of

immunosuppression, this xenogeneic cell transplantation resulted in the formation of graft
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myocardium with beneficial effects on LV dimensions, fractional shortening and

hemodynamics that were sustained for up to 32 weeks [83].

Transplantation studies with hESC-CMs followed a similar trajectory, with work first

commencing in uninjured rodent hearts [84,85] and then gradually transitioning to rodent

infarct models [35,86–90]. Our group transplanted enriched populations of hESC-CMs

(~80% cardiac) into infarcted athymic rat hearts and saw partial remuscularization of the

infarct zone [35]. Compared to infarcted controls receiving either non-cardiac hESC

derivatives or vehicle, infarcted recipients of hESC-CMs showed better preserved LV

dimensions, fractional shortening and regional wall motion. Interestingly, Mummery and

colleagues found that while hESC-CMs formed nascent myocardium and improved

contractile function in the infarcted hearts of immunodeficient mice, these beneficial effects

appeared to be transient in nature [87,89]. While there were major experimental differences

between the latter studies and our own (including the formation of qualitatively smaller

grafts and the use of a mouse model in which hESC-CMs were unlikely to couple

electrically), the Mummery group’s findings nonetheless underscore the need for future

studies with a greater duration of follow-up.

All of the preceding studies examined outcomes following hESC-CM transplantation in

acute or subacute infarct models. More recently, Fernandes and colleagues transplanted

hESC-CMs into chronically infarcted rat hearts, which perhaps represent a more relevant

model for the end-stage patient in which such novel cell therapies would be first applied

[88]. Interestingly, although hESC-CMs formed large myocardial grafts in chronically

injured hearts, their engraftment was not accompanied by beneficial effects on contractile

function. This study raises concerns that hESC-CMs cannot efficiently integrate and provide

new force-generating units in chronically injured hearts or that they may be unable to

reverse deleterious remodeling in hearts with already established failure.

Recent studies have also begun to focus on the application of iPSCs in rodent models of

cardiac injury. Proof-of-concept experiments with murine iPSC-CMs have shown the ability

of these cells to survive and form nascent myocardium [91,92]. Recently, the Gepstein

group transplanted hiPSC-CMs from spontaneously beating EBs into uninjured rat hearts

[93], and, while their study had a relatively short duration of follow-up (7–10 days), they did

find histological evidence of engraftment and structural features of host-graft coupling (i.e.

immunostaining for gap junctions between graft and host myocytes). Another recent study

of interest by Carpenter and colleagues involved the transplantation of multipotent

cardiovascular progenitors from hiPSCs in a rat infarct model [94]. Although the effect did

not reach statistical significance, the cell-treated hearts showed a trend toward less

deterioration in ejection fraction at 10 weeks post-infarction than untreated controls. The

grafts in this study seemed modest in size, inviting speculation as to whether better graft

survival post-transplantation might yield greater improvements in cardiac function.

Large Animal Models

The preceding experience in rodent infarct models set the stage for transplantation studies

with hPSC-CMs in more relevant large animal preclinical models. Surprisingly, the first

large animal study was performed nearly a decade ago when the Gepstein group transplanted
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hESC-CMs microdissected from beating EBs into the left ventricle of swine with complete

atrioventricular block [50]. They detected ectopic pacemaking activity in the hearts of

hESC-CM recipients and localized this signal to the site of cell transplantation by

electroanatomic mapping. Although their study involved a relatively crude cell preparation

and a very short duration of follow-up, it nonetheless remains a landmark study in the field.

The next relevant large animal study was reported in 2010 by the Menasché and Pucéat

groups, who transplanted multipotent cardiovascular progenitors derived from rhesus ESCs

in a primate infarct model [95]. These investigators found that while the recipients of

undifferentiated ESCs grew teratomas, those receiving cardiovascular progenitors showed

remuscularization of up to 20% of the infarct area. Unfortunately, their study did not include

any functional endpoints, leaving open the question as to whether the partial

remuscularization of the infarct results in a meaningful restoration of lost cardiac function in

primates.

More recently, the Sawa group incorporated hiPSC-CMs into bioengineered sheets that were

then applied to the epicardial surface of infarcted pig hearts [96]. At 8 weeks post-

transplantation (12 weeks post-infarction), the recipient hearts had very few surviving graft

cells, but they nonetheless showed better preserved ejection and left ventricular dimensions

than untreated controls. More recently, this same group has shown that graft cell survival

can be somewhat improved by delivering hiPSC-CM sheets with a pedicle omentum flap

[97].

Remaining Hurdles to Translation

While this progress in animal models gives reason for hope, a number of major hurdles must

still be overcome if PSC-based cardiovascular therapies are to reach clinical application.

Some of these challenges and their potential solutions have been discussed above. For

example, to avoid teratomas, it is likely that we will need highly purified preparations of

cardiomyocytes (or cardiomyocytes with the appropriate supportive cell types). With

improved directed differentiation protocols and enrichment strategies, such cell production

now seems feasible. Another major issue is the immature phenotype of the PSC-CMs

generated by existing protocols. While this issue will clearly require much additional work,

a number of potential solutions have been previously mentioned, including prolonged

duration in culture [28], electromechanical conditioning [75], and/or tissue engineering

approaches [72]. In the following sections, we highlight four other remaining barriers to

PSC-CM-based therapies: electromechanical integration and the risk of arrhythmias, graft

cell death, graft vascularization, and immune rejection.

Electromechanical Integration and Arrhythmia Risk

Early work by Gepstein and others showed that hESC-CM grafts were capable of

electromechanical integration in uninjured hearts [50,98], but their ability to couple with

host myocardium following transplantation in injured hearts remained uncertain until quite

recently. To address this question directly, our group generated transgenic hESC-CMs that

stably express the fluorescent calcium indicator GCaMP3 [99]. GCaMP3+ hESC-CMs

exhibit fluorescent transients with each contractile cycle, providing a convenient readout of
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graft activation that can then be correlated with the host electrocardiogram. Using this

approach, we found that hESC-CM grafts in uninjured guinea pig hearts always activated

synchronously with host myocardium. Outcomes following transplantation in injured hearts,

however, were mixed, with only ~60% of injured hearts containing coupled hESC-CM graft

regions. Equally concerning was the finding that even well-coupled graft regions in injured

hearts typically showed relatively slow conduction velocities, a situation likely to favor pro-

arrhythmic reentrant phenomena. In summary, while we found direct evidence that hESC-

CMs could form functionally integrated myocardium in injured hearts, more work will be

required to improve their integration and maximize the functional benefits.

A closely related issue is the risk of graft-related arrhythmias, the incidence of which could

be conceivably either increased or decreased by improvements in graft electromechanical

integration. Indeed, PSC-CM grafts could plausibly contribute to all three fundamental

arrhythmia mechanisms: automaticity, triggered activity, and reentry. First, as immature

cardiomyocytes, PSC-CMs exhibit some degree of automaticity, although this diminishes

somewhat with duration in culture [28]. Second, some reports suggest that these myocytes

are particularly prone to exhibiting early- and after-depolarizations and triggered activity

that is thought to underlie many episodes of ventricular tachycardia [100]. Finally, PSC-CM

transplantation may promote reentrant phenomenon by slow propagation through

irregularly-shaped islands of graft myocardium isolated by scar tissue. While work in small

animals suggested that hESC-CM transplantation might actually exert an arrhythmia-

suppressive effect in injured hearts [99], more recent preliminary studies in larger animal

models with slower heart rates suggest that these cells may instead promote arrhythmias

[101]. In our opinion, if such pro-arrhythmic effects are significant, this may prove the most

challenging hurdle to the successful development of PSC-based cardiovascular therapies.

Cell death

It is known that the vast majority of implanted cardiomyocytes die shortly after intra-cardiac

transplantation as a consequence of anoikis, ischemia and inflammation [102,103]. While

this initial wave of cell death is somewhat compensated for by the subsequent proliferative

activity of PSC-CMs in vivo [84], it is nonetheless an inviting target for improving graft

outcomes. Our group has identified a number of interventions that each help attenuate graft

cell death to a degree, including transient heat shock of the cells pre-transplantation [84],

delivery in the presence of a cocktail of pro-survival factors [35] and treatment with

carbamylated erythropoietin [103]. Additionally, the Wu lab has described elegant,

longitudinal and non-invasive imaging techniques that will likely prove useful in testing

other methods of enhancing graft cell survival [104,105]. It is likely that the ideal strategy

for improving cell survival and integration will involve a multifaceted approach.

Immune rejection

Another obvious cause of graft cell death is immune rejection. While undifferentiated PSCs

have some degree of immune privilege [106], their differentiated progeny including

cardiomyocytes are immunogenic and clearly evoke an immune response in allogeneic

recipients [16,107]. A number of exotic solutions to this problem have been proposed

including the creation of isogeneic PSCs by somatic cell nuclear transfer [108], the creation
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of “universal donor” PSC lines via HLA engineering [109,110], and the induction of

tolerance via bone marrow microchimerism [111,112]. Because iPSCs can be genetically

matched to their recipient, they represent another theoretical solution to this problem,

although the creation of “customized” autologous iPSC therapies would likely present a new

set of practical hurdles in terms of scalability, economics, and regulatory burden. In our

opinion, initial PSC-based therapies will require pharmacological immunosuppression,

although we speculate that stem cell banking and the exclusion of antigen-presenting cell

types (e.g. endothelial cells) from grafts may allow the use of a less aggressive

immunosuppression regimen than is required for conventional solid organ transplants. The

Wu group is using the aforementioned longitudinal imaging techniques to help define

optimal immunosuppressive strategies for PSC-CMs [113,114].

Graft vascularization

A robust vascular supply is critical for PSC-CM grafts to thrive in the heart, but surprisingly

the vascular consequences of PSC-CM transplantation have not been extensively

investigated. In our own hESC-CM transplantation studies in intact and injured rodent

hearts, we demonstrated the formation of new microvessels within the graft myocardium

[35,84,99]. These neovessels were largely of host origin, but we did find chimeric vessels

when less pure populations of cardiomyocytes were injected. Importantly, while the density

of new capillaries within the graft tissue approached that in the surviving distant host

myocardium, vessel densities in the border zone and scar tissue outside of the graft were

unchanged relative to those in untreated controls [35,84]. Working independently, both the

Murry and Gepstein groups have compared outcomes following the implantation of

bioengineered constructs seeded with hESC-CMs alone versus those seeded with a mixture

of hESC-CMs, endothelial cells, and fibroblasts [77,79]. Not surprisingly, the latter

preparation produced more graft-derived vessels, but both were perfused by vessels that

were connected to the host vasculature, as evidenced by the presence of either intraluminal

erythrocytes or fluorescent microspheres. It remains to be demonstrated how the function of

these vessels will compare to those obtained following the injection of cell suspensions

alone.

In recent work, our group imaged engrafted hearts by micro-CT angiography to look for

effects on larger vessels that cannot be readily examined by histology [115]. Interestingly,

skeletal myoblast grafts evoked significant remodeling of larger conducting vessels in

myocardium distant to the graft, an effect that might enhance perfusion of both host and

graft tissue. It remains to be seen whether PSC-CM grafts can mediate a similar response.

Closing Perspectives

While the development of cardiovascular therapies based on PSCs certainly lags that of

certain adult stem cell types (some of which have reached human trials), substantial progress

has been made in recent years. PSC-CMs can now be made in large quantities at high

purities using reagents that comply with “Good Manufacturing Practice” standards [116].

The phenotype of PSC-CMs has been extensively characterized in vitro, and promising new

strategies for promoting their maturation are currently under development. Preclinical

studies in small animal models have shown convincingly that these cells survive in both
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healthy and infarcted myocardium; and, in most studies, they also exert modest beneficial

effects on cardiac function. This work has provided compelling rationale for large animal

studies, which are now well underway. Despite these advances, there are still critical gaps in

understanding that should be addressed before clinical trials can commence. For example,

while recent studies have shown that hESC-CM grafts are indeed capable of coupling with

host myocardium and contributing new force-generating units, it is still uncertain whether

this mechanism accounts for the observed beneficial effects on contractile function. Finally,

valid concerns regarding the risk of arrhythmias must be addressed. In summary, while the

long-term prospects for PSC-based cardiac repair are favorable, much work remains to be

done.
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Figure 1. Schematic representing the generation, transplantation, and functional endpoints
associated with stem cell-derived cardiomyocyte therapy
Critical manuscripts in each area are listed, with rodent cell work denoted in blue and human

cell work denoted in black.
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