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Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed,
its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for
organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape
clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm
is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data
streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based
clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices.
Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic
datasets.

1. Introduction

Using RFID and conventional sensors in the base of the
data collection mechanisms in Internet of Things (IoT)
makes the volume of the collected data intensively large. In
many cases, the communications and data transfers between
the objects are required to enable smart analytics. Such
communications and transfers require both bandwidth and
energy consumption, which are usually limited resources in
real scenarios. Furthermore, the analytics required for such
applications is often real-time, and therefore it requires the
design of methods which can provide real-time insights [1–
3]. Data mining techniques are very useful for this kind of
analytics. However, since the generated data is considered
as stream, we modify the multilayer data mining model for
Internet of Things (IoT) from [4] to a multilayer data stream
mining model for IoT. The model is illustrated in Figure 1.

Mining data stream is relatively a new area of research
in the data mining community. It became more prominent
in many applications such as monitoring environmental sen-
sors, social network analysis, real-time detection of anomalies
in computer network traffic, and web searches [5, 6].

Clustering is a remarkable task in mining data stream
[6]. However, data stream clustering needs some important
requirements due to data streams’ characteristics such as
clustering in limited memory and time with single pass over
the evolving data streams and also handling noisy data [7–9].

There are different methods for clustering data streams.
In clustering methods, data are categorized based on the
similarities among objects. The similarity is determined
based on distance or density [5]. The distance-based method
[10] leads to form only spherical shapes. On the other hand,
density-based method [11] has the ability to detect any shape
cluster and they are useful for identifying the noise.

In the last few years, many proposals to extend density-
based clustering for data stream have been presented [12].
Density-based data stream clusterings are mainly grouped
as density grid-based method and density microclustering
method.

The density grid-based clustering [13] quantizes the data
space into a number of density grids that form a grid structure
on which all of the operations for clustering are performed.
The main advantage of the approach is its fast processing
time, which is independent of the number of data points, yet
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Figure 1: Multilayer data stream mining model for Internet of
Things (adopted from [4]).

dependent on only the number of cells. However, they may
have lower quality and accuracy of the clusters despite the fast
processing time of the technique [5]. Some of density grid-
based clustering algorithms are D-Stream [14], MR-Stream
[9], and ExCC [15].

On the other hand, in density-based microclustering
[16], microclusters keep summary information about data
and clustering is performed on this synopsis information.
Microcluster [10] is a temporal extension of cluster feature
(CF), that is, a summarization triple maintained about a
cluster. Density-based microclustering methods keep sum-
mary of clusters in microclusters and form final clusters
from them. They have better quality compared to grid-
based ones but need more computation time. Some of the
density microclustering algorithms include DenStream [14],
FlockStream [17], and SOStream [18].

Tomitigate the problem of densitymicroclusteringmeth-
ods, we propose a hybrid density-based method for cluster-
ing evolving data streams. Our proposed method uses the
advantages of both density grid-based and microclustering
methods. We refer to our algorithm as HDC-Stream (hybrid
density-based clustering for data stream). HDC-Stream has
three steps: in step one, the new data point is either mapped
to the gird or merged to an existing minicluster. Minicluster
is a concept similar to microcluster which is formed from a
grid cell. Second step prunes miniclusters and grids in each

pruning time. Last step forms the final clusters from the
pruned miniclusters using a modified DBSCAN algorithm.

The main contributions of HDC-Stream are summarized
as follows.

(1) In HDC-Stream, instead of searching list of outlier
microclusters to find the suitable one, it maps the new
data point into the grid cell which saves computation
time. This reduces the number of comparisons from
𝑜(mi) in finding outlier microclusters to 𝑜(1)which is
the mapping time. mi is the number of miniclusters.

(2) In HDC-Stream, instead of forming a newmicroclus-
ter for a new data point, which is not placed in any
existing microcluster andmay be a seed of outlier, the
new data point is mapped and kept in the grid until
the grid density reaches a predefined threshold. In this
case, it is converted to a minicluster.

(3) The experimental results also show that it outper-
forms two of the well-known existing density micro-
clustering and density grid-based clustering methods
in terms of quality and execution time. Furthermore,
the experimental results show that HDC-Stream
obtains clusters of high quality even when the noise
is present.

The remainder of this paper is organized as follows:
Section 2 surveys related work. Section 3 introduces basic
definitions. In Section 4,we explain in detail theHDC-Stream
algorithm. We analyze the HDC-Stream algorithm using
synthetic and real datasets in Section 5. Section 6 discusses
the advantages of the proposed method. We conclude the
paper in Section 7.

2. Related Work

Clustering is an important task in data stream mining.
Recently, a plenty of clustering algorithms have been devel-
oped for data streams. These clustering algorithms can be
generally grouped into the four followingmain categories [5].

A partitioning-based clustering algorithm tries to find
the best partitioning for data points in which intraclass
similarity is maximum and interclass similarity is minimum.
Two of the well-known extensions of 𝑘-means [19, 20] on data
streams are STREAM [7] and CluStream [10]. Hierarchical
clustering algorithms work by decomposing data objects into
a tree of clusters. BIRCH [10] and ClusTree [8] are examples
of hierarchical clustering family. Grid-based clustering is
independent of the distribution of data objects. In fact, it
partitions the data space into a number of cells, which forms
the grids. Grid-based clustering has fast processing time
since it is not dependent on the number of data objects. D-
Stream [14], MR-Stream [9], and ExCC [15] are grid-based
clusterings over data stream.

Density-based clustering algorithms have been developed
to discover clusters with arbitrary shapes. They find clusters
based on the dense areas in a shape. If two points are
close enough and the region around them is dense, then
these two data points join and contribute to construction of
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a cluster. DBSCAN [21], OPTICS [22], and DENCLUE [23]
are examples of this approach.

Due to data streams’ characteristics, the traditional
density-based clustering is not applicable. Recently, many
density-based clustering algorithms are extended for data
streams. The main idea in these algorithms is using density-
based method in the clustering process and at the same time
overcoming the constraints, which are put by data stream’s
nature. Density-based clustering algorithms are categorized
into two broad groups called density microclustering and
density grid-based clustering algorithms. A comprehensive
survey on density-based clustering algorithm on data stream
is presented in [12].

DenStream [24] is a density microclustering algorithm
for evolving data stream. The algorithm extends the micro-
cluster [10] concept and introduces the outlier and potential
microclusters to distinguish between outliers and the real
data. It has online and offline phases. In the online phase,
the microclusters are formed and the offline phase performs
macroclustering on the microclusters. FlockStream [17] is an
extension ofDenStreamusing a bioinspiredmodel. It is based
on flocking model [25] in which agents are microclusters
and they work independently but form clusters together. It
considers an agent for each data point which is mapped in
the virtual space. Agents move in their predefined visibility
range for a fixed time. If they visit another agent, they join
to form a cluster in case they are similar to each other.
It merges the online and offline phases since the agents
form the clusters at any time. In FlockStream, searching for
the similar agents is a time consuming process. SOStream
(self-organizing density-based clustering over data stream)
[18] detects structures within fast evolving data streams by
automatically adapting the threshold for density-based clus-
tering. SOStream dynamically creates, merges, and removes
clusters in an online manner. It uses competitive learning as
introduced for SOMs (self-organizing maps) [26] which is a
time consuming method for clustering data stream. Density
microclusterings are effective in terms of quality and they can
capture the evolution of clusters effectively. However, they
have high computation time in finding suitablemicroclusters.

The other important category is density grid-based
method. D-Stream [27] is a density grid-based clustering
algorithm in which the data points are mapped to the
corresponding grids and the grids are clustered based on their
density. It adjusts the clusters in real-time and captures the
evolving behavior of data streams and has techniques for
handling the outliers. MR-Stream [9] is another clustering
algorithm which has the ability to cluster data stream at
multiple resolutions. The algorithm partitions the data space
into cells and a tree-like data structure which keeps the space
partitioning. The tree data structure keeps the data cluster-
ing in different resolutions. Each node has the summary
information about its parent and children. The algorithm
improves the performance of clustering by determining the
right time to generate the clusters. D-Stream andMR-Stream
algorithms cannot work properly for high dimensional data
stream [12]. ExCC (exclusive and complete clustering) [15] is a
density grid-based clustering for heterogeneous data stream.
The algorithm maps the numerical attributes to the grid and

the categorical attributes are assigned granularities according
to distinct values in respective domain sets. ExCC introduces
fast and slow stream based on the average arrival time of the
data points in the data stream.The algorithm detects noise in
the offline phase using wait and watch policy. For detecting
real outliers, it keeps the data points in the hold queue, which
is kept separately for each dimension.Thehold queue strategy
needs more memory and processing time since it is defined
for each dimension. Density grid-based clustering has lower
quality since it depends on the granularity of clustering. On
the other hand, they can handle the outlier effectively. The
computation time is high for high dimensional data.

3. Basic Definitions of HDC-Stream

Definition 1 (𝜖-neighborhood of a point). The neighborhood
is within a radius of 𝜖. Neighborhood of point 𝑝 is denoted by
𝑁
𝜖
(𝑝):

𝑁
𝜖
(𝑝) = {𝑞 ∈ 𝐷 dist (𝑝, 𝑞) ≤ 𝜖} , (1)

where dist(𝑝, 𝑞) is an Euclidean distance between 𝑝 and 𝑞.

Definition 2 (MinPts). MinPts is the minimum number of
data points around a data point 𝑝 in the 𝜖-neighborhood of
𝑝.

Definition 3 (data point weight value). For each data point in
the data stream, we consider a weight which decreases over
time. The initial value of data point is 1. The weight of data
point 𝑥 (with 𝑑 dimensions) in time 𝑡

𝑐
is defined based on

the weight in 𝑡
𝑝
as follows (𝑡

𝑐
> 𝑡
𝑝
):

𝑤 (𝑥, 𝑡
𝑐
) = 𝑤 (𝑥, 𝑡

𝑝
) 𝑓 (𝑡
𝑐
− 𝑡
𝑝
) , (2)

where function 𝑓 is a fading function. The fading function
[28] that we use in HDC-Stream is defined as 𝑓(𝑡) = 2

−𝜆𝑡,
where 𝜆 > 0.

Definition 4 (grid weight). For a grid 𝑔 at current time 𝑡
𝑐
, the

grid weight is defined based on sum of data points’ weights
which are mapped to it:

𝑤 (𝑔, 𝑡
𝑐
) = ∑

𝑥∈𝑔

2
−𝜆(𝑡
𝑐
−𝑡
𝑥
)

. (3)

According to the work presented in [27], we update the
grid weight in 𝑡

𝑐
with the last updated value 𝑡

𝑝
as follows:

𝑤
𝑔
(𝑡
𝑐
, 𝑥) = 2

−𝜆(𝑡
𝑐
−𝑡
𝑝
)

∗ 𝑤
𝑔
(𝑡
𝑝
) + 1. (4)

The total weight of all the grids in data space 𝑆 is𝑤(𝑆, 𝑡) =
∑
𝑥∈𝑆(𝑡)

𝑤(𝑥, 𝑡) which is less than 1/(1 − 2
−𝜆

). Moreover, we
have

lim
𝑡→∞

∑

𝑥∈𝑆(𝑡)

𝑤 (𝑥, 𝑡) =

1

1 − 2
−𝜆

. (5)

It means that sum of all data points’ weights has an upper
bound of 1/(1 − 2−𝜆). The number of grids equals 𝑁, which
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is 𝑁 = ∏
𝑑

𝑖=1
𝑃
𝑖
, and every 𝑖th dimension is divided into

𝑃
𝑖
partitions. Therefore, the average density of each grid is

1/𝑁(1 − 2
−𝜆

).

Definition 5 (core point). It is defined as an object for which
its overall weight of all 𝜖-neighborhood data points is at least
a value 1/𝑁(1 − 𝜆).

Definition 6 (dense grid). At time 𝑡, for a grid 𝑔, we call it a
dense grid if 𝑤

𝑔
(𝑡) ≥ 𝛼/𝑁(1 − 2

−𝜆

).

Definition 7 (sparse grid). At time 𝑡, for a grid 𝑔, we call it a
sparse grid if 𝑤

𝑔
(𝑡) < 𝛼/𝑁(1 − 2

−𝜆

).

Because the overall weight cannot bemore than 1/(1−𝜆),
𝛼 is a controlling threshold.

Definition 8 (minicluster (MIC)). A MIC at time 𝑡 is
defined as MIC(𝑤, 𝑐, 𝑟) for a group of very close data points
𝑝
𝑖1
, . . . , 𝑝

𝑖𝑛
with timestamps 𝑇

𝑖1
, . . . , 𝑇

𝑖𝑛
as follows:

𝑤MIC = 𝑤
𝑔
(𝑡) , 𝑤

𝑔
(𝑡) ≥

𝛼

𝑁 (1 − 2
−𝜆
)

,

centerMIC =
∑
𝑛

𝑗=1
2
−𝜆(𝑡−𝑇

𝑖𝑗
)

(𝑝
𝑖𝑗
)

𝑤MIC
,

radiusMIC =
∑
𝑛

𝑗=1
2
−𝜆(𝑡−𝑇

𝑖𝑗
)distance (𝑝

𝑖𝑗
, 𝑐MIC)

𝑤MIC
,

(6)

where distance(centerMIC, 𝑝𝑖𝑗) is an Euclidean distance
between the center of minicluster and the data points in that
grid cell.

Definition 9 (grid synopsis). Is a tuple GS(𝑛
𝑔
, 𝑡
𝑝
, 𝑤
𝑔
) where

𝑛
𝑔
is the number of data points, 𝑡

𝑝
is the last timestamp and

𝑤
𝑔
is the grid weight.

Definition 10 (outlier weight threshold (OWT)). This thresh-
old is considered for the sparse grids which do not receive any
data for long. In fact, these grids do not have any chance to
be converted to dense grids and consequently to MIC. If the
grid weight is less than this threshold, it can safely be deleted
from the grid list (in the outlier buffer) [14]. If the last updated
time of grid 𝑔 is 𝑡

𝑝
, then, at current time 𝑡

𝑐
, the outlier weight

threshold is defined as follows (𝑡
𝑐
> 𝑡
𝑝
):

OWT (𝑡
𝑐
, 𝑡
𝑝
) =

𝛼

𝑁

𝑡
𝑐
−𝑡
𝑝

∑

𝑖=0

2
−𝜆𝑖

=

𝛼 (1 − 2
−𝜆(𝑡
𝑐
−𝑡
𝑝
+1)

)

𝑁 (1 − 2
−𝜆(𝑡
𝑝
)
)

. (7)

Definition 11 (pruning time). We check all MICs’ weights as
well as the weights of all grid cells in a time we call it 𝑡

𝑝𝑡
. 𝑡
𝑝𝑡
is

theminimum time for aMIC in timestamp 𝑡
1
to be converted

to an outlier in 𝑡
2
(𝑡
2
> 𝑡
1
) which is described as follows:

Lemma 12.

𝑡
𝑝𝑡
= log𝛼/(𝛼−𝑁(1−2

−𝜆

))

𝜆
. (8)

Proof.

𝑤MIC (𝑡2) = 2
−𝜆(𝑡
2
−𝑡
1
)

∗ 𝑤MIC (𝑡1) + 1,

𝛼

𝑁 (1 − 2
−𝜆
)

= 2
−𝜆(𝑡
2
−𝑡
1
)

𝛼

𝑁 (1 − 2
−𝜆
)

+ 1, 𝑡
𝑝𝑡
= 𝑡
2
− 𝑡
1
,

𝑡
𝑝𝑡
= log𝛼/(𝛼−𝑁(1−2

−𝜆

))

𝜆
.

(9)

4. HDC-Stream Algorithm

HDC-Stream is a hybrid density-based clustering algorithm
for evolving data streams. The overall architecture of HDC-
Stream algorithm is outlined in Algorithm 1. It has an online-
offline component. For a data stream, at each timestamp,
the online component of HDC-Stream continuously reads a
new data record and either adds it to an existing minicluster
or maps it to the grid. In pruning time, HDC-Stream
periodically removes real outliers. The offline component
generates the final clusters on demand by the user. The
procedure adopted in this algorithm is divided into three
steps as follows. The steps are also illustrated in Figure 2.

(1) Merging or papping (MM-Step): the new data point
is added to an existing minicluster or mapped to the
grid (lines 5–18 of Algorithm 1).

(2) Pruning grids andminiclusters (PGM-Step): the grids
cells as well as miniclusters’ weights are periodically
checked in pruning time. The periods are defined
based on the minimum time for a minicluster to be
converted to an outlier.The grids and theminiclusters
with the weights less than a threshold are discarded,
and the memory space is released (lines 19–33 of
Algorithm 1).

(3) Forming final clusters (FFC-Step): final clusters are
formed based onminiclusters which are pruned. Each
minicluster is clustered as a virtual point using a
modified DBSCAN (lines 34–36 of Algorithm 1).

The steps are explained as follows.

4.1.MM-Step of HDC-Stream. When a newdata point arrives
(Figure 3), we get the following.

(i) HDC-Stream finds the nearest MIC to the new data
point.

(ii) If the new data point’s distance to the nearest MIC is
less than 𝑟MIC, it will be added to that particular MIC.

(iii) Otherwise, the data point has to be mapped into the
grid in the outlier buffer.

(a) If the number of data points in grid 𝑛
𝑔
reaches

MinPts, then we check the grid weight 𝑤
𝑔
.

(1) If the grid weight 𝑤
𝑔
is higher than the

dense grid threshold, then we form a new
MIC out of the data points in this grid.

(2) The related grid 𝑔 of the new MIC is
discarded from the grid list.
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Input: a data stream, MinPts, 𝜆, and 𝛼
Output: arbitrary shape clusters
(1) 𝑡

𝑝𝑡
= log𝛼/(𝛼−𝑁(1−2

−𝜆
))

𝜆

(2) 𝑡
𝑐
= 0

(3) while not end of stream do
(4) Read data point 𝑥 from Data Stream

{∗ ∗ ∗ ∗ ∗MM-Step ∗ ∗ ∗ ∗ ∗}
(5) Find the nearest mini-cluster MIC to 𝑥
(6) if distance (𝑥, centerMIC) < 𝑟MIC then
(7) Merge 𝑥 to the MIC
(8) else
(9) Map the new data point 𝑥 to the grid
(10) 𝑛

𝑔
= 𝑛
𝑔
+ 1; 𝑤

𝑔
= 2
−𝜆(𝑡
𝑐
−𝑡
𝑝
)

𝑤
𝑔
(𝑡
𝑝
) + 1; 𝑡

𝑝
= 𝑡
𝑐

(11) Update GS(𝑛
𝑔
, 𝑡
𝑝
, 𝑤
𝑔
)

(12) if 𝑛
𝑔
≥MinPts and 𝑤

𝑔
≥

𝛼

𝑁(1 − 2
−𝜆
)

then

(13) 𝑤MIC = 𝑤
𝑔

(14) 𝑐MIC =
∑
𝑛

𝑖=1
𝑓(𝑡
𝑐
− 𝑇
𝑖
)(𝑝
𝑖
)

𝑤MIC

(15) 𝑟MIC =
∑
𝑛

𝑖=1
𝑓(𝑡
𝑐
− 𝑇
𝑖
)distance(𝑝

𝑖𝑗
, 𝑐MIC)

𝑤MIC

(16) Remove grid 𝑔 from the grid list
(17) end if
(18) end if

{∗ ∗ ∗ ∗ ∗ PGM-Step ∗ ∗ ∗ ∗ ∗}
(19) if 𝑡mod 𝑡

𝑝𝑡
== 0 then

(20) for all grid 𝑔 do

(21) OWT(𝑡
𝑐
, 𝑡
𝑝
) =

𝛼(1 − 2
−𝜆(𝑡
𝑐
−𝑡
𝑝
+1)

)

𝑁(1 − 2
−𝜆(𝑡
𝑝
)

)

(22) if 𝑤
𝑔
< OWT then

(23) Remove grid 𝑔 from the grid list
(24) end if
(25) end for
(26) for all {MIC} do

(27) if 𝑤MIC <
𝛼

𝑁(1 − 2
−𝜆
)

then

(28) Remove MIC from {MIC}
(29) end if
(30) end for
(31) end if
(32) 𝑡

𝑐
= 𝑡
𝑐
+ 1

(33) end while
{∗ ∗ ∗ ∗ ∗ FCC-Step ∗ ∗ ∗ ∗ ∗}

(34) if the clustering request is arrived then
(35) Generate clusters using a modified DBSCAN
(36) end if

Algorithm 1: HDC-Stream (DS, MinPts, 𝜆, and 𝛼).

4.2. PGM-Step of HDC-Stream. For each MIC, if no new
point is added, its weight will gradually decay. Furthermore,
there are some grids which do not receive data points for
a long time and become sporadic. These kinds of MIC and
grid cells should be removed from the miniclusters and the
grid list, respectively. The decision for removing grids and
miniclusters is made based on a comparison of their weights

and a specified threshold.Therefore, PGM-Step is performed
in each 𝑡

𝑝𝑡
which is defined in Definition 11.

4.3. FCC-Step of HDC-Stream. When a clustering request
arrives, a variant of DBSCAN algorithm is applied on the set
of the online maintained miniclusters to get the clustering
result. Each minicluster MIC is considered as a virtual point
located at the center of MIC with the weight 𝑤MIC. We adopt
the concept of density connectivity from [21], in order to
determine the final clusters. All the density-connected MICs
form a cluster. The variant of DBSCAN algorithm includes
two parameters: 𝜖 and MinPts.

Definition 13 (directly density-reachable). AMIC
𝑝
is directly

density-reachable from a MIC
𝑞

with respect to 𝜖 and
MinPts if dist(CenterMIC

𝑝

,CenterMIC
𝑞

) < 𝑟MIC
𝑝

+ 𝑟MIC
𝑞

.
Dist(CenterMIC

𝑝

,CenterMIC
𝑞

) is the Euclidean distance
between the centers of MIC

𝑝
and MIC

𝑞
.

Definition 14 (density-reachable). A MIC
𝑝
is density-reach-

able from a MIC
𝑞
with respect to 𝜖 and MinPts if there is

a chain of miniclusters MIC
1
, . . . ,MIC

𝑛
, such that MIC

1
=

MIC
𝑞
and MIC

𝑛
= MIC

𝑝
(MIC

𝑝
𝑖+1

is directly density reach-
able fromMIC

𝑝
𝑖

).

Definition 15 (density-connected). A MIC
𝑝
is density-con-

nected to a MIC
𝑞
with respect to 𝜖 and MinPts if there is a

miniclusterMIC
𝑘
such that bothMIC

𝑝
andMIC

𝑞
are density-

reachable fromMIC
𝑘
with respect to 𝜖 and MinPts.

5. Experimental Evaluation

In this section, we present the evaluation of HDC-Stream
with respect to two existing well-knownmethods DenStream
andD-Stream.We have implementedHDC-Stream as well as
the comparative methods in Java. All experiments were con-
ducted on a 2.5GHzmachine with 4GBmemory, running on
MacOS X. In this section, firstly, we describe the datasets and
then evaluationmeasures used for the evaluation of theHDC-
Stream algorithm.Detailed experiments on real and synthetic
datasets are discussed as well.

5.1. Datasets. For evaluation purposes, the clustering quality,
scalability, and sensitivity of the HDC-Stream algorithm on
both real and synthetic datasets are used. We generated three
synthetic datasets DS1, DS2, and DS3 which are depicted
in Figures 4(a), 4(b), and 4(c), respectively. DS1 has 10000
data points with 5% noise. DS2 has 10000 data points with
4% noise, and DS3 has 10000 data points with 5% noise.
Eventually, we generated an evolving data stream (EDS) by
randomly selecting one of the datasets (DS1, DS2, and DS3)
10 times. For each iteration, the chosen dataset forms a 10000-
point part of the data stream, so the total length of the
evolving data stream is 100000.

The real dataset used is KDD CUP99 Network Intrusion
Detection dataset (all 34 continuous attributes out of the total
42 available attributes are used) [29].The dataset comes from
the 1998 DARPA Intrusion Detection. It contains training



6 The Scientific World Journal

Data stream

MM-Step

FFC-Step

PGM-Step

N
ew

 d
at

a
po

in
t

Miniclusters/
grid cells

M
in

ic
lu

ste
rs

Arbitrary shape
clusters

Figure 2: Overall view of HDC-Stream algorithm.
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data consisting of 7 weeks of network-based intrusions
inserted in the normal data and 2 weeks of network-based
intrusions and normal data for a total of 4,999,000 connec-
tion records described by 42 characteristics. KDD CUP99
has been used in [14, 17, 24, 27] and it is converted into
data stream by taking the data input order as the order of
streaming.

5.2. EvaluationMetrics. Cluster validity is an important issue
in cluster analysis. Its objective is to assess clustering results
of the proposed algorithm by comparing existing well-known
clustering algorithms. In the following, we adopt two popular
measures, purity and normalizedmutual information (NMI),
in order to evaluate the quality of HDC-Stream.

5.2.1. Purity. The clustering quality is evaluated by the aver-
age purity of clusters which is defined as follows:

purity =
∑
𝐾

𝑖=1
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝐶
𝑑

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
/
󵄨
󵄨
󵄨
󵄨
𝐶
𝑖

󵄨
󵄨
󵄨
󵄨
)

𝐾

∗ 100%, (10)

where 𝐾 is number of clusters, |𝐶𝑑
𝑖
| is the number of points

with the dominant class label in cluster 𝑖, and |𝐶
𝑖
| is the

number of points in cluster 𝑖. The purity is calculated only
for the points arriving in a predefined window (𝐻), since the
weight of points diminishes continuously.

5.2.2. Normalized Mutual Information (NMI). The normal-
ized mutual information (NMI) is a well-known information
theoretic measure that assesses how similar two clusterings
are. Given the true clustering 𝐴 = {𝐴

1
, . . . , 𝐴

𝑘
} and the

grouping 𝐵 = {𝐵
1
, . . . , 𝐵

ℎ
} obtained by a clustering method,

let 𝐶 be the confusion matrix whose element 𝐶
𝑖𝑗
is the

number of records of cluster 𝑖 of 𝐴 that are also in the cluster

𝑗 of 𝐵. The normalized mutual information, NMI(𝐴, 𝐵), is
defined as

NMI (𝐴, 𝐵) =
−2∑
𝑐
𝐴

𝑖=1
∑
𝑐
𝐵

𝑗=1
𝐶
𝑖𝑗
log (𝑐
𝑖𝑗
𝑁/𝐶
𝑖
⋅ 𝐶
𝑗
)

∑
𝑐
𝐴

𝑖=1
𝐶
𝑖
log (𝐶

𝑖
/𝑁) + ∑

𝑐
𝐵

𝑗=1
𝐶
𝑗
log (𝐶

𝑗
/𝑁)

,

(11)

where 𝑐
𝐴
(𝑐
𝐵
) is the number of groups in the partition 𝐴(𝐵),

𝐶
𝑖
(𝐶
𝑗
) is the sum of the elements of 𝐶 in row 𝑖 (column 𝑗),

and𝑁 is the number of data points. If𝐴 = 𝐵, NMI(𝐴, 𝐵) = 1,
and if 𝐴 and 𝐵 are completely different, NMI(𝐴, 𝐵) = 0.

The parameters of HDC-Stream adopt the following
settings: decay factor 𝜆 = 0.25, minimum number of points
MinPts = 30, and 𝛼 = 0.8. The parameters for DenStream
and D-Stream are chosen to be the same as those adopted in
[24] and [14], respectively.

5.3. Evaluation of HDC-Stream on Synthetic Datasets. Fig-
ure 5 shows the purity results of HDC-Stream compared to
DenStream andD-StreamonEDSdata stream. In Figure 5(a),
the stream speed is set to 2000 points per time unit and
horizon𝐻 = 1. HDC-Stream shows a good clustering quality.
Its clustering purity is higher than 97%.We also set the stream
speed at 2000 points per time unit and horizon 𝐻 = 10

for EDS. Figure 5(b) shows similar results too. We conclude
that HDC-Stream achieves much higher clustering quality
than DenStream and D-Stream in two different horizons. For
example, in horizon 𝐻 = 1, time unit 50, HDC-Stream has
98% while DenStream and D-Stream have purity values as
82% and 78%, respectively.

The same is observed from the normalized mutual
information aspect. In fact, Figure 6 shows the NMI values
obtained by three methods. We repeated the experiments
with the same horizon and stream speed (Figures 6(a) and
6(b)).The results show a noticeable highNMI score forHDC-
Stream. In fact, its value approaches 1 for both horizons. It
also proves that DenStream has better NMI compared to D-
Stream.

We noted very good clustering quality of HDC-Stream,
D-Stream, and DenStream when no noise is present in the
dataset. In fact, purity values are always higher than 98% and
all methods are insensitive to the horizon length.

5.4. Evaluation of HDC-Stream for Real Datasets. The com-
parison results among HDC-Stream and both DenStream
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(a) Dataset DS1—10000 data points, 3% noise (b) Dataset DS2—10000 data points, 4% noise (c) Dataset DS3—10000 data points, 5% noise

Figure 4: Synthetic datasets.
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Figure 5: Cluster purity of HDC-Stream for EDS with (a) horizon = 1 and stream speed = 2000 and (b) horizon = 5 and stream speed = 2000.

and D-Stream on the Network Intrusion dataset are shown
in Figure 7. The evaluation is defined based on the selected
time units when the attacks happen on horizons 2 and 5,
whereas the stream speed is 1000. For instance, in horizon
𝐻 = 5 and stream speed 1000, there are 99 teardrop attacks,
182 ipsweep attacks, 618 neptune attacks, and 4097 normal
connections. HDC-Stream clearly outperforms DenStream
and specifically D-Stream. The purity of HDC-Stream is
always above 91%. For example, at time 55, the purity ofHDC-
Stream is about 95% which is higher than both DenStream
(86%) and D-Stream (76%).

We show the normalized mutual information results on
Network Intrusion Detection dataset in Figure 8. The results
have been determined by setting the horizon to 1 and 5,
whereas the stream speed is 1000 (Figures 8(a) and 8(b)).The
values of normalized mutual information for HDC-Stream
approach 1 for both horizons. It reveals that HDC-Stream
detects the true class labels of data more accurately than
DenStream and D-Stream do.

5.5. Scalability Results

5.5.1. Execution Time. The execution time of HDC-Stream
is influenced by the number of data points processed at
each time unit, that is, the stream speed. Figure 9 shows the
execution time in seconds on Network Intrusion Detection
dataset for HDC-Stream compared to DenStream and D-
Stream, when the stream speed augments from 1000 to 10,000
data items.

DenStream has higher processing time due to its merging
task which is time consuming. HDC-Stream has lower
execution time compared to the others. The execution time
of othermethods increases linearly with respect to the stream
speed.

5.5.2. Memory Usage. Memory usage of HDC-Stream is
𝑜(mi + 𝑔)which is the total number ofminiclusters and grids.

5.6. Sensitivity Analysis. An important parameter of HDC-
Stream is 𝜆. It controls the importance of historical data. We



8 The Scientific World Journal

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

N
or

m
al

ise
d 

m
ut

ua
l i

nf
or

m
at

io
n

Time unit

D-stream
DenStream
HDC-stream

(a)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

N
or

m
al

ise
d 

m
ut

ua
l i

nf
or

m
at

io
n

Time unit
D-stream
DenStream
HDC-stream

(b)

Figure 6: Normalised mutual information of HDC-Stream for EDS with (a) horizon = 1 and stream speed = 2000 and (b) horizon = 5 and
stream speed = 2000.
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Figure 7: Cluster purity of HDC-Stream for Network Intrusion Detection dataset with (a) horizon = 2 and stream speed = 1000 and (b)
horizon = 5 and stream speed = 1000.

test the quality of clustering on different values of 𝜆 ranging
from 0.0078 to 1 (Figure 10). When 𝜆 is too small or too
large, the clustering quality becomes poor. For example, when
𝜆 = 0.0078, the purity is about 75%, and, when 𝜆 = 0.5, the
points decay soon after their arrival, and only a small number
of recent points contribute to the final results. So the result
is not very good. However, the quality of HDC-Stream is still
higher than that ofDenStreamandD-Stream. It is proved that
if 𝜆 varies from 0.0625 to 0.25, the clustering quality is quite
good, stable, and always above 96%.

6. Discussion

We proposed a hybrid method for clustering evolving data
streams which has high quality and low computation time
compared to existing methods. The algorithm clusters data
streams in three distinctive steps. In existing methods such
as DenStream, when a new data point arrives, it takes time
to search in two lists of microclusters including potentials
and outliers in order to find the suitable microcluster. If it
is unable to find a microcluster, DenStream forms a new
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Figure 8: Normalised mutual information of HDC-Stream on Network Intrusion Detection dataset with (a) horizon = 1 and stream speed =
1000, (b) horizon = 5 and stream speed = 1000.
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Figure 9: Execution time for increasing stream lengths on Network
Intrusion Detection dataset.

microcluster for that data point which may be a seed of
an outlier, hence leading to a low clustering quality result.
However, HDC-Stream only searches in potential list and
if it cannot find the suitable microcluster, the data point
is mapped to the grid, which keeps the outlier buffer. We
reduced the time complexity of clustering algorithm using
grid-based clustering. The grid-based method allows us to
decrease merging time complexity from 𝑜(mi) to 𝑜(1). We
implemented the grid list in a 2-3-4 tree data structure which
makes search and update faster. The size of the grid list is
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Figure 10: Cluster quality versus decay factor.

𝑜(log
1/𝜆
𝑁) and the time required for search and update in

the grid list is 𝑜(log log
1/𝜆
𝑁). Consider

𝑜 (MM-Step) = 𝑜 (mi) + 𝑜 (log
1/𝜆
𝑁) + 𝑜 (1) ,

𝑜 (PGM-step) = 𝑜 (log
1/𝜆
𝑁) + 𝑜 (mi) .

(12)

We reduced the number of comparisons; therefore, time
complexity for merging to minicluster list is 𝑜(mi); in which
the number of mi is less than number of microclusters in
DenStream, since, in that algorithm, there are two lists to
keep potential and outlier microclusters. Furthermore, we
increased the clustering quality by formingminiclusters from
the data points that are surely not outliers. When the grid
density reaches the specified threshold, the data points inside
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that grid form a minicluster. Therefore, we do not need to
form a minicluster for a newly arrived data if it cannot be
placed in any minicluster. The quality is also increased since
miniclusters are never formed from an outlier.

Finally, the evaluation results prove that using a hybrid
method for clustering evolving data streams improves the
clustering quality results and reduces the computation time.

7. Conclusion

In this paper, we proposed a hybrid density-based clustering
algorithm for Internet of Things (IoT) streams. Our hybrid
algorithm has three steps in which the new data point is
either mapped to grid or merged to an existing minicluster,
the outliers are removed, and finally arbitrary shape clusters
are formed using miniclusters by a modified DBSCAN.
Our method is a hybrid one, which uses density grid-
based clustering and density microclustering to improve the
computation time and quality. The evaluation results on
synthetic and real datasets show that it has high quality with
low computation time formerging. However, HDC-Stream is
not suitable to be used in distributed environments.

Our future work will focus on the improvement of HDC-
Stream as a distributed density-based data stream clustering
algorithm.
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