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Summary

Circadian clocks allow organisms to anticipate daily changes in the environment to enhance

overall fitness. Transcription factors (TFs) play a prominent role in the molecular mechanism but

are incompletely described possibly due to functional redundancy, gene family proliferation,

and/or lack of context-specific assays. To overcome these, we performed a high-throughput yeast

one-hybrid screen using the LUX ARRYHTHMO (LUX) gene promoter as bait against an

Arabidopsis TF library. LUX is a unique gene because its mutation causes severe clock defects and

transcript maintains high amplitude cycling in the cold. We report the well-characterized cold-

inducible C-repeat (CRT)/drought-responsive element (DRE) binding factor CBF1/DREB1b is a

transcriptional regulator of LUX. We show that CBF1 binds the CRT in the LUX promoter, and

both genes overlap in temporal and spatial expression. CBF1 overexpression causes up-regulation

of LUX and also alters other clock gene transcripts. LUX promoter regions including the CRT and

Evening Element (EE) are sufficient for high amplitude transcriptional cycling in the cold, and

cold-acclimated lux seedlings are sensitive to freezing stress. Our data show cold signaling is

integrated into the clock by CBF-mediated regulation of LUX expression, thereby defining a new

transcriptional mechanism for temperature input to the circadian clock.
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Results and Discussion

CBF1 binds the LUX promoter

LUX is a key component of the circadian clock regulating growth and development in

Arabidopsis [1–6]. The LUX transcript is circadian-regulated with peak expression in the

evening [1–2]. It also maintains high amplitude oscillations under diurnal conditions in the

cold [7]. The clock proteins CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and

REVEILLE8 (RVE8) regulate LUX promoter activity by binding the EE (Evening Element,

AAAATATCT) motif [1,8], while the LBS (LUX binding site, GATA/TCG) mediates LUX

auto-regulation [3]. TIMING OF CAB EXPRESSION1 (TOC1) also associates with the

LUX promoter [9]. To identify other transcriptional regulators, we performed a yeast one-

hybrid screen by challenging tiled LUX promoter fragments (Figure 1A) with an arrayed

Arabidopsis transcription factor collection [10]. We found CBF1 (At4g25490) and CBF3

(At4g25480) strongly activated β-galactosidase (β-gal) reporter activity when the LUX

promoter fragment −441/−222 was used as bait (Figure 1B). These factors are members of a

small family of highly redundant AP2-domain transcription factors consisting of CBF1,

CBF2 and CBF3 (also known as DREB1A-C) [11–15]. Although expressed under ambient

conditions, cold treatment dramatically induces CBF expression and subsequent target genes

to confer cold tolerance. The LUX promoter region −441/−222 possesses a single copy of

the core C-repeat (CRT) element/dehydration responsive element (DRE) (CCGAC) at

position −298/−294 [11,12,16,17]. This is specifically bound by CBF1 and CBF3 as

mutation of 6bp including this core (−441/−222mutCRT) diminished β-gal activity (Figure

1B). An additional core CRT motif occurs at position −130/−126, however the CBFs were

not recovered from our preliminary screen of the −253/−51 fragment nor in screens of the

−660/−412 and −86/+156 regions that lack the CRT (data not shown). Although CBF2 was

not recovered, the high functional redundancy between the CBFs suggests it might also bind

the LUX promoter; additional studies are required to test this.

To confirm CBF binding in vivo, we generated transgenic seedlings overexpressing yellow

fluorescent protein (YFP)-tagged CBF1 and performed chromatin immunoprecipitations

(ChIPs) using a representative line (CBF1ox2-1). This line exhibits phenotypes similar to

those previously published [12,15,18,19], which include an enhanced resistance to freezing

stress (Figure S1). Chromatin was isolated from control and CBF1ox2-1 seedlings grown

under photocycles of 12-hours light/12-hours dark (abbreviated 12:12) at 22°C. In ChIP

samples from control, specific binding was not detected at any tested regions including the

negative control genes UBIQUITIN (UBQ) and ACTIN (ACT) (Figure 1C). In contrast, ChIP

samples using CBF1ox2-1 showed specific enrichment at the COR78 promoter (amplicon

−225/−144) that possesses three CRT motifs at positions −273/−268, −223/−218,

−166/−161. Additionally enrichment was observed at the LUX promoter region −237/−129,

which is flanked by CRTs at positions −298/−294 and −130/−126 (Figure 1A). Although the

resolution of our ChIP experiments cannot distinguish between CRT sites, we confirmed

CBF1 associates with the LUX promoter in vivo. Together with our yeast one-hybrid results,

this indicates CBF1 occupies the LUX promoter by associating with the CRT motif.
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CBF1 and LUX have overlapping expression patterns in vivo

To test whether CBF1 and CBF3 could regulate LUX expression in vivo, we compared

expression patterns. Under ambient conditions, CBF expression is circadian with a peak

phase in the afternoon [7, 20–22]. Using time-course array data from the Diurnal database

[23], we compared expression under various diurnal and circadian conditions. CBF1, CBF3

and LUX all cycled in 7 diurnal and 1 circadian datasets (Figure S2). All three genes

overlapped in their temporal expression, and in many datasets the CBFs had phases

preceding LUX. For subsequent analyses, we focused on CBF1 as a representative of the

CBF family. Using quantitative RT-PCR, we confirmed the sequential expression patterns of

CBF1 and LUX under constant light at 22°C (Figure 1D).

To determine whether spatial expression patterns overlap in planta, we generated GUS

reporter lines driven by the CBF1 and LUX promoters. The promoter fragments of CBF1

and LUX were sufficient to drive GUS activity throughout tissues (Figure 1E–J). GUS

activity was detected in cotyledons, rosette leaves, hypocotyls, roots, and root tips. Similar

CBF1 expression was reported previously [24]. The overlapping temporal and spatial

expression patterns of CBF1 and LUX are consistent with a regulatory interaction.

Overexpression of CBF1 alters the levels of LUX and other clock gene transcripts

CBF regulation via the CRT motif causes activation of a suite of gene targets including the

CORs [12,18]. To determine whether CBF1 regulates LUX expression, we analyzed the

effect of CBF1 overexpression in seedlings. First we tested whether CBF1 overexpression

alters the activity of a full-length LUX promoter-luciferase reporter (LUX∷LUC −660/+156)

but saw no obvious difference relative to control (data not shown). Since CBF

overexpression reduces plant size [15, 25] and a control luciferase reporter for normalization

is not available for Arabidopsis, it is possible a subtle effect is undetectable by this assay.

We then measured LUX transcript levels in a previously published CBF1 overexpression

line [25]. This line expressed CBF1, COR47, and COR78 at considerably higher levels than

wildtype at all time-points tested (Figure 2). In contrast, the LUX transcript exhibited a

significant increase only at specific times of the day near the wildtype peak (Figure 2).

Additionally PRR9, CCA1, LHY, and TOC1 showed significant alterations relative to the

control. Unlike the CORs, the effects on LUX and the other clock genes are time specific.

This may reflect their complex transcriptional regulation by multiple clock factors, and

contribute to genetic robustness which is an inherent feature of circadian clocks that allows

mutational perturbations to be accommodated without eliminating clock function [26]. As

transcript patterns reflect the culmination of transcriptional and post-transcriptional events,

other factors could also be involved. To confirm clock gene mis-regulation, we analyzed

LUX transcripts in our CBF1 overexpression line used in ChIP experiments. We observed a

significant up-regulation of the LUX transcript in the subjective night at CT36 (circadian

time 36) and time-specific alterations in other clock genes (Figure S3). The changes in clock

gene dynamics are not identical between overexpression lines and may be due to differences

in CBF1 levels, ecotype backgrounds, and/or growth media. Nonetheless our observations

support that CBF1 overexpression impacts LUX and other clock gene transcripts.
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The LUX promoter confers high amplitude oscillations in the cold

As the effects of CBF1 overexpression on the LUX transcript are subtle and attempts to

produce CBF triple knockout lines have been unsuccessful [27], we characterized the role of

the CBFs in regulating the LUX promoter by using various LUC reporters. We first

generated LUX∷LUC lines that incorporated regions screened in our yeast one-hybrid assays

(Figure 1A). Primary transgenic lines (T1) were imaged under constant light at 22°C. The

full-length LUX promoter (−660/+156) was sufficient to drive circadian expression with a

phase peak in the subjective evening similar to the endogenous LUX transcript (compare

Figure 3A to Figure 2). Successive deletion of the 5' end caused small decreases in the

overall expression as shown by comparing seedlings expressing fragment −660/+156 to

those expressing −441/+156 and −253/+156. In contrast, further deletion caused a dramatic

decrease in expression suggesting that the region spanning −253/−86 possesses regulatory

elements important for transcriptional activation. Although other motifs may be involved,

this decrease is consistent with the loss of EE and EE-like (EEL, AATATCT) motifs as the

EE is sufficient for robust evening-phased expression [20,28].

We next selected representative single insertion T2 transgenic lines to compare relative

expression under diurnal conditions at 22°C and 4°C. This cold condition was previously

reported to dampen the amplitudes of all tested clock transcripts except LUX [7]. At 22°C,

all LUX promoter fragments produced high amplitude oscillations. Progressive truncation of

the LUX promoter had little effect on amplitude at 22°C (Figure 3B). As seen in Figure 3C,

the full-length LUX∷LUC construct recapitulated the reported transcript oscillations in the

cold indicating the LUX promoter is sufficient to drive transcript cycling under these

conditions. Interestingly we also noticed a small phase delay in expression after transfer to

4°C. This was reported previously for the transcript showing that the activity of the LUX

promoter closely matches that of the endogenous gene [7]. After transfer to 4°C, deletion of

the −600/−86 region caused a decrease in amplitude relative to the other fragments. Since

this deletion removed both CRTs within the LUX promoter, this supports they may be

required for the regulation of LUX expression in the cold.

To determine the minimal motifs sufficient for recapitulating the expression pattern of the

full length LUX promoter in the cold, we generated reporters driven by short wildtype and

mutant LUX sequences. The CRT at position −298/−294 is hypothesized to be important

since CBF1 associates with the LUX promoter in yeast one-hybrid and ChIP assays (Figures

1B and 1C). As the LUX transcript oscillates and is evening-phased even though CBF

transcripts are clamped high in the cold [7], the EE also appears important. CCA1 and RVE8

regulate LUX via the EE [1,8], and the EE and EEL are required for cold induction of COL1

and COR27 [29]. The LUX promoter possesses one EE and two EELs (Figure 1A). We

cloned wildtype and mutant versions of the CRT (from position −298/−294) and EE in

tandem to generate CRT+EE, mutant CRT+EE (mutCRT+EE), and CRT+mutant EE (CRT

+mutEE) fragments. Primary transgenic lines were imaged at 22°C or 4°C. Because very

few lines carrying the CRT+mutEE construct had detectable LUC levels at either

temperature, they were omitted from analysis (data not shown). This lack of expression

could be due to disrupted binding of circadian activators such as RVE8 [28] and cold

regulators [29]. Transgenic plants carrying the CRT+EE construct displayed rhythmic
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oscillations at 22°C (Figure 3D). Peak expression occurred at the end of the light period

similar to that reported previously for other EE lines [20,28]. Mutation of the CRT had no

effect on this pattern at 22°C, confirming the EE is sufficient for rhythmic oscillations under

ambient conditions. When seedlings carrying the CRT+EE were transferred to 4°C, high

amplitude rhythms were observed, with the first peak after transfer showing higher

amplitude than at 22°C (Figure 3E). This suggests the CRT+EE responds to the cold but this

response is gated to the evening. The phase of expression in the cold was also slightly

delayed relative to that at 22°C. This is reminiscent of the pattern observed with the full

length LUX promoter (Figure 3C) as well as the endogenous transcript expression pattern

reported previously [7]. High amplitude cycling at 4°C is specifically dependent on the CRT

since its mutation greatly reduced evening-phased expression (Figure 3E). These results

indicate that the CRT, in combination with the EE, recruits activators necessary for evening-

phased expression at 4°C.

While the EE and CRT are sufficient to recapitulate the expression of the endogenous LUX

promoter in the cold, the full complement of factors regulating LUX expression remains

unknown. Based on our and other results, we speculate the CBFs (via the CRT) and

CCA1/LHY/RVE8 (via the EE) are pivotal at cooler temperatures. Simplistically under

ambient conditions, the clock proteins CCA1/LHY/RVE8 confer time-of-day information

with CCA1/LHY repressing LUX expression during the early-morning and RVE8 activating

evening-phased expression. Since the CBFs are also expressed under ambient conditions,

they likely contribute to LUX expression but play a lesser role as suggested by the subtle

effects of CBF1 overexpression (Figure 2). As temperatures decrease however, the

expression of CCA1/LHY (and other clock genes) loses rhythmicity while LUX maintains

high amplitude oscillations. Parallel to this, the expression of the CBFs increases with cold.

We hypothesize as temperatures decrease and the oscillations of clock genes like CCA/LHY

dampen, the CBFs play an increasingly important role to ensure LUX oscillations are

maintained over a broad temperature range. However as CBF rhythms also dampen in the

cold, post-transcriptional regulation and/or additional factors are also likely involved.

Freezing tolerance is disrupted in lux mutants

The cold response is a well-characterized output of the clock. CCA1 and LHY regulate

freezing tolerance by directly associating with CBF promoter regions to gate their

expression [30,31]. Loss of CCA1/LHY impairs freezing tolerance [30–32] while CCA1

overexpression promotes freezing tolerance [33]. In addition, mutation of PRR9/7/5 and

TOC1 enhances freezing tolerance, and PRR5, PRR7, and TOC1 associate with CBF

promoters [9,34–37]. While the mechanism is unknown, loss of GIGANTEA (GI) also

causes freezing sensitivity but independently of changes in CBF expression [38].

To test the functional relevance of LUX in the cold, we assessed the response of lux

seedlings to freezing stress after cold acclimation (Figure 4). Plants were cold acclimatized

before exposure to −5°C for 5 hours. Strikingly most lux-1 and lux-4 seedlings died while

the majority of control seedlings survived (Figure 4). This demonstrates that LUX

contributes to freezing tolerance. Recently the lux-2 mutant was reported to have similar

sensitivity as wildtype to freezing stress in the absence of cold-acclimation [37]. Since the
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lux-1, lux-2, and lux-4 mutations all cause premature stop codons and affect clock processes

similarly [1], this suggests LUX may have a very specific role during the acclimation

process.

How LUX contributes to freezing tolerance remains to be determined. Under ambient

conditions, lux has low and high expression of CCA/LHY and TOC1, respectively [1,2].

Since CCA1/LHY activates and TOC1 represses CBF expression, it is possible that the

freezing sensitivity of lux is indirectly due to their regulation of CBF and target gene

expression [31,37]. The lux mutant also exhibits high GI expression [2] but as the

mechanism of GI involvement is unknown, this observation is not simple to resolve.

Because LUX is a DNA-binding transcription factor, we speculate it may also directly

regulate genes involved in cold tolerance. LUX functions in a transcriptional complex with

other evening-phased proteins including ELF3 [4,6]. ELF3 was recently reported to

associate with the CBF3 promoter [37] so it is possible LUX also directly regulates CBF3. It

was previously reported that the lux mutant under ambient conditions exhibits high CBF1/3

expression [37]. However, we observed lux-1 and lux-4 are sensitive to freezing after cold-

acclimation (Figure 4). Together this suggests LUX may regulate cold response genes in

parallel to the CBF pathway. Determining the direct target genes of LUX may help clarify

the mechanisms involved.

Like light sensing, we anticipate cold input to the Arabidopsis clock occurs through multiple

molecular mechanisms. We have shown that the well-characterized cold-inducible CBF1

transcription factor plays an important role in maintaining LUX oscillations in the cold and

that LUX plays an essential role in freezing tolerance after cold-acclimation. In addition to

LUX, the CBFs could regulate other clock genes; for example the LHY and TOC1 promoters

contain CRT motifs and their transcripts are altered in CBF1 overexpressing lines (Figures 2

and S3). Another mode of cold sensing in Arabidopsis occurs post-transcriptionally via

alternative splicing of CCA1 [33]. As the alternative CCA1 transcript presumably encodes a

protein that interferes with the full-length protein, its suppression is necessary for freezing

tolerance. In other organisms, post-transcriptional mechanisms are common for cold input to

the clock. Thermosensitive splicing of the Drosophila clock gene period affects clock

phasing and circadian-regulated locomotor activity [39,40]. The Neurospora clock gene

FREQUENCY (FRQ) also undergoes alternative splicing in a temperature-dependent manner

to affect free-running rhythms and temperature compensation [41]. In addition, FRQ

translation biases towards noncoding upstream open reading frames in the 5'UTR in order to

restrict translation under decreasing temperatures [42,43]. Non-optimal codon usage for

FRQ was also reported, and in cyanobacteria this mechanism limits translation of the central

clock KaiB and KaiC proteins under cooler temperatures [44,45]. Finally in mouse, the cold-

inducible RNA-binding protein (CIRP) is required for circadian rhythms in fibroblasts and

directly regulates mRNA stability of the circadian oscillator CLOCK gene [46]. Our

discovery that LUX is transcriptionally regulated by CBF1 adds a new layer of regulation to

cold input to the circadian clock. Uncovering additional mechanisms of connectivity

between temperature and the circadian clock will undoubtedly further our understanding of

growth and development.
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Experimental Procedures

For detailed protocols, see Supplemental Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- The LUX clock gene promoter is bound by the cold-induced CBF1

transcription factor

- CBF1 overexpression up-regulates LUX and alters other clock gene

transcripts

- The CRT and EE motifs are sufficient to confer evening-phased expression in

the cold

- lux mutants are sensitive to freezing after cold-acclimation
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Figure 1.
CBF1 binds the LUX promoter

(A) Schematic of the LUX promoter. The transcriptional start occurs at +1. White arrows:

gene bodies; white rectangles: 5'UTRs; arrowheads: DNA motifs with EELs in grey, CRTs

in white, and EE in black; and black bars: promoter regions tested in different assays.

Positions and sizes are roughly drawn to scale. (B) CBF1 binding to LUX promoter in yeast.

Bars represent β-galactosidase activity where error bars represent standard error of three

replicates. (C) CBF1 binding to the LUX promoter in Arabidopsis. ChIP assays were

performed using control (LUX∷LUC −660/+156 line 139) or CBF1 overexpressing line 2–1

(CBF1ox2-1). Plants were grown under 12:12 and collected 16 hours after lights on for ChIP

using an anti-GFP antibody. Results are normalized to input DNA. Bars represent average

quantification from real-time PCR with error bars representing standard error of two

independent experiments. Student's t-test was used to determine the significance of target

enrichment relative to control (* p-value ≤0.05). UBQ, UBIQUITIN; and ACT, ACTIN. (D)

Temporal expression of CBF1 and LUX. Wildtype plants were entrained under 12:12 before

release to constant light at 22°C. mRNA levels were quantified by real-time reverse

transcription PCR and normalized to IPP2. Data is the average of three biological replicates

with error bars representing standard error. (E–J) Spatial expression of CBF1 and LUX.

Seedlings carrying promoter∷GUS constructs of CBF1 (E–G) and LUX (H–J) were grown

under 12:12 at 22°C. Expression detected throughout cotyledons, rosette leaves and

hypocotyl (E and H); roots (F and I); and root tips (G and J).
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Figure 2.
CBF1 overexpression affects LUX and other clock gene transcripts

Transcript abundance was measured in control (open squares) and CBF1 overexpressor line

(filled squares). Seedlings were entrained under 12:12 at 22°C for 10 days before transfer to

constant light. Transcript levels were quantified by real-time reverse transcription PCR. Data

is the average of three biological replicates with error bars representing standard error.

Student's t-test was used to determine the significance of transcript levels relative to control

(* p-value ≤0.05).
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Figure 3.
The CRT and EE in the LUX promoter confer evening-phased oscillations in the cold

Bioluminescence assays in Arabidopsis seedlings carrying luciferase reporters driven by

LUX promoter fragments (A–C) or multimerized CRT and EE motifs (D and E). Ten-day

old seedlings were entrained under 12:12 at 22°C. Seedlings remained under these

conditions (B and D) or were transferred to constant light at 22°C (A) or 12:12 at 4°C (C

and E). Red and blue bars represent 22°C and 4°C respectively. Seedlings in the T1 (A,D,E)

or T2 (B,C) generation were assayed. Data shown is the averages of all plants imaged in a

given experiment with error bars representing standard error. Values in B and C are relative

to the average expression of that reporter line. Traces are representative of data from at least

two independent experiments.
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Figure 4.
LUX is required for survival to freezing stress after cold acclimation

Freezing tolerance is expressed as percent (%) survival. Control (CAB2∷LUC), lux-1, and

lux-4 seedlings were grown under 12:12 at 22°C for approximately 4 weeks. Plants were

then transferred at 4 hours after lights on into 4°C darkness for 3 days cold acclimation

before freezing at −5°C for 5 hours. After 24 hours recovery at 4°C, plants were returned to

12:12 at 22°C for 7 days. Data is the average of four independent experiments with error

bars representing standard error. Student's t-test was used to determine the significance of

survival relative to control (* p-value ≤0.05).
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