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The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote
development and improve prognosis. Research on autism spectrum disorder (ASD) suggests that behavioral signs can be observed
late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child’s
natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training;
thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project
on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders.
We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of
the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure responses to general ASD risk
assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results,
including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can
capture critical behavioral observations and potentially augment the clinician’s behavioral observations obtained from real in-clinic
assessments.

1. Introduction

The analysis of children’s natural behavior is of key impor-
tance for the early detection of developmental disorders such
as autism spectrum disorder (ASD). For example, several
studies have revealed behaviors indicative of ASD in early
home videos of children that were later diagnosed with
ASD [1–5]. These studies involved video recording infant
behavior and then coding and analyzing the data a posteriori,
using frame-by-frame viewing by an observer who typically

trains for several weeks to achieve interrater reliability.
Hours of labor are required, thereby making such analyses
burdensome for clinical settings as well as for big data
studies aiming at the discovery or improvement of behavioral
markers. While clinical tools for early screening of ASD
are available, they require administration and interpretation
by specialists. Many families in low resource communities
lack easy access to specialists in ASD. This work examines
the potential benefits that computer vision can provide for
research in early detection of ASD risk behaviors. It is a first
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milestone in a long-term project aimed at developing low-
cost, automatic, and quantitative analysis tools that can be
used by general practitioners in child development and in
general environments to identify children at risk for ASD and
other developmental disorders.

Although much is unknown about the underlying causes
of ASD, some neuropathological studies indicate that ASD
may have its origins in abnormal brain development early in
prenatal life [6]. Moreover, Zwaigenbaum et al. [7] argue that
many children with ASD exhibit several specific behavioral
markers as early as in the first year of life. In high-risk
siblings of children who later developed ASD, some of
these symptoms can be observed during activities involving
visual attention and are often expressed as difficulties in
disengagement and shifting of attention [8, 9]. In addition,
high-risk infant siblings have been shown to demonstrate
impaired visual attention development between the ages of
7 and 14 months [10]. With this said, there is still much
research needed to be done in determining potential risk
indices. For example, a study performed by Nadig et al. [11]
found that there is no significant difference in response-to-
name disengagement between at-risk and low-risk infants.

Despite the fact that autism symptoms often emerge
early and the syndrome can be diagnosed in toddlers, the
average age of ASD diagnosis in the USA is close to 5 years
[12]. Recently, research has demonstrated the benefit of early
detection and diagnosis to allow for early intensive interven-
tion. Early intervention, initiated in preschool and sustained
for at least 2 years, can substantially improve child outcomes
[13]. Detecting ASD risk and starting interventions before the
full set of behavioral symptoms appears to may ultimately
have an even greater impact, preventing difficult behaviors
and delayed developmental trajectories from taking hold [14].
Although the diagnosis of ASD involves much more than
the detection of symptoms, improving availability of cost-
effective and accessible methods for identifying which chil-
dren might be at risk and in need of further evaluation would
potentially be of value. Towards this end, we have focused
on developing semiautomatic computer vision video analysis
techniques to aid in measuring ASD-related behaviors which
can be used in early detection research.

More specifically, the main objectives in this paper are
to use and validate computer vision tools to capture reliably
two critical visual attention behaviors, Disengagement of
Attention and Visual Tracking, belonging to the Autism
Observation Scale for Infants (AOSI) [15], a behavioral
observation tool for gathering information on early ASD risk
signs [16]. (In this paper we refer to the AOSI and the scoring
based on the DSM-IV. Research is needed to assess how
measures of early signs of autism derived from automated
video coding, such as those from the AOSI, relate to later
diagnosis of ASD based on the newly established DSM-5
criteria. This is the subject of on-going efforts in our team.)
Thus, the aim of the study is to examine the correspondence
between the measures derived from the computer vision
tools and the clinical assessment given by one trained expert.
To demonstrate the validity of our tools, we compare our
computer vision methods’ results to those of the AOSI
trained expert who performed the assessments and three

nonexperts. Towards this end, other objectives of our work
are to demonstrate the accurate and objective measurements
provided by our low-cost methods and their potential to be
used in the research of ASD risk marker identification. The
work with such a specific population of infants and toddlers
is unique in the computer vision community, making this a
novel application for the psychology community. While the
data is obtained from actual clinical assessments, the tasks
pulled from the assessment are easy to administer and/or
involve recordings of the child’s natural behavior, thereby
opening the door to broad behavioral studies, considering
that the actual analysis is automatically done as introduced
here.

These tools could potentially aid the practitioner and
researcher in the risk marker identification task by providing
accurate and objective measurements. These measurements
can further provide means for improving the shareability
of clinical records without compromising anonymity. In
addition and particularly for research, automatic analysis
will permit researchers to analyze vast amounts of natu-
rally recorded videos, opening the door for data mining
towards the improvement of current assessment protocols
and the discovery of new behavioral features. This project
is being developed by a multidisciplinary group bringing
together professionals frompsychology, computer vision, and
machine learning. As an alternative to other research strate-
gies [17–19], which require laboratory assessments, one of
our main goals is to provide nonintrusive capturing systems
that do not necessarily induce behavioral modification in the
children. In other words, hardware must not constrain the
testing environment; for example, the children are not asked
to wear any type of sensors [20, 21].

2. Methods

2.1. Procedures for AOSI Tasks. The AOSI consists of a set
of tabulated tasks that are designed for assessing specific
behaviors, where each task consists of a certain number of
presses and the child’s responses receive scores. According
to the AOSI, Disengagement of Attention is characterized
as the “ability to disengage and move eyes/attention from
one of two competing visual stimuli” [15, 22], while Visual
Tracking is characterized as the “ability to visually follow a
moving object laterally across the midline” [15, 22]. During
the AOSI assessment, the clinician performs three trials for
the Disengagement of Attention task and two trials for the
Visual Tracking task, per participant. Every trial receives an
AOSI-tabulated score, according to the following guidelines.

Disengagement of Attention. This activity consists of (1)
shaking a noisy toy to one side of the infant until his/her
attention is engaged and then (2) shaking a second noisy
toy on the opposite side, while continuing to shake the first
object. A delayed response in high-risk infants has been
shown to be associated with a later ASD diagnosis [7, 15]. A
trial is considered “passed” if the child looks to the second
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object in less than 1s, considered “delayed” if the child looks
after a 1-2 s delay, and considered “stuck” if the child looks
after more than 2 s.

Visual Tracking. To evaluate this activity, the following is
performed: (1) a rattle or other noisy toy is used to engage
the infant’s attention, (2) the rattle is positioned to one side of
the infant, and (3) the rattle is then moved silently at eye level
across the midline to the other side. In high-risk infants, an
interrupted, delayed, or partial gaze tracking has been shown
to be associated with a later ASD diagnosis [15]. Depending
on how continuously and smoothly the participant is able to
track the object, the trial is considered “passed,” “delayed or
interrupted,” or “partial or no tracking.”

The clinician makes a “live” judgment about these time
frames or may look at videos of this task if available. Finally,
an overall score for each task is computed by merging the
individual trials. We followed the protocol of comparing the
assessments done by (1) an expert psychologist examiner
who has been trained in the AOSI as well as ASD diagnosis
in children, (2) a child/adolescent’s psychiatrist, (3) two
psychology students with no particular autism training,
and (4) the results of our new computational tools. The
child/adolescent’s psychiatrist and two psychology students
assigned their scores by following the AOSI guidelines,
without prior training, while watching the same videos used
by the automatic method.This setup allows us to contrast the
automatic method’s findings with human assessments across
the full range of expertise.

2.2. Computer Vision Algorithms for Assessing Visual Atten-
tion. To analyze the child’s reactions in the Visual Attention
activities, we automatically estimate the changes of two head
pose motions: yaw (left and right motion) and pitch (up and
down motion). For the Visual Tracking and Disengagement
of Attention tasks, which involve lateral motions, we focus on
the yaw motion. We develop computer vision algorithms for
estimating these head motions from low-cost cameras. The
algorithms track specific facial features: the left ear, left eye,
and nose (see right image of Figure 1). From their positions
we estimate the participant’s yaw and pitchmotions.The only
user input in our algorithm is during initialization. On the
first frame, the user places a bounding box around the left ear,
left eye, and nose (Figure 7).This could potentially be avoided
by standard feature detection techniques.Wemarked the play
objects by hand, although this also can be done automatically
from prior knowledge of their visual and sound features (e.g.,
color or squeaking noise). Additional technical details are
available in Appendices A and B (Figure 6 presents the data
flow of our visual attention analysis system). We should note
that we exploit and extend computer vision techniques that
form the basis of virtual all automatic face analysis systems,
and therefore have been extensively validated in the literature.

Scoring for our automatic method is based on automatic
visual inspection of the estimated head motion measure-
ments. After marking when the second object is presented
in the Disengagement of Attention task, our method is
able to automatically determine when the participants start

and complete disengagement from the first object to the
second. We assign the disengagement delay based on how
many frames/seconds it takes the participant’s head motion
to completely transition to the second object (note that
we are recording the video at 30 frames per second). We
incorporate a + (1/3) of a second margin for each delay
to accommodate human error of making a live judgment.
The scoring for the Visual Tracking task is determined by
visual inspection of the head motion measurements as the
object is moving laterally in front of the participants. More
specifically, the scores are assigned based on whether or not
the measurements exhibit full lateral head motion and also
depend on the rate of change of the measurements. A “pass”
is assigned if the head motion measurements exhibit full
lateral head motion and a smooth rate of change. If there
is an instance where the measurements exhibit a plateau
or the rate of change changes direction for a short period
of time but the measurements still display full lateral head
motion, an “interrupted” score is assigned. For trials where
the measurements do not exhibit full lateral head motion,
a “partial” or “no tracking” score is assigned. Examples
of our method’s measurements for a “pass,” “interrupted,”
and “partial” or “no tracking” tracking scores are shown
in Figure 3. The developed automatic technique operates at
a much higher resolution and accuracy than the standard
1-second intervals used by the expert clinician during live
testing.

2.3. Participants. The purpose of the study was not to
examine the correspondence between early assessments and
outcome but rather the ability of our tools to accurately
capture individual differences in behavior. We sought to
include a sample in which a diversity of responses to the
AOSI would be expected; thus the sampled population of
this study involves 12 at-risk participants being examined in
a clinic, including both males and females ranging in age
from 5 to 18 months. Approval for this study was obtained
from the Institutional Review Board at the University of
Minnesota, and we have gathered our data from a series
of ASD evaluation sessions of an ongoing concurrent study
performed on a group of at-risk infants, at the Department of
Pediatrics of the University of Minnesota.

All at-risk participants were infant siblings of a child
diagnosed with ASD, a premature infant, or as a participant
showing developmental delays. Table 1 presents a summary
of this information. Note that, the participants are not
clinically diagnosed until they are 36months of age and only
participant number 3 has presented conclusive signs of ASD.

2.4. Hardware. In our clinical setup, we use a low-cost GoPro
Hero HD color camera (with a resolution of 1080 p at 30 fps),
placed freely by the clinician in the center of the table between
2 and 4 feet away from the participant to ensure that it
remains still throughout each trial and captures both the
clinician and the participant (e.g., left image of Figure 1).
The displayed images here are downsampled, blurred, and/or
partially blocked to preserve anonymity (processingwas done
on the original videos).
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(a) (b)

Figure 1: (a) General scene capturing the AOSI evaluation session. (b) Example of our algorithm automatically tracking three facial features:
the left eye, left ear, and nose. In this paper, all figures have been blurred to protect the participants’ privacy.
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Figure 2: (a) First example of the Disengagement of Attention task. Top: when the clinician is holding one object, when the second object
appears, and when the child recognizes the second object. Middle: changes in the yawmotion (ŷaw values in the 𝑦-axis; see Appendices A and
B) for every frame (𝑥-axis). The dotted line represents when the second object is presented, followed by boxes representing 1 and 2 seconds
after the object is presented. Bottom: 6 examples of the infant’s face during the task. All facial features are automatically detected and tracked
(as indicated by the colored boxes around the nose, eyes, and ear). Colors and roman numerals identify corresponding images and spikes in
the graph. (b, c) Two examples of the Disengagement of Attention task.
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Figure 3: (a) First example of the Visual Tracking task. Top: when the clinician is holding the object, when the object is at one extreme side
(right or left), and when the object is at the other extreme side. Middle: changes in the yawmotion (ŷaw values in the 𝑦-axis; see Appendices A
and B) for every frame (𝑥-axis).The boxes labeled “R” and “L” represent when the object is to the right and left of the participant, respectively.
The gray shaded areas represent when the object is not moving and at an extreme side (either right or left). Bottom: 6 examples of the infant’s
face during the task. Colors and roman numerals identify corresponding images and spikes in the graph. (b, c) Two examples of the Visual
Tracking task.

3. Results

3.1. Disengagement of Attention. Table 2 summarizes the
results of our method, the clinical assessments, and the rat-
ings by a child/adolescent’s psychiatrist and two psychology
students for the Disengagement of Attention task. (See all
video results in supplementary video files available online
at http://dx.doi.org/10.1155/2014/935686.) Since the current
set up for the visual attention tasks only involves a single
camera placed nonintrusively, there are trials that our current
method cannot handle (this could be easily solved in the
future with a second low-cost camera). These trials include

instances when the participant left the camera’s field of view
or when a toy or object obstructed it. (Standard face detection
algorithms, such as the ones used in digital cameras, can
be used to automatically alert the clinician of such cases
for repositioning of the camera if needed.) For Table 2, the
trials with blank spaces and a horizontal line correspond to
such cases. Out of the 24 trials that the clinician assigned a
“pass” score, our method agreed on 23 of them and scored
a “delayed” for the other trial. And out of the 3 trials the
clinician scored “delayed” our method agreed on 2 trials,
scoring one as a “pass.” The clinician did not assign a score
for number 2, stating that it was a “spoiled” trial due to the
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Figure 4: Two examples of the ball playing activity. Top: when the ball contacts the child, when the child looks down at the ball, and when
the child looks up at the clinician. Middle: changes in the pitch motion (𝑦-axis) for each frame (𝑥-axis). The dotted line represents when the
ball contacts the participant. Bottom: 6 examples of the infant’s face during the administration. All facial features are automatically detected
and tracked. Colors and roman numerals identify corresponding images and spikes in the graph.
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Figure 5: Comparison of arm-asymmetry scores between automatic method and ground truth in a video segment containing participant
number 1.The cyan line represents normalized results fromourmethod, while the red line represents the ground truth (GT) of the normalized
arm differences. See [28] for more information on arm-asymmetry calculations and analysis. The normalized color scale visually displays the
angle difference between the right and left forearms, where symmetric arm positions have similar overlaying colors.

participant being afraid of the toys. However, we show our
method’s results to exemplify a possible Disengagement of
Attention score.

To further clarify our results, Figure 2 displays examples
of our method’s results and important cases for the Disen-
gagement of Attention task. In Figure 2(a), the participant
is able to disengage from the first object and look at the
second within 0.7 s (21 frames) of the second object being
presented.This would be scored as “passed” on the AOSI test.

The participant in Figure 2(b) disengages to the second object
within 1.3 s (40 frames), which would be scored as “delayed”
on the AOSI test.

3.2. Visual Tracking. Table 3 summarizes the results of our
method, the clinical assessments, and the ratings by a
child/adolescent’s psychiatrist and two psychology students
for the Visual Tracking task. As in Table 2, the trials with
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Figure 6: Data flow of the system for estimating yaw and pitch motions. We only require the user to place a bounding box around the left ear,
left eye, and nose in the first frame of the video segment (black ellipse at time 𝑡
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). All the subsequent steps occur in a fully automatic fashion
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Figure 7: The triangle created by the left ear, left eye, and nose. The
leftmost and rightmost images depict the triangle when the infant is
looking right andmore towards the camera, respectively.Themiddle
image shows the points used for calculating ŷaw.

blank spaces and a horizontal line could not be used by
our automatic method. Out of the 14 trials that the clinician
assessed as “pass”, our method agreed with 13 of them and
scored an “interrupted” for 1 of the trials. For all the 4 trials
the clinician assessed as “interrupted,” our automatic method
was in agreement. The clinician scored two trials as “partial,”
our method scored one of them as “partial” and the other as
“interrupted.”

Figure 3 shows important examples of our results for the
Visual Tracking task. Figure 3(a) demonstrates a participant
that received a “passed” on the AOSI’s Visual Tracking task,
since the participant was able to smoothly track the object

Table 1: Information on participants involved in this study. Each
participant was chosen for a different reason: being a baby sibling of
someone with ASD, a premature infant, or showing developmental
delays.

Part number Age (months) Gender Risk degree
Number 1 14 F Showing delays
Number 2 5 F Baby sibling
Number 3 16 M Showing delays
Number 4 15 M Showing delays
Number 5 8 M Premature infant
Number 6 9 F Premature infant
Number 7 10 F Premature infant
Number 8 9 M Premature infant
Number 9 7 M Premature infant
Number 10 6 M Baby sibling
Number 11 9 M Premature infant
Number 12 18 M Showing delays

with minimal delay as the object approached the participant’s
right. In Figure 3(b), the participant exhibited “interrupted”
tracking motion. The participant’s tracking of the object was
interrupted as the object moved across the clinician’s face.
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Table 2: Results of Disengagement of Attention task. Scores from
the clinician (Clin.), automatic method (Automatic), a psychiatrist
(Psy.), and two students (St. 1 and St. 2) for each trial. A trial is
considered either as “passed” (Pass), “delayed” (Del), or “stuck”
(Stck) depending on whether the child disengages from the first
object in less than 1 s, between 1 and 2 s, or more than 2 s,
respectively. We also present the automatically computed delay that
the child takes to disengage. Note that we consider 𝑎 + (1/3) of
a second margin for each delay to accommodate human error of
making a live judgment.

Part number Clin. Automatic Psy. St. 1 St. 2
Score Delay (s)

First trial score
Number 1 Pass Pass 0.9 Pass Del Del
Number 2 N/A Del 1.87 N/A N/A N/A
Number 3 Pass Pass 0.5 Pass Del Del
Number 4 Pass Pass 0.23 Pass Pass Pass
Number 5 Del Pass 1.07 Del Del Del
Number 6 Pass Pass 1.03 Pass Del Pass
Number 7 Pass Pass 0.83 Pass Del Del
Number 8 — — — — — —
Number 9 — — — — — —
Number 10 Pass Pass 0.87 Del Del Del
Number 11 Pass Pass 0.83 Pass Del Pass
Number 12 Pass Pass 0.93 Pass Pass Pass

Second trial score
Number 1 Pass Pass 0.7 Pass Pass Pass
Number 2 — — — — — —
Number 3 — — — — — —
Number 4 Pass Pass 1.1 Pass Pass Pass
Number 5 Del Del 1.77 Del Stck Del
Number 6 Pass Del 1.43 Pass Pass Pass
Number 7 Pass Pass 0.97 Del Del Del
Number 8 Pass Pass 1.33 Pass Del Del
Number 9 — — — — — —
Number 10 Pass Pass 1.3 Pass Pass Pass
Number 11 Pass Pass 0.63 Pass Pass Pass
Number 12 Pass Pass 0.9 Pass Del Del

Third trial score
Number 1 Pass Pass 0.37 Pass Pass Pass
Number 2 — — — — — —
Number 3 — — — — — —
Number 4 Pass Pass 0.3 Pass Pass Pass
Number 5 Pass Pass 0.5 Pass Del Pass
Number 6 Pass Pass 0.7 Del Del Del
Number 7 Pass Pass 1.13 Pass Del Del
Number 8 — — — — — —
Number 9 Del Del 1.37 Pass Del Stck
Number 10 Pass Pass 1.33 Del Del Del
Number 11 Pass Pass 0.87 Pass Pass Pass
Number 12 Pass Pass 0.87 Pass Pass Pass

Instead of tracking the object as it moved across the clinician’s
face, the participant stopped tracking the object and looked

at the clinician for 0.46 s (14 frames) before continuing to
track the object as it moved to the participant’s left. Such
short behaviors can be detected by an automatic system. In
Figure 3(c), the participant displays a “partial” tracking score
on the AOSI. As the object crosses the clinician’s face, the
participant completely stops tracking the object and instead
looks straight at the clinician.

3.3. Comparisons between Ratings by Automatic Computer
Vision Method, Nonexpert Clinical Raters, and Expert Clini-
cian. We next compared ratings made by nonexpert clinical
raters (child/adolescent’s psychiatrist and two psychology
students) and by the computer vision methods with ratings
made by an expert clinician. The results obtained by the
child/adolescent’s psychiatrist and two psychology students
are presented in Tables 2 and 3. Out of the 27 Visual
Disengagement trials (Table 2), the two psychology students
agreed with the clinician on 13 and 16 of the trials, respec-
tively, while the child/adolescent’s psychiatrist agreed on 22
trials. The computer vision system agreed with the expert
clinician in 25 out of the 27 cases. Similarly for the 22
Visual Tracking trials (Table 3), the two psychology students
agreed with the expert clinician on 13 and 14 of the trials,
respectively, while the child/adolescent’s psychiatrist agreed
on 16 trials. The computer vision system agreed on 19 of
the 22 cases. Table 4 shows the interrater reliability value for
each individual compared with the expert clinician, based on
weighted Cohen’s kappa with a range of 0-1, where 1 means
complete agreement.

4. Discussion

In addition to providing a broadly deployable low-cost tool
for ASD risk assessment, if validated in future research, the
potential benefits of an automated method for head motion
estimation are threefold. First, it would provide accurate
quantitative measurements for tasks assessing infant visual
attention, such as the AOSI tasks, improving the shareabil-
ity of clinical records while not compromising anonymity.
Second, it could also prove beneficial in the discovery of
new behavioral patterns by easily collecting large amounts of
data and mining it. Third, it could increase the granularity
of the analysis by providing data at a finer scale. As the
results demonstrate, the computer vision method performed
very well when compared to the expert clinician and out-
performed the three other nonexperts. Using unweighted
kappa, Bryson et al. [15] reported a combined average
interrater reliability score of 0.80 for both the Disengagement
of Attention and Visual Tracking. Although our combined
averageweighted score of 0.75 is not as high as reported by the
original authors, it is still considered excellent (greater than
0.65) according to them.

4.1. Disengagement of Attention. Compared to the expert
clinician’s results, the computer vision method achieved high
accuracy. In Table 2, the method obtained one false positive
by scoring one trial “delayed” that the clinician scored as
“pass” (participant number 6) and missed one “delayed” trial
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Table 3: Results of Visual Tracking task. Scores from the clinician (Clin.), automatic method (Automatic), a psychiatrist (Psy.), and two
students (St. 1 and St. 2) for each trial. A trial is considered “passed” (Pass), “delayed” (Del), “interrupted” (Int), “partial” (Prt), or “no tracking”
depending on how smoothly the child visually tracks the object.

Part number First trial score Second trial score
Clin. Automatic Psy. St. 1 St. 2 Clin. Automatic Psy. St. 1 St. 2

Number 1 Pass Pass Pass Pass Pass Pass Int Int Int Int
Number 2 Int Int Pass Int Pass Int Int Pass Pass Pass
Number 3 Del Pass Pass Pass Pass Pass Pass Pass Pass Pass
Number 4 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
Number 5 Prt Int Pass Int Pass Prt Prt Del Prt Prt
Number 6 Pass Pass Pass Pass Pass — — — — —
Number 7 — — — — — Int Int Int Prt Prt
Number 8 Pass Pass Pass Del Pass Pass Pass Pass Pass Pass
Number 9 Pass Pass Pass Del Pass Pass Pass Pass Pass Pass
Number 10 Pass Pass Pass Pass Pass Int Int Int Prt Prt
Number 11 Pass Pass Pass Pass Pass Int Int Int Prt Prt
Number 12 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass

Table 4: Number of agreements with the autism expert for each participant in the two visual attention tasks and overall interrater reliability
using weighted Cohen’s kappa. See Tables 2 and 3.

Task Trials Automatic Psychiatrist Student 1 Student 2
Disengagement 27 25 22 13 16
tracking 22 19 16 13 14
Total 49 44 38 26 30
Interrater score — 0.75 0.37 0.27 0.27

(participant number 11). In the current project, the temporal
resolution is 30 frames per second, allowing for discovery
of possible latent head motion patterns. Figure 2(c) provides
an interesting pattern in the participant’s head movement.
Not only does it take the third participant over 1 s to look
at the second object (which is “delayed” on the AOSI),
but the participant displays piece-wise constant lateral head
movements compared to the other two examples (which
presented a much smoother motion), a pattern virtually
impossible to detect with the naked eye. Again, such auto-
matic and quantitative measurements could potentially add
critical information that could aid in risk detection, such
as new ways of scoring the AOSI. With a study on a larger
population, new time intervals (and their variability) for
scoring may be discovered, and these false positives could be
analyzed not as a strict “pass” or “delayed” but as something
in between.

4.2. Visual Tracking. Again, compared to the expert clini-
cian’s results, the automated method achieved high accuracy.
As shown in Table 3, the clinician scored one trial belonging
to the only participant that has been positively diagnosed
as “delayed”; however, based on our nonintrusive camera
placement (as selected by the practitioner), it was not pos-
sible to continuously extract the object’s location accurately
enough to assign “delayed” scores. In future studies, it would

be possible to extend the setup to include an overhead
camera to accurately record the playing objects’ positions.
Another aspect of the method is that it provides accurate
and quantitative measurements of the participant’s head
motions; thus, one is able to automatically determine the
delays between when the participant looks at the object or
how long the participant stops his/her tracking.

5. Concluding Remarks

This work is the first milestone in a long-term project focused
on the development of noninvasive early observation of
children in order to aid in risk detection and research of
neurodevelopmental disorders. With the goal of aiding and
augmenting the visual analysis capabilities in evaluation and
developmental monitoring of ASD, we proposed (semi-)
automatic computer vision tools to observe specific impor-
tant behaviors related toASD elicited duringAOSI, providing
both new challenges and opportunities in video analysis.
The proposed tools, if validated in future research, could
significantly reduce the effort by only requiring interactive
initialization in a single frame. The eventual goal is to min-
imize the need for extensive training and add both accuracy
of quantitative measurements and objectivity. We focused on
two visual attention activities performed during the AOSI.
We developed specific computer vision algorithms for these
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activities, obtaining encouraging results that correlated with
an expert’s judgment. The automated method proved to
be more consistent with the expert clinician’s rating that
those produced by less expert human observers; it should be
noted that these human observers still have higher levels of
expertise than normally available in most school settings.

The improvement and extension of the proposed meth-
ods is an ongoing work and we plan to provide code for
the method. Current limitations of our methods include
requiring the participant’s face to be present throughout
the video, estimating the yaw and pitch motions indepen-
dently of one another, and we have only tested on relatively
high-definition video sequences (from low-cost GoPro Hero
cameras). Although the present study included 12 at-risk
infants and toddlers, some limitations of our study include
the use of only a single expert examiner as well as the
small and relatively unimpaired sample size (although as
mentioned before, the exploited tools have been extensively
validated in the literature). For the visual attention tasks, we
plan to complement the estimation of the child’s motions
with estimating the red examiner’s behaviors. The work
presented demonstrates the validity of the tools with a
specific examiner’s assessments. To expand these tools to
broader clinical and naturalistic settings that involve different
examiners and examiners with different levels of training, the
quality of interaction, engagement, and variability between
the examiners must also be considered. These examiner-
related behaviors include how far away from the participant
the examiner positions the toy(s), the displacement velocity
of the toy(s) throughout the assessment, audio cues from the
examiner, and head position of the examiner in the sense
of whether he/she is looking at the participant or away. A
study on the variability of examiner’s performance in both
clinical and naturalistic settings, such as at the participant’s
home, is an important topic for future research and should be
considered before any data mining analyses are carried out.
Amethod that examines the examiner’s behaviors would also
allow the examiner to receive immediate feedback onwhether
a trial or press needs to be redone. Notice that this could also
lead to an automaticmethod for training examiners. Based on
the set-up of theAOSI tasks discussed in thiswork,we assume
that the participant’s head motion is directly correlated to
his/her gaze direction. This assumption is known as “center
bias” and has been well established in gaze estimation and
saliency detection literature [23, 24]. To further research
and broaden the scope of this method, we plan to validate
the assumption of the direct relationship between the head
motion and eyemovements in a specific population of infants
and children at risk for ASD or with ASD; see also [25] for
some early results in this direction.

5.1. Extensions of Computer Vision Tools for ASD Behavioral
Observations. There are additional potential behavioral risk
indices for ASD, both included in and beyond the scope of
AOSI, such as facial expression in first birthday home videos
[26] and mounting a camera near the examiner’s face to
estimate the participant’s gaze [27], which are not addressed
by the current method but we aim to address in the future,

both in terms of the technical methods and the assessment
of their validity and reliability. Computer vision tools hold
promise as a novel and cost-efficient method for capturing
behavior that could be used in both the clinical and research
settings. Using the methods in this work, we also provide
initial data suggesting that these methods might be useful in
less structured situations, such as tracking a participant’s head
motion during a ball playing activity (Figure 4), providing
information regarding the participant’s interaction with the
examiner such as the time it takes for a participant to look up
after receiving a ball.

In addition, computer vision tools are not restricted
to only aiding visual attention related markers. Our group
has also been developing nonintrusive tools for aiding the
assessment of motor patterns [28]. Through a meticulous
process of hand fitting stickman to the participants in every
frame, Esposito et al. [29] have found that toddlers with ASD
often presented asymmetric arm positions in early life. Using
computer vision, we were able to automatically estimate the
2Dbody pose of the toddlers in the video segments (Figure 5)
as well as estimate arm angles relative to the ground with
little user intervention (seementioned reference for technical
details and evaluations). The only required user intervention
consisted of interactively creating a segmentationmask in the
initial frame of the video segment. By creating nonintrusive
and semiautomatic computer vision tools, such as these, large
datasets can be analyzed, potentially leading to the discovery
of new and/or improved behavioral markers.

Appendices

A. Tracking and Validating Facial Features

This section provides technical details about the algorithm
for tracking facial features and computing headmotions from
them. The large variability of the data and the lack of control
about the camera positioning call for using very simple and
robust features and algorithms.

We assume that, in the first frame, we have bounding
boxes of three facial features: the left ear, left eye, and nose
(see, e.g., Figure 2). These bounding boxes are in practice
selected by hand on the first frame. It is possible to achieve
a fully automatic initialization, but this was not the objective
of the present work. The user intervention is nonetheless
minimal.

We aim at tracking these three facial features. Following
a scheme loosely based on the TLD tracker [30], we use
dense motion estimation coupled with a validation step that
employs an offline-trained facial feature detector. The dense
motion estimator [31] tracks the features with high accuracy
in most cases, but when the child’s head moves quickly,
illumination changes can sometimes cause the tracker to
lag behind the features. Thus, we validate the output of
the tracker using facial feature detectors in every frame
(Figure 6).

To validate the features we train left eye, right eye, left
ear, and nose detectors. For this, we adapt the widely used
method by Dalal and Triggs [32], proposed for pedestrian
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detection, to our particular setting (see also [33, 34]). Our
method employs the popular multiscale Histograms of Ori-
entated Gradients (HOG) using 8 × 8 pixel blocks and 9
orientation bins as descriptors to represent each facial feature
and then classifies these descriptors using a support vector
machine (http://www.csie.ntu.edu.tw/∼cjlin/libsvm/) with a
radial basis function kernel (see [32] for further technical
details). As positive training samples, we use hand labeled
facial patches from children in our experimental environ-
ment. As negative training samples, we extract random
patches from around multiple children’s faces. Our classifier
was trained a single time before any experiment was carried
out. Then, we used it for all experiments with no need for
retraining or parameter setting.

For each frame, search areas for the facial feature detec-
tors are defined around the bounding boxes given by the
tracker. The left eye, left ear, and nose are present in every
frame for the given camera position and their final detected
positions are determined by the locations that exhibit a
maximal response from the classifier (i.e., extrema of each
feature’s classifier output). The tracker’s bounding boxes are
validated if their centers are within the bounding boxes
returned by the detectors; however, if the tracker’s centers are
outside of the detector’s bounding boxes for two consecutive
frames, then the corresponding bounding box for the tracker
is reset to a new location within the detector’s bounding box.
Determining the presence of the right eye aids in the estima-
tion of the yaw motion. The rectangular search area for the
right eye, which is not tracked since it appears and disappears
constantly due to the camera position, is based on the location
of the detected nose and the horizontal and vertical distances
between the detected left eye and nose. More specifically, the
search area is between the detected nose’s location plus/minus
the horizontal and vertical distances between the detected
left eye and nose. Also employed as a right eye search area
restriction is that the nose must be between the left and right
eyes.

Thus, using our method, we are able to track the facial
features via a dense motion estimator, and validate their
positions via the facial feature detectors. To estimate head
motion, see the following, we use the facial feature locations
given by the dense motion estimators. The dense motion
estimator provides smoother andmore precise locations than
the detector.

B. Yaw and Pitch Motion Estimation from
Facial Features

As a way to provide an accurate motion estimation of the
pitch angle, we cumulatively sum the vertical coordinate
changes of the left eye and nose with respect to the left ear
every frame. We expect a positive sum when the child is
looking up and a negative sum when the child is looking
down, with the magnitude representing how much the child
is looking up or down.

For estimating the yaw motion, we calculate two ratios
based on the triangle created by the left ear, left eye, and nose
(Figure 7); we also use information about the presence of the

right eye. Let 𝑄, 𝑅, and 𝑆 denote the locations of the nose,
left eye, and left ear, respectively. For the first ratio 𝑟NoseToEye,
we project 𝑅 into the line defined by 𝑄𝑆, thus defining the
point 𝑈; we then define 𝑟NoseToEye = |𝑈𝑆|/|𝑄𝑆|, where | ⋅ | is
the Euclidian distance. For the second ratio, we project𝑄 into
the line defined by 𝑅𝑆, defining 𝑟EyeToEar = |𝑉𝑅|/|𝑅𝑆|.

The two ratios 𝑟EyeToEar and 𝑟NoseToEye are inversely propor-
tional. Looking at Figure 7, we can observe that when the face
is looking in profile view, 𝑟EyeToEar will be large and 𝑟NoseToEye
will be small, conversely when the face is in frontal view
(looking more towards the camera). To combine these two
ratios into one value, we calculate the normalized difference
between them, ŷaw = (𝑟EyeToEar − 𝑟NoseToEye)/(𝑟EyeToEar +
𝑟NoseToEye). Thus, as the child is looking to his/her left, ŷaw
goes to −1; and, as the child is looking to his/her right, ŷaw
goes to 1. The presence of the right eye further verifies that
the infant is looking left.

We incorporate whether the right eye is present or not to
verify that the infant is looking left or right at the maximum
and minimum ŷaw values.
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