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Processes driving and maintaining disjunct genetic populations in marine

systems are poorly understood, owing to a lack of evidence of hard barriers

that could have shaped patterns of extant population structure. Here, we

map two genetically divergent lineages of an obligate rocky shore fish,

Clinus cottoides, and model sea-level change during the last 110 000 years to

provide the first evidence of a vicariant event along the southern coastline of

Africa. Results reveal that lowered sea levels during glacial periods drastically

reduced rocky intertidal habitat, which may have isolated populations in two

refugia for at least 40 000 years. Contemporary coastal dynamics and ocean-

ography explain secondary contact between lineages. This scenario provides

an explanation for the origin of population genetic breaks despite a lack

of obvious present-day geographical barriers and highlights the need for

including palaeo-oceanography in unravelling extant population patterns.
1. Introduction
Phylogeographic breaks, identifiable through high levels of genetic structure

resulting from intraspecific genetic divergences, can provide a starting point for

speciation [1–3]. However, in marine systems the processes that have shaped bio-

diversity and genetic patterns are complex, ambiguous and difficult to elucidate,

varying considerably among species [4]. Several studies suggest that glacial to

interglacial climate oscillations of the Pleistocene, which caused drastic alterations

in sea level and other oceanographic parameters, had major influences on pat-

terns of marine biodiversity [5]. The most common pattern is that of allopatric

divergence, where populations became separated because of vicariant events.

Several studies have demonstrated this for marine taxa [6–8], yet for some

regions, such as linear coastlines that lack distinct physical features such as

landbridges or headlands, evidence for vicariance is deficient.

Situated in the transition zone of the cold Benguela Upwelling System and the

warm Agulhas Current, the South African marine fauna encompasses a wide

range of biota, rich in biodiversity [9]. In contrast to many other examples globally,

no prominent barriers are apparent along this coastline, yet numerous marine

species show some degree of genetic structure [10,11]. Hypotheses that include

isolation by physical barriers, changes in oceanography and diversifying selection

over ecological barriers have been put forward in order to explain at least some of

the observed patterns [12], yet evidence for specific processes is lacking.

Using population genetic data from an endemic, obligate rocky shore fish,

the clinid Clinus cottoides, and models of sea-level change and associated

changes in the ratios of rocky and sandy shores along the South African

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2014.0330&domain=pdf&date_stamp=2014-06-25
mailto:svdh@sun.ac.za


K
ny

sn
a

N
at

ur
e’

s 
V

al
le

y

Ja
ft

a’
s 

K
ra

al

C
ap

e 
St

 F
ra

nc
is

 

O
ys

te
r 

B
ay

 

Po
rt

 A
lf

re
d

C
an

no
n 

R
oc

ks

Fl
at

 R
oc

ks
N

oo
rd

ho
ek

1.00 1.00

n = 17 n = 14 n = 20  n = 24   n = 21 n = 20 n = 20  n = 12 n = 26

1.00
0.67 0.62

0.85 0.90 0.92 1.00

25°

33°

35°

Atlantic 
Ocean

Indian
Ocean

N

0 150 30020° 25°

C
ap

e 
R

ec
if

e

A
gu

lh
as

 
A

rc
hC

ap
e 

P
en

in
su

la

C
ap

e 
St

 F
ra

nc
is

C
ap

e 
Se

al

rocky substratum
lineage A
lineage B–120 m isobath

–75 m isobath
–45 m isobath

(b)

(a)

(c)

(d )

(e)

Figure 1. (a) Sampling localities with columns indicating the proportions of each
lineage recovered at each site; n ¼ sample size; squares demarcate the sampling
gap between Knysna and Port Alfred from [13]. (b – e) Map of bathymetry around
South Africa [16] overlaid with rocky substrate habitat types [17] and palaeo-shore-
line positions. From 110 – 75 000 years ago sea level ranged between (a), (b) and
(c); from 75 – 14 000 years ago sea level varied between (b), (c) and (d ); and from
14 000 years ago to present between (b) and (a). (e) Migration paths since 14 000
years ago and the present-day range limit of C. cottoides (stars). Dashed lines indi-
cate areas of suitable refuge habitat for C. cottoides. Stars ¼ present-day range
limit of C. cottoides. (Online version in colour.)
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coastline, we test whether vicariance associated with changes

in habitat can explain extant patterns of population structur-

ing. Southern African clinids are live-bearers and probably

have limited dispersal abilities due to extremely abbreviated

larval phases [13]. This makes them ideal organisms to study

the effects of past climatic changes, as historical changes in

their habitat should be reflected in their genetic structure.

Phylogeographic studies have uncovered two divergent
lineages within C. cottoides (lineage A and lineage B,

figure 1), which are separated by one fixed nucleotide differ-

ence in the mitochondrial DNA (mtDNA) control region [13].

A large interval between sampling sites on the south coast

(figure 1) prevented the identification of a potential break

or overlap in lineages, although molecular dating analyses

suggest they diverged approximately 68 000 years ago [13].

Using fine-scale sampling of C. cottoides populations

along the unexplored region between the different lineages

and a restriction enzyme approach as a means of lineage sep-

aration, we test whether vicariance shaped extant patterns of

population structure. Specifically, we use GIS modelling to

reconstruct the South African coastline over the last 110 000

years to investigate changes between sandy and rocky shore

habitats and use these to place the contemporary distribution

of C. cottoides into a historical context.

Results suggest vicariance as the major causal mechanism

producing the distinct lineages observed today. Additionally,

using previous studies [13], we show that contemporary coastal

oceanographic patterns played a major role in promoting the

geographical expansion of both lineages.
2. Material and methods
(a) Molecular analyses
Sampling was carried out at nine localities along 440 km of the

South African coastline, with 12–26 individuals collected from

each site (figure 1a) and stored in 95% ethanol.

Approximately 25 mg of muscle tissue was cut from each

specimen. Total genomic DNA was extracted using a CTAB-DNA

extraction protocol [14]. The mtDNA control region (420 bp) was

amplified using primers CR-A and CR-E following von der

Heyden et al. [13]. PCR products were purified using GeneJET

PCR purification kits (Thermo Fisher Scientific). Purified products

were incubated with the restriction endonuclease DraI (Thermo

Fisher Scientific) at 378C for 2–3 h. DraI cleaves DNA at its nucle-

ase-specific recognition site, TTT^AAA, only present in the

control region sequences of lineage B individuals. The products

were run on a 2% agarose gel adjacent to a 1 kb DNA ladder

(Promega), which resulted in the visual distinction of the different

genotypes (lineage A one band (420 bp) and lineage B two bands

(171 bp and 249 bp)).

(b) Palaeo-oceanographic modelling
Previous analyses showed that the divergence time and time to

the most recent common ancestor of the two lineages fell

within the Late Pleistocene and Holocene epochs [13]. Using

reconstructed sea-level data of the last 110 000 years (end of pre-

vious interglacial) (reviewed in [15]), the palaeo-oceanography

relevant to C. cottoides at different glacial stages was explored.

Bathymetry around southern Africa was selected from the

GEBCO digital world atlas [16] (global projection wgs: 84;

datum: Hartebeeshoek). Five and 10 m depth contours were

then extracted using a raster to vector conversion function,

after which isobaths at 245, 275 and 2120 m were highlighted

in the program QUANTUM GIS (QGIS, v. 1.8.0, Lisboa). Habitat

maps of the South African National Biodiversity Assessment [17]

were overlaid onto the bathymetry map in order to reconstruct

rocky substrate palaeo-shorelines.

(c) Coalescent-based analyses
Using the data from the previous study [13], we estimated the

divergence time between lineages A and B using IMa2 [18] and
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a 3.6% Myr21 mutation rate [13]. This approach also allowed the

estimation of the female population size for both lineages. IMa2

runs were performed in Markov chain simulation mode using

the following specifications: ‘-b 100000’ (burn-in, i.e. the initial

number of steps that are discarded); ‘-l 10000’ (number of

genealogies saved every 100 steps following burn-in); ‘-hn 100’

(number of heated chains); ‘-hfg’ (geometric heating scheme)

and ‘-ha 0.99 -hb 0.75’ (terms of the geometric heating increment

model). Each run was repeated three times with different

random starting seeds and analysed for convergence of

similar values.
Biol.Lett.10:20140330
3. Results
A total of 174 fishes were analysed from nine localities; there

is a distinct region of overlap of lineages A and B in the vicin-

ity of Cape St. Francis (figure 1a). Coalescent analyses date

the divergence between lineages A and B to approximately

54 000 years ago (95% confidence intervals: 19 000–124 000

years ago). Notably, the estimated female population size of

lineage B is significantly smaller than that of A (85 000

versus 730 000).

Coastline reconstruction during four major climate stages

is shown in figure 1b–e. Below is a breakdown of these

periods, with a brief explanation of the associated transform-

ations in palaeo-shoreline position and composition. GIS

models suggest that lineages A and B may have been separ-

ated for at least 40 000 years between 75 000 and 14 000 years

ago, as a result of significant changes along the coastline.

From 110 000 to 75 000 years ago (figure 1a–c), sea level

fluctuated between 0 and 275 m, with the coastline similar

to the present [16,19,20]. From 75 000 to 14 000 years ago

(figure 1b–d), sea level fluctuated between 245 and 2120 m

[15,16]. From 75 000 to 60 000 years ago (MIS 4: Marine Isotope

Stage 4) and from 50 000 to 35 000 years ago, sea level was

between 275 and 2110 m [15]. During this time, the southern

coastal plain (SCP) expanded southward, comprising wind-

swept sandy beaches fed by sediments of south coast rivers

[19]. The southwestern shoreline mostly comprised rocky

shores [19], with rocky shores only becoming prominent

again on the southeast coast towards present-day Cape

St. Francis [20]. During this period, the two lineages would

have started to become isolated.

From 35 000 to 14 000 years ago, sea level fluctuated

between 275 and 2120 m. During the Last Glacial Maximum

(LGM) 26 000–18 000 years ago, sea level regressed to

2120 m [15]. The distribution of shoreline habitats changed

significantly during expansion of the SCP during the LGM

[15,18,19]. Rocky shore habitats of the southwest coast and

southeast coast were separated by approximately 500 km of

predominantly sandy beaches, isolating the two populations

[20]. Notably, the rocky shore refugium on the southeast

coast (harbouring lineage B) was significantly smaller than

that on the southwest coast (lineage A) [20]. This is mirrored

by the estimates of female population size, which is an order

of magnitude lower for lineage B compared with A.

From 14 000 years ago to present (figure 1a,e), following

the LGM, sea level rose sharply from 2120 m to reach

275 m by 14 000 and 245 m by 12 000 years ago. The existing

shoreline, its habitat types and coastal dynamics were estab-

lished by 9000 years ago [19,20], allowing dispersal of both

lineages into newly established rocky shore areas.
4. Discussion
To date, there has been no direct evidence of vicariant pro-

cesses shaping marine population genetic and biodiversity

patterns in southern Africa. Processes shaping and main-

taining population structure in this region are poorly

understood because the shoreline lacks obvious physical

barriers such as land bridges and offshore islands that else-

where have been invoked in structuring populations and

species [6–8].

Using an approach that reconstructs the palaeo-shoreline

and maps the geographical distribution of two distinct

lineages of C. cottoides along the southeast coast of South

Africa, we provide the first compelling evidence for a phylo-

geographic break due to vicariance. This vicariant event is

most probably linked to changes in the distribution of

rocky shore habitats along the South African coastline related

to past sea-level fluctuations. Rocky shore refugia on the

southwest and southeast coasts were separated by predomi-

nantly sandy shores for at least 40 000 years between MIS 4

and the LGM. Isolation of C. cottoides on eastern and western

rocky shore refugia during the MIS 4 glacial period low-stand

between 75 000 and 60 000 years ago is consistent with mol-

ecular dating that suggests the two lineages separated

about 54 000–68 000 years ago [13]. Although reduced sea

surface temperatures, changes in current intensity and upwel-

ling-driven primary productivity cannot be excluded as

additional factors [12,21], the lack of rocky shore habitat

was probably the prominent barrier that separated the two

populations. At least five other South African marine species

share this phylogeographic break [2,11–13] and analyses of

historical gene flow show drastically decreased rates of

migration [22]. Other prominent barriers emergent during

sea-level lows have affected multiple species and have been

described between Australia and Tasmania [6], in the Coral

Triangle [7] and across the Mediterranean–Atlantic Ocean

transition [8]. When multiple species, especially those with

different life-history characteristics, show concordant breaks

in gene flow, it is usually the result of long-standing historical

barriers [23], such as the separation of C. cottoides lineages for

at least 40 000 years.

Given the signature of overlap of lineages A and B around

Cape St. Francis, it is likely that contemporary oceanography

facilitated the movement of both lineages to the east, as

revealed by previous gene flow analyses ([13]; figure 1a,e).

In addition, older, more persistent populations tend to

accumulate mutations and have greater genetic diversity.

Clinus cottoides populations at the edge of the distributional

range are less diverse than others, plausibly a reflection of

recent (post LGM) colonization [13] and a smaller founding

population size.

Our study provides the first evidence of vicariance

shaping population genetic patterns along a coastline with

no obvious barriers to gene flow. Future studies using a simi-

lar combination of molecular and palaeo-oceanographic

analyses may help in the understanding of other marine

regions exhibiting ambiguous and diverse genetic patterns.

SANParks and DAFF South Africa provided permits that enabled
sample collection.
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