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Abstract

Purpose—Deformable image registration (DIR) is an integral component for adaptive radiation

therapy. However, accurate registration between daily cone-beam computed tomography (CBCT)

and treatment planning CT is challenging, due to significant daily variations in rectal and bladder

fillings as well as the increased noise levels in CBCT images. Another significant challenge is the

lack of “ground-truth” registrations in the clinical setting, which is necessary for quantitative

evaluation of various registration algorithms. The aim of this study is to establish benchmark

registrations of clinical patient data.

Materials/Methods—Three pairs of CT/CBCT datasets were chosen for this IRB-approved

retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent

sets of organs were manually delineated by five physicians. The mean contour set for each image

was derived from the ten contours. A set of distinctive points (round natural calcifications and 3

implanted prostate fiducial markers) were also manually identified. The mean contours and point

features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a

rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A

piecewise-rigid registration approach was adapted to account for the differences in femur pose and

the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|

JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and

finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the

physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of

overlap between registered organs) and residual misalignments of the fiducial landmarks were

quantified.

Results—Manual organ delineation on CBCT images varied significantly among physicians with

overall mean DICE index of only 0.7 among redundant contours. Seminal vesicle contours were

found to have the lowest correlation amongst physicians (DICE=0.5). After DIR, the organ

surfaces between CBCT and planning CT were in good alignment with mean DICE indices of 0.9

for prostate, rectum, and bladder, and 0.8 for seminal vesicles. The Jacobian magnitudes |JAC| in

the prostate, rectum, and seminal vesicles were in the range of 0.4–1.5, indicating mild

compression/expansion. The bladder volume differences were larger between CBCT and CT
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images with mean |JAC| values of 2.2, 0.7, and 1.0 for three respective patients. Bone deformation

was negligible (|JAC|=~1.0). The difference between corresponding landmark points between

CBCT and CT was less than 1.0 mm after DIR.

Conclusions—We have presented a novel method of establishing benchmark deformable image

registration accuracy between CT and CBCT images in the pelvic region. The method

incorporates manually delineated organ surfaces and landmark points as well as pixel similarity in

the optimization, while ensuring bone rigidity and avoiding excessive deformation in soft tissue

organs. Redundant contouring is necessary to reduce the overall registration uncertainty.
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I. Introduction

Prostate cancer is the second leading cause of cancer death among men in the United States

(Siegel et al., 2012). Intensity modulated radiation therapy (IMRT) has become the primary

modality in external beam radiotherapy for treating localized prostate cancers due to its

ability to conform radiation to the target while limiting the dose to nearby normal organs,

such as rectum and bladder. However, a population-based conventional margin is still

necessary around the clinical target volume for proper target coverage, in order to take into

account the inter- and intra- fraction prostate motions (Langen and Jones, 2001; Langen et

al., 2008; Frank et al., 2008; Ghilezan et al., 2005; Deurloo et al., 2005; Schiffner et al.,

2007). Such a margin, however, may increase radiation toxicity to neighboring organs at risk

at the same time.

Knowledge of the target location prior to or during treatment may allow one to reduce the

treatment target margins for reduced normal organ toxicity or to escalate the target dose

while maintaining the same normal tissue complication. There have been many efforts

toward localizing the prostate for accurate delivery, using for instance, urethral catheters

(Bergstrom et al., 1998), implanted fiducial markers (Nederveen et al., 2000; Schiffner et

al., 2007; Kitamura et al., 2002), ultrasound imaging (Orton et al., 2006; Fuss et al., 2003;

Serago et al., 2002; Trichter and Ennis, 2003), and two-dimensional (2D) x-ray or three-

dimensional (3D) computational tomography (CT) imaging (Hua et al., 2003; Smitsmans et

al., 2004; Smitsmans et al., 2005; Court and Dong, 2003; Paskalev et al., 2004).

Among these prostate localization approaches, 3D CT in-room imaging is becoming more

common place in clinics. One of the primary advantages, in comparison to others, is the soft

tissue visibility. Fully automatic rigid-body image registration algorithms have been

proposed for on-line patient setup, aiming at precise alignment of the prostate to deliver the

planned radiation more accurately (Smitsmans et al., 2004; Smitsmans et al., 2005; Court

and Dong, 2003). Furthermore, soft tissue visibility allows one to track the dosimetric and

geometric organ changes over the course of radiotherapy and adjust the original plan

accordingly if necessary, which is known as adaptive radiation therapy (ART)(Yan et al.,

1997).
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Deformable image registration (DIR) is an integral component of ART-based schemes. It

makes possible to warp contours and dose distributions from one image to another.

However, despite the large number of medical image registration algorithms developed over

the two decades (Maintz and Viergever, 1998; Hill et al., 2001), there have not been many

studies published on the subject of deformably registering CT and cone-beam CT (CBCT)

images for prostate cancer radiotherapy (Lu et al., 2010a; Lu et al., 2010b; Paquin et al.,

2009; Greene et al., 2009; Chao et al., 2008; Lawson et al., 2007; Zhong et al., 2007).

Primary challenges, associated with kV-cone-beam imaging of the prostate, include poor

signal-to-noise ratio of CBCT images, significant daily rectum and bladder changes, as well

as lower abdominal motion artifacts.

Another significant challenge is the lack of “ground-truth” registrations in the clinical

setting, which are necessary for quantitative accuracy assessment of algorithms. Physical

phantoms or synthetically generated deformations have been utilized in the previous studies

(Lawson et al., 2007; Zhong et al., 2010; Paquin et al., 2009; Zhong et al., 2007), but

artificial objects differ from real patients. Utilizing manually delineated corresponding

features, such as organ contours and distinct points, is another common method employed

(Greene et al., 2009; Chao et al., 2008), but validation is limited to these localized features.

Furthermore, it has been reported that the inter-user variation of manual delineations was

high on CBCT images among clinicians (Lütgendorf-Caucig et al., 2011).

In this study, we present a novel approach for establishing benchmark CT-CBCT

deformable registrations from clinical patient datasets. Figure 1 shows the overall flow

diagram of the approach, and the technique is summarized as follows: A piecewise-rigid

registration method is employed for the femoral and pelvic bone registrations, followed by a

B-spline based DIR algorithm (Elastix, Klein et al., 2010) for soft tissue registration. To

help constrain the registration, manually delineated organ contours and distinct points were

incorporated in the optimization routine, along with a rigidity penalty imposed for bony

regions. Soft tissue deformation was quantified and excessive deformations in organs were

avoided.

II. Materials and Methods

Dataset

The planning CT and CBCT (CT/CBCT) image pairs of three patients were chosen for

retrospective analysis under an institutional review board (IRB) approved protocol. The

patients had three electromagnetic transponder beacons (Calypso/Varian Medical Systems,

Palo Alto, CA) transrectally implanted into the prostate; one at the prostate apex and two in

the base. Simulation CT images were acquired using Brilliance Big Bore CT scanner

(Philips Healthcare, Andover, MA); 140 kVp, 500 mAs, 60 cm FOV, helical mode, and

software version 2.3.5. The in-plane resolution was 1.4×1.4 mm2 and the slice thickness/

spacing was 2 mm. The CBCT images were acquired using On-Board Imager (Varian

Medical System, Palo Alto, CA); 125 kV, 80 mA, 45 cm FOV, 360° rotation, ~650

projection images, half-bowtie filter, 150 cm SID, 14.6 cm lateral detector shift, 27.2 × 18.6

cm2 blade opening, and software version 2.1.5.2.
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Organ contour and fiducial point delineation

Five physicians manually contoured organs of prostate, bladder, rectum, and seminal

vesicles (SV) twice on each image (i.e., ten contour sets per image). The first and second

rows of Figure 2 show an example pair of CT and CBCT images with contoured organs. The

separation in time was kept large (~ two months) between the two contouring sessions per

physician for reduced inter-dependency. Our clinical treatment planning system (Eclipse

Varian Medical Systems, Palo Alto, CA) was used for contouring. After the ten sets of

independent contours were generated, they were merged into one mean contour set (the

second and fourth rows of Figure 2). For merging, a particular pixel was considered part of

an organ if it was classified as such in greater than 5 contour sets, which was achieved by

adding ten contour mask images pixel by pixel followed by thresholding with a value of 5.5.

In addition to the organ contouring, a set of distinctive points (round natural calcifications

and implanted Calypso markers) were manually identified on both CT/CBCT image pairs.

The number of identified points was approximately 20 per image pair. Figure 3 shows an

example manual identification of a round natural calcification on a pair of CBCT (top) and

CT (bottom) images. An in-house-developed software was used for efficient delineation.

Image pre-processing

All CT/CBCT images were enhanced using the adaptive histogram equalization (AHE)

algorithm (Stark, 2000). The aim was to reduce the pixel value differences between the CT

and CBCT image pairs, and to reduce the non-uniform intensity distributions across the

rectum, bladder, and prostate on CBCT images (Kim et al., 2010).

Piecewise bone registration

In order to model body deformation, we chose to use a uniform cubic B-spline grid model

(Elastix, Klein et al., 2010). One of the benefits of such a model is that it inherently

produces a smoothly varying deformation over the image, especially when the number of B-

spline nodes is reduced. However, the B-spline model is not suitable for characterizing

abrupt changes in deformation, i.e. high frequency components of deformation field, such as

the sliding motion between organ boundaries. In the pelvic area, sliding motion can occur

between the femoral heads and their corresponding pelvic bone sockets. In order to tackle

this problem, we segmented the left/right femoral and pelvic bones on both input images,

and registered them separately with rigid-body transformations using the segmentations as

regions of interests (ROI). The three rigid-body registrations were combined into one by a

distance weighted interpolation. The combined transformation Tbone at a point x was

calculated as follows:

where Tleft-femoral-bone, Tright-femoral-bone, and Tpelvis were the rigid-body transformations of

the left and right femoral bones and the pelvis respectively. The parameters wi were the

corresponding weights, which decrease as the point x is further away from the closest bone

surface. The three weights were calculated as follows:
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The distance from a point x to the corresponding bone surface, di(x), was calculated using

Maurer's Euclidean distance transformation algorithm (Maurer Jr et al., 2003). The negative

distances inside the bone ROIs were truncated to zero.

Deformable soft tissue registration

With all bones registered, the soft tissue regions were registered using a uniform cubic B-

spline-based deformable registration algorithm (Elastix, Klein et al., 2010). A gradient

descent optimization algorithm was employed with a cost function as follows:

(Eq.

1)

The cost function C(T) was a weighted summation of four terms, which incorporates image

pixel intensities, delineated mean contours, fiducial points, and the bone rigidity constraints.

The superscript T denotes a transformation applied to an object; i.e.,  represents a CT

image transformed by T. The gradient descent algorithm is a minimization optimizer.

Therefore, the three negative (−) signs were used to maximize the mutual information

metrics and rigidity penalty term, while a positive (+) sign to minimize the point distances.

The first term  is the mutual information (MI) of the pixel intensities of

CBCT and deformed CT images. The regions of inconsistent image contents between two

input images were manually drawn on the input images using a contouring tool, and

excluded from MI evaluation. Such regions included the areas of rectum gas, lower

abdominal motion artifacts, and metal artifacts around the prostate implant markers (Figure

4). Furthermore, the superior and inferior end CBCT slices were excluded because the

reconstruction noise was dominant over anatomical information (Figure 4c).

The second term  is the MI of the mean contour images on the

CBCT and deformed CT images, denoted as SOrgan,CBCT and ST
Organ,CT respectively. The

mean contour images were composited from the corresponding mean contours such that

each organ was represented with a unique uniform pixel intensity (prostate=200, SVs=150,

rectum=100, bladder=50, and background=0). Although SOrgan,CBCT and SOrgan,CT had

same intensity levels for the same organs, we used MI instead to avoid possible intensity

dependent weighting of mono-modal similarity metrics.
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The third term of the cost function  is the mean distance of the two manually

delineated point sets on the CBCT and deformed CT images, denoted as PCBCT and PT
CT

respectively.

Finally, the last term R(T, SBone,CBCT, SBone,CT) is a rigidity penalty term applied on the

segmented bony regions (SBone,CBCT and SBone,CT). The purpose of this term is to maintain

the rigidity of the bones. In order to be rigid within the bones, the transformation needs to

meet the conditions of affinity, orthonormality, and properness (Staring et al., 2007). The

affinity term ensures the transformation to be locally affine, i.e. linear. The orthonormality

and properness term respectively enforces the transformation to be locally orthonormal and

unit-determinant, which are the qualifications of a rotation matrix. The weights among these

three sub-penalty terms were chosen such that the level of their contributions to the total cost

function became equivalent.

Deformable registration parameter selection

The overall goal of the parameter selection scheme employed in this study was to find a set

of parameters that produce registrations with good anatomical alignments while maintaining

the lowest possible degree of freedom (DOF) of the transformation T to ensure smooth

organ deformation.

Deformable registrations with three B-spline grid spacings (10 mm, 20 mm, 30 mm) and with

five maximum number of iterations (100, 200, …, 500) were conducted. For each

registration, the following quantities were recorded to evaluate the registration quality: 1)

organ DICE indices, 2) misalignment of corresponding points, 3) histograms of the Jacobian

determinant (|JAC|) in soft organs, bones, and the entire body, and 4) bone registration errors

with piecewise bone registrations as the benchmark. The DICE index is a measure of two

volume overlaps, calculated as 2 (|V1∩V2|)/ (|V1|+|V2|). The numerator is the volume of the

intersection, and the denominator is the sum of two individual volumes V1 and V2. The

value of |JAC| at a point represents the compression (|JAC|<1.0) or expansion (|JAC|>1.0) of

deformation at the point. For each patient, a registration that had the smallest organ

deformation while still maintaining good organ boundary alignment was chosen. The organ

deformations were evaluated based on the quantities of |JAC| distributions and bone

registration errors, and the organ alignments were assessed based on the organ DICE indices

and the misalignment residual of corresponding points.

Starting from the chosen registrations, the weights of cost function in Eq 1. were further

adjusted to fine-tune the registrations. For example, μs was increased if the surface

alignment needed to be further improved based on DICE index as well as visual evaluation,

and the rigidity penalty weight μr was increased if the bone deformation needed to be

reduced based on |JAC| distributions. The point distance weight μd was increased only if any

of the point pair distances was greater than 1 mm. The weights are relative to each other and

choosing values that are too large causes divergence from the optimal solution.

Finally, the final registrations were qualitatively reviewed by five independent reviewers,

and marked the regions where they felt the registration should be corrected. The average

maps of defined misregistration regions were normalized such that the intensity at each pixel
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represents the registration uncertainty in the range of [0.0, 1.0]. Therefore, an uncertainty

value of 1.0 at a particular pixel means that all reviewers classified the registration as

erroneous at the pixel, and an uncertain value of 0.0 as the opposite. In order to facilitate the

review process, we developed a custom software, in-house, that allows users to evaluate

registrations using the following two metrics; 1) the image intensity similarity of two

registered images as well as 2) the physical soundness of the underlying deformation. For

the image intensity evaluation, the software provided three interactive blending tools; color

blending, checker-board rendering, and spy glass rendering. For the evaluation of the

underlying deformation, the software rendered the overlays of the grid deformation,

deformation vector flow, |JAC|, and unbalanced energy (UE) (Zhong et al., 2007; Zhong et

al., 2010) on the input images. Figure 5 shows an example view of the software panels

displaying the various metrics.

Software tools and libraries

The piecewise rigid-body registrations and deformable image registrations were

implemented using Elastix (Klein et al., 2010) and the National Library of Medicine Insight

Segmentation and Registration Toolkit (ITK, http://www.itk.org/). All regions of interest,

excluding the physician organ delineations, were segmented using the interactive tools in

Seg3D (http://http://scirundocwiki.sci.utah.edu). The graphical user interfaces for

registration review and manual point identification were implemented using the software

libraries of Visualization toolkit (VTK, http://www.vtk.org/), Qt (http://qt-project.org/), and

OpenGL (http://www.opengl.org/). The objects of Digital Imaging and Communications in

Medicine (DICOM, http://medical.nema.org/) were handled using Grassroots DICOM

library (http://gdcm.sourceforge.net/).

III. Results

Organ and distinctive point delineation

The first and third row of Figure 2 show the manually delineated 10 sets of organ contours

for a CT/CBCT pair. It is observed that the organ delineations on CT were more consistent

among physicians than those on CBCT. The mean (±1SD) DICE values between two

contours on CBCT images were 0.7(±0.1) for prostate, 0.9(±0.1) for bladder, 0.7(±0.1) for

rectum, and 0.5(±0.2) for seminal vesicles (SV), while the corresponding values were

0.8(±0.0), 0.9(±0.0), 0.8(±1.0), and 0.7(±0.1) on CT images. The most challenging organ to

contour was the seminal vesicles on CBCT (mean DICE=0.5). Eighteen (13%) out of total

135 (=10/(28) × 3) possible seminal vesicle pairs had no overlap (DICE=0.0). The second

and fourth row of Figure 2 show the corresponding mean contours. Table 1 lists the organ

volumes of mean contours as well as their differences and ratios between CT and CBCT

images. The prostate volume changes were relatively small (diff: 1~4 cm3, ratios: 0.9~1.0).

The bladder showed the largest variation (ratios: 0.9~2.2). The SV volumes were larger on

CT, most likely because they were more clearly observed on CT relative to CBCT.

Registration parameters

The selected registration parameters are listed in Table 2. For all registrations, the B-spline

grid spacing was chosen to be 10 mm. From visual evaluations, the larger grid spacings of
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20 mm and 30 mm were found to cause excessive compression/expansion in nearby bones

from insufficient DOF. Figure 6 shows the histograms of spatial Jacobian (|JAC|) within the

pelvic bone for Pt #2. As demonstrated in the figure, the amount of bone compression (|JAC|

<1.0) and expansion(|JAC|>1.0) gradually increased as the B-spline grid spacing increased.

With the 30 mm B-spline grid spacing, only 50% of the pelvic bone maintained complete

rigidity (|JAC|=1.0). The chosen number of iterations ranged from 100 to 300 with

corresponding registration times of 30 to 80 minutes on a personal computer (Intel Xeon

CPU 2.4 GHz × 2, 6GB RAM). The selected cost function weights μi and μd were

respectively 0.5 and 0.005 for all cases, and μs and μr ranged from 1 to 5.

Example registration

Figure 7 shows the CBCT/CT color blending views after rigid pelvic bone registration,

piecewise-rigid bone registration, and deformable registration for a patient (Pt #2). In the

red/green blending views, the pixel intensity differences stand out in the red or green colors

as marked by arrows in the figure. The result of pelvic bone registration (Figure 7a) shows

misalignments in the anterior skin surfaces and near the femoral bones. The femoral bone

differences were resolved after the piecewise bone registration (insets of Figure 7a and

Figure 7b). Finally, the deformable registration corrected the differences in skin, soft tissue

organs, and muscles (Figure 7c). The inherent content differences in the rectum and bowel

remained unmatched (green) after DIR.

Registration Evaluation

a) Organ alignments—Figure 8 shows the organ alignments after rigid-body pelvic bone

and deformable registrations for three patients. The corresponding DICE indices are listed in

Table 3. As shown in Figure 8a, the organ misalignments were large with the pelvic bone

registrations only. The mean DICE indices were 0.7 for prostate, rectum, and bladder, and

0.2 for SVs. The SV misalignments were largest with DICE indices of only 0.0, 0.4 and 0.1

for three respective patients. After deformable registrations the mean DICE indices became

0.9 for prostate, rectum, and bladder, and to 0.8 for SVs.

b) Distinctive point alignments—The mean misalignments between two corresponding

sets of manually delineated points was 7.7 mm [3.2 ~ 17.4 mm] with rigid-body pelvic bone

registrations only. The discrepancy reduced below 1 mm after deformable registrations.

c) Determinant of spatial Jacobian—Figure 9a–c shows the histograms of the

determinant of the Jacobian |JAC| for prostate, rectum, bladder, SVs, and body. Their

corresponding statistical quantities (μ±σ, mininum, and maximum) are listed in the first half

of Table 4. In this study, a value of >1 represents an organ expansion on CT with respect to

the corresponding organ on CBCT. As shown in the Figure 9a–c, the |JAC| values were in

the range of 0.4–1.5 for most soft organs. The mean values for prostate, rectum, and seminal

were in the range of 0.8~1.0. However, the bladder had larger variations; 2.2 for Pt #1, 0.7

for Pt #2, and 1.0 for Pt #3, which agrees with the volume ratios in Table 1 as well as in

Figure 8. The mean |JAC| values of SVs (1.0, 0.9, and 0.9) were smaller than the volume

ratios in Table 1. This was primarily due to inconsistency in contouring between CT and

CBCT images as discussed in the section Organ and distinctive point delineation and the
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smooth underlying deformation, which resulted in leaving portions of the SVs not

overlapped (Figure 8b, Pt #3).

The last three rows of Table 4 shows |JAC| values of ~1.0 for all bony anatomies, which

indicates that bone rigidity was well preserved by the rigidity penalty term of the cost

function (Eq. 1). Figure 9d shows the |JAC| histogram for Patient #3, which shows minor

spread beyond the range 0.9–1.1.

d) Effects of bone rigidity penalty—Figure 10 demonstrates the effectiveness of the

rigidity penalty term imposed on the bony anatomies. The sub-figures a) and b) show

registration results with and without penalty terms, respectively. With the rigidity penalty

imposed, the deformation grid lines (green) are straight within the bones, while bone

deformations are quite evident without the penalty term (Figure 10b). The determinant of the

spatial Jacobian |JAC| information is also overlaid on the same figures in color. The

compressed (|JAC|<1) and expanded (|JAC|>1) areas are represented in the blue and red

colors respectively. The bony area in Figure 10a is neither blue nor red, which implies that

the bones are rigid, neither compressed nor expanded. On the other hand, the corresponding |

JAC| overlay in Figure 10b indicates large bone deformations. The |JAC| profiles along the

green diagonal line inside the femoral head are shown in Figure 10c. The |JAC| values in the

bone are approximately 1.0 with the rigidity penalty. However, the variation was much

larger without penalty, ranging from 0.6 to 1.8. Figure 10d shows the registration error

distributions with and without the rigidity penalty, where the error is defined as the absolute

difference from the corresponding piecewise bone registration. As shown, the deformable

registration error without the rigidity penalty was over 5 mm for some area, while it was

mostly <1 mm with the rigidity penalty imposed. Therefore, maintaining bone rigidity is an

important factor in reducing errors when registering bones. The main cause of the errors was

the non-uniform differences in pixel intensities between the CT and CBCT images even

after the adaptive histogram equalization image pre-processing.

e) Effects of piecewise-rigid bone registrations—Figure 11 shows the histograms of

|JAC| and registration errors in the right femoral bone of Pt #1 with and without using the

piecewise-rigid bone registrations. For the latter case, a rigid-body pelvic bone registration

was used in place of the piecewise-rigid bone registration. As shown in the sub-figure (a),

the amount of bone deformation was greater without using piecewise-rigid bone registration

and, as a result, the registration error increased slightly as shown in the sub-figure (b). The

registration errors (mean±SD) for three patients were 0.5±0.2 mm, 0.6±0.3 mm, and 0.9±0.4

mm with piecewise-rigid bone registrations, and the respective errors increased to 0.7±0.4

mm, 0.7±0.4 mm, and 1.3±0.7 mm without using piecewise-rigid bone registrations.

Therefore, it is necessary to use a piecewise-rigid bone registration to account for the high

frequency sliding motion between bones, prior to applying a B-spline transformation which

produces smoothly varying deformation field.

f) Deformation vector magnitudes in organs—In addition to the per-organ |JAC|

distributions, the likelihood of organ deformation magnitude may serve as an important

constraint for registration regularization. Figure 12 shows the histograms of the

displacement vector field magnitudes (|DVF|) within the organs for the three patients. The
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vectors represent the organ motions discovered by the deformable registration with respect

to the corresponding piecewise rigid registrations. The per-organ statistics (μ±σ

[min.~max.]) are also listed in the right hand side of the figure. The motion magnitudes

varied among patients. The prostate motions of three patients were respectively 6.6±3.1 mm,

5.3±1.9 mm, and 17.7±5.7 mm. The mean and maximum motions were respectively 12.7 mm

and 20.7 mm for rectum, 15.1 mm and 29.4 mm for bladder, and 14.8 mm and 20.1 mm for

SVs. The discovered motion magnitudes qualitatively agrees with the initial misalignment

shown in Figure 8. As shown in Figure 8, the prostate as well as the seminal vesicles of Pt

#1 were rotated about the lateral axis as a result of motion and physiologic changes in the

positions of the rectum and bladder. The relatively large |DVF| distributions of Pt #1 and #3

in Figure 12 were in part due to rotations.

g) Qualitative registration uncertainty map—Table 5 is the histograms of registration

uncertainty maps, which were built based on the qualitative definitions by five independents

reviewers. The value in each cell is the percentage of the volume within body contour of a

given registration uncertainty. The volumes where more than three reviewers marked as

erroneous were small; 0.7 %, 1.0%, and 2.1% for three respective patients (the last column

in the table). The corresponding volumes of 0.0 uncertainty, i.e. the volume where no one

marked as error, were 90.0%, 90.1%, and 86.5%.

IV. Discussions

As briefly stated in the introduction section, registering a pair of CT and CBCT images

deformably is extremely challenging in the pelvis. Figure 13 shows an example result of

contour propagation test (Pt #1), where two sets of organ contours are overlaid on the CT

image. One set is the prostate (green), bladder (blue), rectum (yellow), and SVs (green)

contours delineated from the CT image. The other is the corresponding CBCT contours

(red), deformably transferred to the CT image using a B-spline based DIR algorithm in a

commercially available software (VelocityAI, Velocity Medical Solutions, Atlanta, GA). As

shown in the figure, the contour alignments are poor. Thor et al. also tested a commercial

software (MIRS, Varian Medical System, Palo Alto, CA) and concluded the contour

propagation quality was clinically unacceptable for their five patient datasets {Thor, 2011

#1309}. In a separate study, we also registered over 600 CT/CBCT image pairs acquired

from 17 prostate cancer patients, and our finding was similar (not published yet). Despite the

use of the multi-resolution approach, where the large organ deformations are handled in the

lower resolution stages, the large differences in shape/size of bladder and rectum between

CT and CBCT images were not resolved well. One solution might be to use a global

optimization algorithm, but it will make the registration time lengthy. Another challenge is

from the daily organ content changes. Especially, the motion artifacts in the lower

abdominal area near the bladder as well as the gas in the rectum make the corresponding

organ registrations difficult (Figure 4). Lastly, the poor CBCT image quality, which is worse

with larger patient size, is another challenge to overcome. In order to overcome these

problems in this study, we used not only the image pixel intensities but only manually

delineated organ contours and distinctive points in the registration optimization, together
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with a bone-rigidity penalty imposed. The inconsistent regions between two input images

were manually delineated and excluded from the mutual information calculations (Figure 4).

There have been small number of related works for CBCT/CT registrations in the pelvis. Lu

et al. and Greene et al. proposed constrained non-rigid deformation algorithms, using a set

of manually delineated contours to guide the overall registrations (Lu et al., 2010b; Greene

et al., 2009). Lu et al. also incorporated automatic level-set segmentation algorithm in the

loop for non-rigid registration optimization without relying on manual segmentation (Lu et

al., 2010a). Paquin et al. proposed a multi-scale non-rigid registration with a landmark-

based registration for the initial alignment (Paquin et al., 2009). Chao et al. applied a non-

rigid registration algorithm for automatic organ segmentation on CBCT images, where only

a narrow band region around CT contours was used as regions of interest to use only the

pixel information around the organ boundaries for registration (Chao et al., 2008).

Most of these studies used a smoothness constraint in the registration to avoid excessive

deformation resulting from the significant pixel intensity differences between the CT and

CBCT images. However, none of the studies analyzed the resultant underlying

deformations, nor discussed the amount of weighting required between the intensity

similarity and the regularization. Furthermore, some of these studies also used manually

contoured organs either to guide the registrations or to evaluate the registration results.

However, as demonstrated in this study and that of Lütgendorf-Caucig (Lütgendorf-Caucig

et al., 2011), inter-user variability of organ delineations was found to be large on CBCT

images. Therefore, redundant contouring is necessary to reduce the registration or evaluation

uncertainty.

All of the aforementioned studies, as well as this study, used a uniform cubic B-spline

algorithm to model the underlying deformation. The B-spline interpolation tends to produce

a smooth deformation field with local support, and it is easier to control the deformation

degrees-of-freedom. Therefore, one important parameter to choose is the B-spline node

spacing. The node spacing at the final resolution stage was 0.8 cm in the Lu et al.'s study

(Lu et al., 2010b) and 2.0–2.5 cm in the Greene et al. study (Greene et al., 2009). In our

study, we chose 1.0 cm and found that larger node spacings of 2.0 cm and 3.0 cm were not of

high enough DOF to characterize large deformations of our dataset (Figure 6). Finer

resolutions of less than 1.0 cm were not evaluated in this study because the registrations with

the 1.0 cm grid resolution were already satisfactory as described in the Results section and

the likelihood of producing excessive deformation was expected to increase with finer grid

resolutions. Another difference of our study from others is the use of piecewise rigid

transformation to model the sliding motion between the femoral heads and their socket

pelvic bones. Such sliding motion would not be realizable with only a smooth B-spline

deformation model, without distorting nearby bones.

We maintained bone rigidity by applying rigidity penalty in the optimization routine.

However, to date, the rigidity or degree of deformation is not known for other soft tissue

organs. In this study, the driving forces for the soft organ registrations were the pixel

similarity, organ surface similarity, and the similarity between a small number of fiducial

points. Once the organ surfaces and points are aligned, the only remaining force is the pixel
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similarity. However, the image quality of CBCT images is degraded relative to that of

diagnostic CT images due to increased noise from scatter. Relying solely on the pixel

similarity between the CBCT and CT registration and "forcing" the optimization with a large

number of iterations, is likely to increase registration errors in the soft tissues. Therefore, we

chose the minimum number of iterations and the largest possible B-spline grid spacing,

while achieving reasonable organ boundary alignments and limiting deformation within the

organs. In order to limit excessive deformation in soft tissue organs, the organ |JAC|

distributions were carefully compared in determining registration parameters, while

reviewing slice-by-slice overlays of grid deformation, |JAC|, and UE maps.

It should be noted that there is no ground truth for evaluation of deformable registrations

and subjectiveness could exist inherently in model assumption, parameter selection, or result

interpretation. Exploring the entire parameter spaces of known optimization, similarity

metric, and transformation algorithms and finding one optimal parameter set is practically

impossible. The chosen set of registration parameters in this study might be sub-optimal

because, in part, they were based on the reviewer's qualitative comparisons of pixel

similarities as well as the amount of organ deformations.

The cubic B-spline transformation model produces smoothly varying deformations in

general, and it is not suitable to model sliding motion between two articulated bones or

between two soft-tissue organs. The sliding motion between two bones was addressed in this

study by modeling each bone with a simple rigid body transformation as described in the

section Piecewise bone registration. However, addressing the sliding motion between two

soft tissue organs would require one to use one deformable model per organ, which would

not be very straight forward to implement. Further, we are not certain how much soft-tissue

sliding motions occur between the organs of interest in the pelvic area. However, they occur

and not negligible, there could be associated errors in our registration results from the use of

one global smoothly-varying B-spline transformation.

Despite these limitations, we claim that the quality of registrations, produced by following

the method described in this study, is good enough to serve as a reference to other

registration algorithms. The resultant registrations had accurate alignments of: (1) the skin,

bone, muscles based on visual inspections, (2) the boundaries of the prostate, bladder,

rectum, and seminal vesicles, and (3) landmarks consisting of round natural calcifications

and implanted fiducial markers. The bony anatomies were maintained to be rigid, and

excessive deformation was avoided in the soft tissue organs. We will be testing the

feasibility of using the resultant registrations, together with the qualitatively derived

uncertainty maps, for parameter optimization and quantitative accuracy assessment of

various commercial and public domain registration algorithms for prostate CT-CBCT

deformable image registrations.

V. Conclusions

We have demonstrated a novel method of establishing benchmark deformable image

registration accuracy between CT and CBCT images in the pelvic region. The method

incorporates manually delineated organ surfaces and landmark points as well as pixel
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similarity in the optimization, while ensuring bone rigidity and avoiding excessive

deformation in soft tissue organs.
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Figure 1.
Overall flow diagram of registrations (input images and pre-processing blocks are omitted).
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Figure 2.
Ten physician delineated contours of prostate (red), bladder (blue), rectum (yellow), and

seminal vesicles (green), and their corresponding mean contours on a pair of SimCT and

CBCT images. The first two rows are contours on SimCT and the following two rows are

those on CBCT.
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Figure 3.
An example manual identification of a natural calcification on a CBCT (top) and CT

(bottom) images.
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Figure 4.
Example inconsistent regions on CBCT images (Pt #2) that were excluded from MI

calculations; (a) rectum gas, (b) lower abdominal motion artifacts, (c) metal artifacts around

the prostate implant markers, and (d) one of the noisy superior/anterior end slices.
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Figure 5.
An example view of our “in-house” developed registration review software, with panels of

(a) deformation grid overlay, (b) check-board blending, (c) |JAC| overlay, and (d) UE

overlay. |JAC| - determinant of spatial Jacobian. UE - FEM based unbalanced energy. The

red blob is a region of interest being painted.
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Figure 6.
Spatial |JAC| histograms in the pelvic bone for Pt #2 with B-spline grid spacings of 10, 20,

and 30 mm.
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Figure 7.
Red/green CBCT/CT blending views for Pt #2 after (a) rigid pelvic bone registration, (b)

piecewise rigid bone registration, and (c) deformable registration. The arrows indicates the

areas of relatively large misalignments.
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Figure 8.
Organ alignments (a) with pelvic bone registrations and (b) with deformable registrations.
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Figure 9.
Histograms of determinant of Jacobian |JAC| for (a–c) prostate, rectum, bladder, SVs, and

body for three patients, and (d) bones for Pt #3.
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Figure 10.
Effects of bone rigidity penalty; registrations (a) with and (b) without rigidity penalty, (c) |

JAC| profiles, and (d) registration error histograms in the right femur. The error in (d) is

defined as the difference between the deformable registration result (DVF_deform) and that

of the piecewise rigid registration (DVF_bone).
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Figure 11.
Effects of piecewise bone registrations (Pt #1); Histograms of (a) |JAC| and (b) registration

error in the right femur of Pt #1. The error is defined as the difference between the

deformable registration result and that of the piecewise rigid registration.
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Figure 12.
Histograms of deformation vector magnitudes (|DVF| in mm) in organs.
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Figure 13.
An example contour propagation result for Pt #1 using a DIR algorithm in a commercial

software (VelocityAI, Velocity Medical Solutions, Atlanta, GA). Red - deformed CBCT

organs. Other colors - prostate (green), bladder (blue), rectum (yellow), and SVs (green) on

CT image. The result is based on a manual rigid body registration followed by automatic

Deformable Multi-Pass algorithm.
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Table 2

Registration parameters selected for registrations

Pt #1 Pt #2 Pt #3

B Spline grid spacing [mm] 10 10 10

# of Iterations 300 100 200

Reg. time [min] 80 30 50

Cost function weights (Eq. 1)

μi 0.5 0.5 0.5

μs 5 1 2

μd 0.005 0.05 0.005

μr 2 1 1
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Table 4

Determinant of Jacobian |JAC| statistics (mean±std [min.,max.])

Pt Pt #1 Pt #2 Pt #3

Prostate 0.9±0.3 [0.3,1.8] 0.8±0.2 [0.5,1.2] 1.0±0.3 [0.5,1.6]

Rectum 0.8±0.3 [0.3,1.9] 0.9±0.2 [0.5,1.4] 0.8±0.2 [0.4,1.3]

Bladder 2.2±0.6 [0.7,3.2] 0.7±0.2 [0.4,1.1] 1.0±0.2 [0.5,1.7]

SVs 1.0±0.3 [0.4,1.7] 0.9±0.1 [0.7,1.1] 0.9±0.2 [0.6,1.4]

Body 1.1±0.2 [0.2,3.2] 1.1±0.2 [0.4,1.8] 1.0±0.2 [0.4,1.7]

L Femur 1.0±0.0 [0.9,1.2] 1.0±0.0 [0.9,1.1] 1.0±0.0 [0.9,1.1]

R Femur 1.0±0.0 [0.9,1.1] 1.0±0.0 [1.0,1.1] 1.0±0.0 [0.8,1.2]

Pelvis 1.0±0.0 [0.9,1.1] 1.0±0.0 [0.8,1.2] 1.0±0.1 [0.7,1.4]
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