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Abstract

In order to investigate the unique contribution of individual wine grape (Vitis vinifera) berry
tissues and water-deficit to wine quality traits, a survey of tissue-specific differences in protein
and selected metabolites was conducted using pericarp (skin and pulp) and seeds of berries from
vines grown under well watered and water-deficit stress conditions. Of 1,047 proteins surveyed
from pericarp by 2D-PAGE, 90 identified proteins showed differential expression between the
skin and pulp. Of 695 proteins surveyed from seed tissue, 163 were identified and revealed that
the seed and pericarp proteomes were nearly completely distinct from one another. Water-deficit
stress altered the abundance of approximately 7% of pericarp proteins, but had little effect on seed
protein expression. Comparison of protein and available mMRNA expression patterns showed that
32% pericarp and 69% seed proteins exhibited similar quantitative expression patterns indicating
that protein accumulation patterns are strongly influenced by post-transcriptional processes. About
half of the 32 metabolites surveyed showed tissue-specific differences in abundance with water-
deficit stress affecting the accumulation seven of these compounds. These results provide novel
insights into the likely tissue-specific origins and the influence of water deficit stress on the
accumulation of key flavor and aroma compounds in wine.
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Additional Figure 1: 2D-PAGE analysis of Vitis vinifera cv. Cabernet Sauvignon berry pericarp proteins constant relative abundance
in pulp and skin. Proteins that exhibited a non-significant (p < 0.05) change between the skin and pulp are indicated by circles and
standard spot numbers on a representative gel. See Additional Table 5 for detailed listing of proteins.

Additional Table 1: Proteins whose abundance was significantly different between pulp and skin with corresponding mMRNA
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1 Introduction

The berries of grape vine (Vitisvinifera L.) and related species are one of the most widely
grown and economically most import fruit crops in the world. Since its initial domestication
more than 7,000 years ago [1, 2], berries have been used for wine production, as well as
grape juice, table grapes, raisins, and more recently for leaf, seed, and skin extracts by the
nutraceutical and cosmetic industries [3, 4]. The genetic diversity of grapevine have been
narrowed considerably by the selection of only a few familiar cultivars (e.g., Chardonnay,
Cabernet Sauvignon, Syrah (Shiraz) and Merlot) now grown worldwide [1]. Quality traits,
which are generally linked to a specific tissue, such as skin color due to the production of
anthocyanins and proanthocyanidins, are controlled by relatively few genes [5, 6]. However,
traits considered as desirable for one product could be undesirable for another. For example,
seedlessness is a highly desirable trait in table grapes, however, seeds contain a high
concentration of condensed tannins (i.e., proanthocyanidins), which are considered
indispensable for conferring astringency and color stability to red wines [7]. The skin, pulp,
and seed tissues of grape berries each confer unique properties to wine. The skin confers
color, aroma, and other organoleptic properties of wine. The pulp contributes the majority of
sugars, which are transformed into alcohol during the fermentation process. Skin and pulp
tissues are the main source of volatile aroma compounds, such as terpenes, norisoprenoids,
and thiols stored as sugar or amino acid conjugates [8]. The seed contains flavan-3-ol
monomers and procyanidins (seed tannins), which contribute important organoleptic
properties to wine [7].

Analysis of the protein composition of grape berries and must has been used to examine
varietal and developmental differences as well as to analyze chemical and environmental
effects in grape. Polyacrylamide gel electrophoresis (PAGE) analysis of must proteins has
provided a means to readily identify different grape varieties [9]. Electrospray ionization-
mass spectrometry (ESI-MS) has also been used to differentiate varieties by identifying
different classes of pathogenesis-related (PR) proteins in grape juice [10]. In contrast, other
researchers have concluded that one- and two-dimensional PAGE analysis of PR proteins
was inadequate to readily differentiate varieties [11].

Protein extraction methods for mature grape berry clusters have been optimized with
phenol-based methods being superior to TCA/acetone methods [12]. Proteomic comparison
of ripe berry mesocarp from six different Vitis cultivars revealed that most 2D-PAGE
profiles were ~70% similar to one another with the exception of a few proteins, such as
alcohol dehydrogenase (ADH), which displayed large polymorphisms among the different
cultivars [13]. High light and CO, concentrations apparently stabilized RuBisCO in
grapevine plantlets as monitored by 1D- and 2D-PAGE and immunoblotting [14]. Herbicide
stress on grapevine shoots, root, and leaves induced antioxidant and photorespiratory
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enzymes, as well as a set of pathogenesis-related (PR) proteins [15]. Chronic salinity and
water-deficit stress of grapevine shoots revealed distinct differences in protein expression
patterns in cv. Chardonnay and cv. Cabernet Sauvignon [16]. Vitis leaves, in which alcohol
dehydrogenase was over- or under-expressed, revealed abundance changes in carbon
metabolism-associated proteins [17]. Analysis of grape berry skin proteins from cv.
Cabernet Sauvignon at the beginning and end of véraision and in mature, harvest stage
berries showed ripening-related protein abundance increases associated with anthocyanin
biosynthesis and pathogen defense [18]. A similar, yet more comprehensive, analysis of
berry ripening in V. vinifera cv. Nebbiolo Lampia showed that more than 100 proteins were
differentially expressed during berry development [19]. More recently, analysis of changes
in the expression of 67 grape skin proteins were monitored from véraison to fully ripe
berries of V. vinifera cv. Barbera showing that many proteins with (a)biotic stress responses
were developmentally regulated [20].

In order to better understand the complex transcriptional regulatory hierarchy controlling
tissue-specific gene expression patterns, several studies have investigated the steady-state
transcript abundance in discrete berry tissues. Large-scale expressed sequence tag (EST)
sampling has been used to identify differences in expression associated with different organ
and tissue types and developmental stages [21-23]. Large-scale mMRNA expression profiling
studies have investigated expression in flowers and developing berries of V. vinifera
[24-27], in a fleshless berry mutant (cv. Ugni Blanc) [28], and in the skin of ripening berries
of seven different V. vinifera cultivars [29]. More recently, large-scale mRNA expression
profiles within skin, pulp, and seed tissues of well-watered and water-deficit stressed vines
of Cabernet Sauvignon were surveyed using the GeneChip® V. vinifera (Grape) Genome
Array [30]. However, no proteomic studies have been performed to investigate protein
expression differences among different berry tissues.

In order to obtain information on protein expression changes in grape berry tissues in
response to well watered and water-deficit stress conditions, a comparative 2D-PAGE
analysis was performed using discrete tissue from the pericarp tissues (skin and pulp) and
seed. Approximately 7% of the more than 1,000 skin and pulp proteins surveyed showed a
two-fold or greater change in abundance in response to water deficit stress indicating that
water-deficit stress can have a major impact on protein expression profiles in grape pericarp
tissues. From the 695 seed proteins surveyed in the seed, seed protein expression patterns
were completely distinct from those in the skin and pulp tissues, mainly due to high
concentrations of seed storage proteins. Skin abundant proteins were associated mainly with
the phenylpropanoid pathway, pathogenesis-related (PR) proteins, heat shock proteins, and
polyphenol oxidase, whereas pulp abundant proteins included those involved in primary
energy metabolism. Water deficit stress led to tissue-specific changes in protein expression.
The skin showed increased abundance of proteosome, reactive oxygen detoxification
enzymes, and selected enzymes involved in flavonoid biosynthesis, whereas pulp tissues
showed increased in glutamate decarboxylase, PR proteins, and methionine synthase.
Changes in the abundance of selected metabolites were also monitored in parallel with
protein expression analysis. Tissue-specific and water status-dependent differences in
metabolite profiles were also evident.
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2 Material and methods

2.1 Plant material and growth conditions

Vitisvinifera L. cv. Cabernet Sauvignon berries were sampled on September 29, 2005, at
which time the berries were fully ripe and corresponded to stage 38 (berry harvest) of the
modified E-L system [31] from 20-year-old vines in the Shenandoah Vineyard (Amador
County, CA, USA), stored on ice for 3 hours, frozen in liquid nitrogen and stored at —80° C.
Therefore, it is possible that changes in the proteome and metabolome may have occurred
during the time the berries were stored on ice. Pulp, skin and seeds were then separated
without allowing berries to thaw. Skin was peeled off the pulp using a scalpel. The pulp was
then cut into two halves from which the seeds were carefully removed. As complete removal
of pulp cells from the skin or seed tissues was not possible, the observed differences in
tissue-specific patterns reported here may show some residual contamination from pulp
tissues. For the well-watered plants, irrigation was performed from E-L stage 27 [31]. Water
deficit treated vines were never irrigated. Berry clusters were harvested from the sunny
(Southern) side of the vine. Six biological replicates were collected and analyzed from both
well watered and water-deficit treated vines.

2.2 Stem xylem water potential

Fully mature leaves were selected for stem water potential measurements [32]. A single leaf
per plant was tightly zipped in a plastic bag to eliminate transpiration. Aluminum foil was
then placed around the bag, deflecting light and heat. After two hours of equilibration time,
the excised leaf was placed in a 3005 Plant Water Status Console pressure chamber
(Soilmoisture Equipment Corp., Santa Barbara, CA, USA). The foil was removed before
sealing the bagged leaf in the chamber. The balancing pressure required to visibly push stem
xylem sap to the cut surface was recorded.

2.3 Brix assay

The Brix (total soluble solids) was assayed from juice crushed from harvested berries with a
refractometer (BRI1X30, Leica, Bannockburn, IL, USA).

2.4 Protein extraction

Protein extractions were performed in sets of 4 random samples, with the constraint that 2
biological replicates were never processed within the same set. Five g of skin or pulp tissue
or 1 g of seed were ground to a fine powder in liquid nitrogen with mortar and pestle.
Extraction was adapted from the phenol extraction protocol 4 as described [12], which was
adapted from previously described protocols [33, 34]. Powder was vortexed in 10 mL of
Sucrose Buffer 4 (0.7 M sucrose, 0.5 M Tris-HCI pH = 7.5, 50 mM EDTA, 0.1 M potassium
chloride, 2 mM PMSF, 2% R-ME, 1 Complete™ protease inhibitor cocktail tablet (Roche
Diagnostics, Indianapolis, IN, USA), and 1% PVPP) and incubated for 10 min at 4° C. After
incubation, an equal volume of 1 M Tris-saturated phenol (pH = 7.9) was added. The
mixture was stored at —20° C for 30 min with vortexing every 10 min. The phases were
separated by centrifugation (30 min at 0° C at 3,210 x g). The upper phenol phase was
collected and re-extracted with an equal volume of Sucrose Buffer 4. Five volumes of 0.1 M
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ammonium acetate in cold MeOH were added to the phenol phase to precipitate proteins,
followed by incubation at —20° C overnight. The pellet was washed with 5 mL of cold 0.1 M
ammonium acetate/MeOH 50:50 w/v, two times with 5 mL of cold acetone and once in 2 ml
of cold acetone/ethanol 50:50 v/v. The pellet was then vacuum-dried 5 min and resolubilized
in 1.5 ml of Rehydration Buffer (7 M urea, 2 M thiourea, 4% CHAPS, 10 mM DTT, 1%
carrier ampholyte, pH = 5-7, and 1% carrier ampholyte, pH = 3-10). PVVPP (50 mg) was
added to each sample, then each sample was vortexed, and centrifuged (15 min at -4° C at
10,000 x @) and the supernatant was stored at —80° C.

2.5 Protein assays

Protein concentrations were determined using an EZQ™ Protein Quantitation Kit
(Invitrogen, Carlsbad, CA, USA) with ovalbumin as a standard, according manufacturer's
instructions. Concentration ranged from 3.6 mg/ml to 10.6 mg/ml.

2.6 2-DE and gel staining

In order to reduce technical variation, no more than 2 of the 6 replicates were processed
within the same set of 2-D SDS-PAGE gels. The 2-D SDS-PAGE protocol was adapted
from O’Farrell (1975) [35]. IEF was carried out using immobilized pH gradient (IPG) strips
(24 cm, pH = 4-7, Immobiline™ DryStrip, GE Healthcare, Piscataway, NJ, USA). The
loading volume used was 440 pL of protein extract, corresponding to a protein amount of
1.2 mg per strip. Protein IEF was performed using a Protean® IEF Cell (Bio-Rad, Hercules,
CA, USA) at 20° C as follows: active rehydration at 50 V for 12 h, 200 V for 30 min with a
linear increase in voltage, 500 V for 30 min with a linear increase in voltage, 1000 V for 1 h
with a linear increase in voltage, and 10,000 V with a rapid increase in voltage until a total
of 85,000 Vh had been reached. Strips were then stored at —20° C until further use. Once
thawed, the strips were washed for 30 min in Equilibration Buffer (6 M urea, 30% glycerol,
2 M Tris-HCI pH 8.8, and 2% SDS) containing 1% w/v DTT followed by washing with
Equilibration Buffer containing 2.5% w/v iodoacetamide for 30 min. SDS-PAGE was
performed using non-commercial 12% polyacrylamide gels (18 cm x 20 cm x 1 mm) and
run at 40 V for 2 h and 120 V for 15 h in a Bio-Rad Protean® Il XL 2-D Multi-Cell. A
Coomassie Brilliant Blue (CBB) G-250 procedure was used to stain the 2-D gels [36]. The
gels were washed twice in 50% EtOH/2% phosphoric acid/deionized water (diH,0) viviv
for 1 h, then transferred to 2% phosphoric acid for 60 min, and finally allowed to shake for 3
days in 15% EtOH/17% ammonium sulfate/2% phosphoric acid/0.2% CBB G-250/dH20
viw/viwlv. The 2-D gels were imaged using a VersaDoc® Imaging System Model 1000
(Bio-Rad).

2.7 Protein identification

Spot excision was performed using the ProteomeWorks™ spot cutter (Bio-Rad); then
trypsin digested according to [37] using the Investigator™ ProPrep™ (Genomic Solutions,
Ann Arbor, Ml, USA). The tryptic fragments were analyzed using an ABI 4700 Proteomics
Analyzer (Applied Biosystems, Foster City, CA, USA) MALDI TOF/TOF™ mass
spectrometer (MS). A 0.5 mL aliquot of a matrix solution containing 10 mg/mL alpha-
cyano-4-hydroxycinnamic acid (Sigma-Aldrich, Inc., St. Louis, MO, USA) and 10 mM
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ammonium phosphate (Sigma-Aldrich) in 70% acetonitrile was co-spotted with 0.5 mL of
sample [38]. The data were acquired in reflector mode from a mass range of 700 to 4,000
Da, and 2,500 laser shots were averaged for each mass spectrum. Each sample was
internally calibrated if both the 842.51 and 2211.10 ions from trypsin autolysis were present.
When both ions were not found, the instrument used the default calibration. The eight most
intense ions from the MS analysis, not present on the exclusion list, were subjected to
MS/MS analysis. To this end, the mass range was 70 to precursor ion with a precursor
window of 21-3 Da with an average of 5,000 laser shots for each spectrum. The resulting
file was then searched by using automated MASCOT software (http://
www.matrixscience.com/) through the IDQuest (Bio-Rad) interface was used for searching
the NCBI nonredundant database (ver. 22_05_2007; 4,970,641 sequences), or the Contigs
from Vitis Gene Index ver. 5.0 (ver. 18 9 2006, 23,871 sequences). Peptide tolerance was
20 ppm; 1 missed cleavage was allowed; MS/MS tolerance was 0.8 Da. The possibility of
matching multiple translated isoforms was examined by manual analysis of peptides
covering the sequences.

2.8 Statistical analysis

Results from 6 different gels were compared for well-watered and water-deficit-stressed
vines for each tissue and the results of 12 different gels were compared between skin and
pulp. Differences in spot abundance were statistically evaluated using the ANOVA method
with geneANOVA software [39]. The number of detected spots showing differences with a
P-value of <0.05 was then determined. The spots were counted as valuable if their
normalized intensity was higher than 0.01% of the total spot intensity. However, for non-
detected spots a background value was used in the gels where they did not appear in order to
limit the rate of false positives. Average CV was calculated for each experiment with and
without background values. Spots were identified and then curated manually with respect to
spot quality (e.g., sharpness, resolution) and the quality of spot matching to reduce false
positives.

For protein and mMRNA abundance comparisons, Log, values of the protein and mRNA
ratios between pulp and skin values were plotted and the regression curve was determined
using Excel. The mRNA expression values determined by microarray expression profiling
were obtained from [30]. The proteome analysis reported here was performed using berries
harvested one year later from the same vines at the same harvest date as were used for
mRNA profiling.

2.9 Metabolite extraction and derivatization protocol

Polar metabolites were extracted and derivatized with a water/chloroform protocol
according to previously described procedures [40]. Freeze-dried berry tissue (6 mg) was
placed in a standard screw-cap-threaded, glass vial. Samples were incubated in HPLC grade
chloroform for 1 hour at 50°C in an oven. A volume of Millipore NANOpure™ water
containing 12.5 mg L= of ribitol as an internal standard was added to each sample, and then
incubated for an additional hour at 50°C. Finally, vials were allowed to cool to room
temperature and then spun at 2,900 x g for 30 min. One mL of the polar phase was dried
down in a vacuum concentrator overnight. Polar samples were derivatized by the addition of
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120 pL of 15 mg mL~1 of methoxyamine HCI in pyridine, sonicated for 30 min, and
incubated at 50° C for 1 h. 120 uL of MSTFA + 1% TMCS were added, incubated at 50° C
for 1 h, and analyzed immediately with a PolarisQ™ 230 GC-MS (Thermo Fisher Scientific,
Inc., Waltham, MA, USA). Derivatized samples (120 uL) were transferred to a 200 pL
silanized vial insert and run at an injection split of 200:1 to bring the large peaks to a
concentration within the range of the detector and 10:1 for detection of lower peaks. The
inlet and transfer lines were held at 240° C and 320° C, respectively. Separation was
achieved with a temperature program of 80° C for 3 min, then ramped at 5° C min~! to 315°
C and held for 17 min, using a 60 m DB-5MS column (J&W Scientific, 0.25 mm ID, 0.25
um film thickness) and a constant flow of 1.0 ml min~L. All organic acids, sugars and amino
acids were verified with standards purchased from Sigma-Aldrich, Inc.

2.10 Metabolite data processing

3 Results

Metabolites were identified in the chromatograms using two different software packages:
AMDIS (ver. 2.64, United States Department of Defense, USA) and Xcalibur (ver. 1.3;
Thermo Fisher Scientific, Inc.). The software matched the mass spectrum in each peak
against three different metabolite libraries : NIST ver. 2.0 library (http://www.nist.gov/srd/),
T_MSRI_ID library of the Golm Metabolome Database [41], and a local database
containing more than 50 standards. Quantification of the area of the chromatogram peaks
was determined using Xcalibur and normalized as a ratio of the area of the peak of the ribitol
internal standard.

3.1 Physiological data

Fully ripe berry samples were harvested from E-L stage 38 berries [31]. This harvest date
corresponded to the time of commercial harvest of the vineyard. Stem water potential
differences were monitored for well-watered and water-deficit treated vines as a
comprehensive indicator of water-deficit in the vines [42]. Stem water potentials were
significantly more negative for water-deficit treated vines than for well-watered vines at the
time of harvest (Table 1). Brix values, an approximate measure of the mass ratio of
dissolved solids to water in fruit juices, were also significantly different between berries
harvested from well-watered and water-deficit-stress treated vines. These values are close to
the generally recommended value (23° Brix) for harvest of cv. Cabernet Sauvignon in
central California. However, no significant differences in berry diameter were observed
(Table 1).

3.2 Comparative 2D-PAGE analyses of berry tissue proteins

Three different berry tissues (i.e., skin, pulp, and seed) were dissected manually as a starting
point for 2D-PAGE analysis. A relatively large number of biological sample replicates (six)
for each tissue type and water status treatment were performed to obtain a statistically robust
assessment of the differences in protein expression patterns. Each replicate was considered a
biological replicate because it was collected from a different vine. Replicate samples were
extracted and analyzed such that no more than 2 gels from the same tissue/condition were
processed at the same time within the same set of samples. In total, 1,047 spots were
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detected in skin and pulp from vines subjected to either well watered or water-deficit stress
conditions (Table 2). For these two tissues, an average of 854 spots per gel with an intensity
value greater than 0.01% of the total average spot intensity was detected. In contrast, seeds
presented a totally different profile that was not directly comparable to the skin and pulp
tissue profiles. Therefore, 2D-PAGE gels for this tissue were processed independently until
final spot matching. In seeds, a total of 695 spots was detected in seeds from vines subjected
to either well watered or water-deficit stress conditions (Table 2). An average of 605 spots
per gel with intensities higher than 0.01% of the total spots intensity was detected. To
maximize the number of proteins identified in this study, such as transcription factor or
hormone metabolism-related proteins that typically are of low abundance, faint spots were
included, not only leading to a relatively high number of spots per gels (Table 2), but also a
relatively high average coefficient of variation (CV). However, these CV values were within
a range that was consistent with previously reported average or mean values for other plant
proteomic analyses (0.26-0.31 [43]; 0.47-0.75 [44]; and 0.24 [45]). The decision to retain
background values tended also to increase CV values.

In order to identify differentially expressed proteins among the three different berry tissues,
2D-PAGE gels were compared. Spots that displayed differential abundance after ANOVA
(p<0.05) and a two-fold ratio or greater difference were identified and then curated manually
with respect to spot quality (e.g., sharpness, resolution) and the quality of spot-matching to
reduced false positives. Analysis of pericarp proteins revealed 90 spots that displayed
differential abundance after ANOVA (p<0.05) and a two-fold ratio or greater difference: 54
were more abundant in the skin (Fig. 1 and Table 3) and 36 were more abundant in the pulp
(Fig. 2 and Table 3). A majority of proteins (217 in total) showed a relatively constant
abundance between the skin and pulp (see Additional Figure 1 and Additional Table 5).

Because of the low number of proteins that could be matched between seed and the pericarp
tissues, no statistical analysis could be performed. Therefore, proteins were considered to be
specific to the seed if their abundance was: 1) higher than 0.1% of the total spot intensity
and 2) two-fold or greater more abundant than the spots localized at the same position on
pericarp gels. Using these criteria, 163 seed protein spots were identified (Fig. 3 and Table
4), including 19 spots that matched protein spots present within pericarp tissues. A
reciprocal comparative analysis could not be performed because of the relative over
abundance of storage proteins in seed compared with pericarp tissues, which significantly
reduced the relative abundance of other proteins.

3.3 Identification of differentially expressed proteins among tissues

Protein spots that displayed differential abundance after ANOVA (p<0.05) and a two-fold or
greater ratio threshold filtering were eluted from representative 2-D gels, digested with
trypsin and analyzed by MALDI TOF/TOF tandem mass spectrometry. Within pericarp
tissues comparison, 47 of 54 protein spots that were more abundant in skin and 18 of 36
protein spots more abundant in pulp were identified (Table 3). Proteins expressed in the skin
with functions related to phenylpropanoid and amino acid biosynthesis, light and dark
reactions of photosynthesis, biotic stress responses (e.g., pathogenesis-related (PR) proteins)
and heat shock proteins, were much more abundant relative to pulp proteins. In contrast,
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pulp tissues showed high abundance of proteins with functions in reactive oxygen
scavenging (ROS), ripening-related proteins (e.g., grip22), abiotic stress response (e.g.,
stress-induced proteins and dehydrins), and several unknown or hypothetical proteins (Table
3).

In seeds, a majority of spots (130/163 or 80%) spots analyzed as being abundant (>0.1% of
the total spot intensity) and two-fold or greater more abundant than in pericarp tissues could
be assigned functions based on MS data (Table 4). Of those proteins assigned a function, a
majority (94/130 or 72%) was identified as globular or other seed storage proteins, seed
maturation or late embryogenesis abundant proteins. Other classes of proteins included those
with functions in carbohydrate or energy metabolism, protein fate, and biotic or abiotic
stress responses (Table 4).

3.4 Comparative 2D-PAGE analyses of berry proteins in response to water-deficit stress

Water deficit irrigation treatment is known to alter the composition of grapevine berries [46]
and reduce leaf area and photosynthesis within the canopy [47]. Water deficit stress can also
have profound effects on the mRNA abundance within different berry tissues [30]. In order
to determine if water deficit causes corresponding changes in protein composition within the
berry, we analyzed the protein profiles of berry tissues collected from grapevines that were
well watered or water-deficit stressed. Spots that displayed differential abundance after
ANOVA (p<0.05) and a two-fold ratio or greater difference were identified and then curated
manually to reduce false positives. Analysis of skin proteins revealed 31 spots that showed
significantly different abundance upon water stress treatment (14 in well-watered; 17 in
water-deficit treated). After manual curation, 18 spots were identified: 9 were more
abundant in the well-watered berries (Fig. 4A and Table 5) and 9 were more abundant in
water-deficit-stressed berries (Fig. 4B and Table 5). Analysis of pulp tissue identified 28
spots with significantly different abundance upon water stress treatment (18 in well-watered:;
10 in water-deficit treated). After manual curation, 12 spots were identified: 7 were more
abundant in the well-watered berries (Fig. 4C and Table 6) and 5 were more abundant in
water-deficit-stressed berries (Fig. 4D and Table 6). Analysis of seed proteins revealed only
6 spots that showed significantly different abundance in the seed upon water stress treatment
(5 in well-watered; 1 in water-deficit treated). After manual curation, only 1 spot (SSP:7203,
TC58896), which encoded a vacuolar H*-ATPase subunit E, was identified that was more
abundant in the well-watered berries (Fig. 3 inset, Table 4).

3.5 Identification of differentially expressed proteins in response to water-deficit stress

Protein spots that displayed differential abundance after ANOVA (p<0.05) and a two-fold or
greater ratio threshold filtering were eluted and analyzed as described above. Within skin
tissue, 9 of 9 protein spots that were more abundant under water deficit stress and 5 of 9
protein spots more abundant under well-watered conditions were identified successfully
(Table 5). Within pulp tissue, 4 of 5 protein spots that were more abundant under water
deficit stress and 5 of 7 protein spots more abundant under well-watered conditions were
identified successfully (Table 6). The constellation of water-deficit stress-induced proteins
was completely distinct for each of these two tissues. However, the skin displayed a notable
increase in the relative abundance of proteosome subunits and peptidases and the ROS
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scavenging enzyme, cytosolic ascorbate peroxidase, whereas the pulp showed increases in
isoflavone reductase, glutamate decarboxylase and an endochitinase. In contrast, water-
deficit had little effect on the expression of seed proteins.

3.6 Correlation of mMRNA and protein expression patterns

Protein abundance changes within tissues and in response to water-deficit stress were
compared with mRNA changes within the same berry tissues [30]. MALDI TOF/TOF
MS/MS identification results were analyzed carefully in order to match accurately a protein
identity with a specific member of a gene family within a multigene family. From the 65
identified proteins in the skin/pulp comparison, the possibility of matching to more than one
mRNA could not be ruled out for four proteins spots. For eight proteins, comparison with
MRNA could not be performed because corresponding probe sets for MRNA expression data
were not present on the GeneChip® Vitis Genome Array (Affymetrix®) (see Additional
Table 1). For identified proteins exhibiting tissue-specific expression patterns, 47 of 57
(82%) had a corresponding mMRNASs expression pattern that was preferentially expressed in
the same tissue as their protein counterpart. These data indicate a rather good qualitative
correlation between mRNA and protein expression patterns in general. However, only 18 of
57 (32%) of these proteins exhibited a corresponding two-fold or greater ratio of differential
expression at both the mRNA and protein levels. The Pearson correlation coefficient
between quantitative protein and mRNA abundance log, difference ratios for the entire
pericarp data set was 0.216 (Fig. 5A). The Pearson correlation coefficient between protein
and mRNA abundance log, difference ratios for the seed vs. pericarp was only 0.017 (Fig.
5B). These data indicate a poor overall correlation between mRNA and protein expression
patterns for genes expressed preferentially within a specific tissue.

In the water status comparisons of skin and pulp tissues, 2 of the 23 identified spots did not
have a mMRNA counterpart on the microarray chips, and 11/21 (52%) of proteins showed
agreement with the general trend of mMRNA expression in response to water-deficit stress
treatment (see Additional Tables 2 and 3). However, none of the transcripts displayed a two-
fold or greater ratio difference in expression.

In the seed/pericarp comparison, of the 132 proteins identified, corresponding mRNA
expression data were available for 77 proteins. Of these, 62 of 77 (81%) mRNA were
expressed preferentially in the seed and a majority, 53 of 77 (69%) presented a twofold or
greater ratio difference in both protein and mRNA (see Additional Table 4).

3.7 Metabolite analysis

In order to explore possible relationships between protein abundance and metabolite
accumulation in different berry tissue, the relative abundance of polar metabolites was
analyzed by GC-MS. Large differences in the relative abundance of selected metabolites
were found among the different tissues. For example, 6/13 amino acids, 6/13 organic acids
and 6/6 sugars analyzed shown significant differences in abundance among skin, pulp and
seed tissues (Fig. 6). The effect of water deficit on the accumulation of selected metabolites
was also determined. Catechin, sucrose and alanine were more abundant in the pulp of
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berries from water-deficit treated vines, whereas glutamate and tartrate were more abundant
in the pulp of berries from well-watered vines (Figure 7).

4 Discussion

We have performed the first survey of tissue-specific protein expression patterns within
pericarp tissues (skin and pulp) and seed tissues of grape berries from grapevines subjected
to well watered and water-deficit stress conditions. Although previous studies have reported
proteomic analysis of grape berry skin proteins [18, 20] or whole berries at various times
during berry development [19], none have investigated tissue-specific protein expression
patterns. Our survey of a total of 1,047 spots (average of 854) from pericarp tissues (skin
and pulp) revealed that while most proteins showed a relatively constant expression between
skin and pulp, 90 (8.6%) spots exhibited a two-fold ratio or greater difference in tissue
expression (Fig. 1 and 2 and Table 3). Furthermore, our survey of a total of 695 spots
(average of 605) from seed tissues indicated that seeds presented a proteome that was
completely distinct from that of the pericarp, mainly due to high concentrations of seed
storage proteins (Fig. 3 and Table 4). A comparison of our results with recent reports of
skin-specific [18, 20] or pericarp [19] proteomic analyses of wine grape berries indicated
generally strong agreement skin-specific protein expression patterns with only a few
exceptions (e.g., isoflavone reductase and methionine synthase) (Additional Table 6). In
most cases, tissue-specific enzyme localization was in general agreement with substrate
localization as might be expected.

4.1 Phenylpropanoid pathway

All identified proteins with functions in the phenylpropanoid pathway (Table 3) showed
expression specific to the skin consistent with their mMRNA expression profiles [30, 48].
Phenolic compounds are major wine constituents responsible for organoleptic properties
such as color and astringency. Moreover, a majority of phenolic compounds in wine are
derived from flavonoids (e.g., tannins, anthocyanins). For red grapes, roughly 30-40% of the
total phenolic content is located in the skins and 60-70% in the seeds [49]. All of the
identified spots in this functional group, with the exception of caffeoyl-CoA O-
methyltransferase (SSP:5206, TC70299), correspond to enzymes with functions in the latter
steps of anthocyanin biosynthesis (Figure 8). This caffeoyl-CoA O-methyltransferase is
likely to be involved in anthocyanin methylation as a closely related methyltransferase from
Mesembryanthemum crystallinum was specific for flavonoids in addition to caffeoyl-CoA
[50]. The corresponding mRNA for this enzyme is also preferentially expressed in the skin
[30] or pericarp of red wine grape varieties [48]. The expression of chalcone isomerase
(SSP:3210, TC55034), which is a key enzyme of the anthocyanin biosynthetic pathway, was
also mainly in the skin, consistent with its mMRNA expression pattern [30]. Similarly, the
anthocyanin biosynthetic enzymes, flavonone-3-hydroxylase (SSP:4405, TC70298) and
leucoanthocyanidin dioxygenase (SSP:5411; TC69652), exhibited skin-specific MRNA and
protein expression patterns (Table 3). Both of these enzymes showed increased protein
abundance following véraison in cv. Cabernet Sauvignon [18]. UDP-glucose:flavonol-3-O-
glucosyltransferasae (UFGT, SSP:7411, AF000371) mRNA was also expressed specifically
in the skin [51]. This enzyme plays a critical role in anthocyanin accumulation as
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retrotransposon-induced mutation of the MYB transcription factor (VvmybA1) gene [52]
leading to its expression impairs anthocyanin accumulation in red grape varieties [53] with
this mutation being common to many white grape varieties [5]. The enzymatic activity of
recombinant UFGT has been documented in vitro [54]. Two isoforms of UFGT were found
to accumulate preferentially following véraision in cv. Cabernet Sauvignon [18]. Two
isozymes of glutathione-S-transferase (GST) (SSP:3103, TC58036 and SSP:6101,
TC69505), which also showed skin-specific MRNA and protein expression, play a critical
role in the final step of anthocyanin accumulation by conjugating glutathione to cyanidin
glucoside, which is then transported into the vacuole [55]. mMRNA encoding GST was more
abundant in red versus white grape skin [48]. The 5” flanking promoter regions of both
UFGT and GST genes share MYB cis-element binding domain sites [56], indicating that the
relative mRNA and protein expression of both genes may be coordinately regulated. Lastly,
an isoflavone reductase (SSP:8302, TC52848), which is involved in isoflavonoid
phytoalexin biosynthesis [57], was more abundantly expressed in the pulp than in the skin,
which is also in accordance to its MRNA profile [30]. Overall, most flavonoid biosynthetic
enzymes identified were found to be localized to the skin (Figure 8), consistent with known
expression patterns and previous proteomic analysis of berry skins (Additional Table 6).

Metabolite analyses revealed tissue-specific differences in the relative abundance of selected
compounds. For example, caffeic acid exhibited specific expression in the skin (Figure 6A).
This precursor metabolite is a possible substrate of caffeoyl-CoA O-methyltransferase (SSP:
5206), whose mMRNA [30] and protein (Table 3) are also expressed preferentially in the skin.
Alternatively, this enzyme may be specific for flavonoid as mentioned above. Catechine, a
flavonoid, was significantly more abundant in seed (Figure 6A) and in water-deficit stressed
berries (Figure 7), consistent with the mRNA expression pattern of leucoanthocyanin
reductase in these tissues [30], however, this biosynthetic enzyme was not identified in this
study. The tissue-specific expression patterns of key phenylpropanoid enzymes established
here will be critical to rational manipulation of the expression of these enzymes in the
future.

4.2 Amino acid metabolism

Nitrogen is mainly incorporated into the berry through glutamine synthetase/glutamate
synthase. Two isoforms of glutamine synthetase (SSP:3305, TC60125 and SSP:5303,
64127) were identified as homologues of cytosolic glutamine synthetase, which catalyze
glutamine synthesis using glutamate, a key nitrogen reserve in plants. Cytosolic isoforms of
this enzyme have been detected in vascular tissues of grape berry pulp [58] and in berry
skins where the protein was found to be 3.5 times more abundant prevéraison than
postvéraison [18]. This phloem-specific expression pattern indicates that the cytosolic
glutamine synthetase isoenzyme functions to generate glutamine for intercellular nitrogen
transport [59]. The higher abundance of both enzymes in the skin (Table 3) probably reflects
the higher percentage of vascular tissues within berry skin. Glutamate also appeared to be
slightly more abundant in the skin (Fig. 6), although this difference was not significant and
significantly less abundant in pulp following water-deficit stress (Figure 7).
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Homocysteine S-methyltransferase (SSP:4318; TC55907), which catalyzes the last step of
methionine biosynthesis, was highly abundant in the pulp. This pattern of enzyme
expression would predict that methionine content would be higher in the pulp than in the
skin, although no direct metabolite data are available to confirm this prediction. Methionine
is metabolized during malolactic fermentation into various sulfur compounds [60].
Methionine content is well correlated with the abundance of the volatile compound
methionol (3-(methylthio)-propanol), which has a raw-potato odor, in fermented must [61].
In contrast, S-adenosylmethionine (SAM) synthetase (SSP:4413, TC51748), which catalyzes
the first step of methionine degradation, was highly abundant in the skin. SAM synthetase
may participate in the production of aromatic compounds requiring methylation, such as 2-
methoxy-3-alkylpyrazine or 2-hydroxy-3-alkylpyrazine, in the skin [62]. Alternatively,

SAM synthetase may be required for lignin biosynthesis, as caffeoyl-CoA O-
methyltransferase (SSP:5206), which was also more abundant in the skin, requires SAM as a
co-factor.

Proline is the most abundant amino acid in grape berry, specifically in cv. Cabernet
Sauvignon, and accumulates to high levels during the later stages of fruit ripening. Proline is
synthesized from glutamate by delta 1-pyrroline-5-carboxylate synthetase (P5CS), which is
localized mainly in pericarp tissue [63]. Proline was found to accumulate predominantly in
skin and pulp tissues (Fig. 6B), consistent with the subcellular localization of P5CS. Like
proline, threonine is clearly more abundant in pericarp rather than seed tissues. Threonine
levels in must are strongly correlated with the accumulation of odorants related to fatty acid
synthesis including, ethyl acetate, ethyl butyrate, and hexanoic and octanoic acids and longer
chain alcohols such as isoamyl alcohol and B-phenylethanol [61].

Shikimic acid, which is an important precursor of aromatic amino acids, was most abundant
in skin, less abundant in the pulp, and least abundant in the seed (Fig. 6B). Shikimic acid is
thought to serve as the major source of precursors for two groups of important wine
aromatic compounds that include volatile phenols and vanillin [64]. These results provide
novel insights into the probable tissue-specific origins of key flavor and aroma compounds
in wine.

Two proteins with energy-related functions were expressed preferentially in the pulp: a
cytosolic inorganic pyrophosphatase (SSP:3114, TC56801) and a plastic
fructosebisphosphate aldolase (SSP:8303, TC52261). Inorganic pyrophosphatase catalyzes
the hydrolysis of pyrophosphate (PPi), which is formed principally as the product of the
many biosynthetic reactions that utilize ATP. In the pulp, its function is probably related to
regulation of inorganic pyrophosphate in the cytosol [65]. Fructose-bisphosphate aldolase is
a glycolytic enzyme that catalyses the reversible aldol cleavage or condensation of
fructose-1,6-bisphosphate into dihydroxyacetone-phosphate and glyceraldehyde 3-phosphate
and is abundant in the pulp, but not the seeds of ripe berries [58].

The remaining proteins with functions related to energy production and photosynthesis were
preferentially expressed in berry skin. These included ATP synthase beta subunit (SSP:3503,
TC63054) and cytochrome ¢ oxidase (COX), subunit 6b-1 (SSP:203, 204; TC51789), the
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terminal enzyme of the respiratory chain that oxidizes cytochrome c and transfers electrons
to molecular oxygen to form molecular water. During berry development, transcripts
encoding proteins with photosynthesis-related functions are most strongly expressed at
flowering and two-weeks after flowering and then decline steadily in abundance throughout
berry development [24, 25]. However, the skin of ripe berries still contained detectable
amounts of proteins with functions related to photosynthesis and carbon assimilation. For
example, several light harvesting components (Chlorophyll a-b binding protein (SSP:4120,
TC62932), photosystem 1l components (Oxygen evolving enhancer protein 1 (SSP:2218,
TC53930; SSP:3207, TC54765) and enzymes involved in carbon fixation including the large
subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) (SSP:8504,
TC57584); RuBisCO subunit binding-protein alpha (SSP:1621, TC67963) and transketolase
1 (SSP:6727, SSP:6729; TC52655) were more abundant in the skin than in the pulp (Table
3). RuBisCO has been detected in skin [18], but was reported to be in very low abundance in
the pulp of mature berries [58]. Transketolase has also been reportedly expressed in berry
skin and shown to increase in abundance late in berry ripening [20] (Additional Table 6),
possibly to supply carbon skeletons for biosynthetic pathways operating in this tissue during
ripening. The expression pattern of photosystem and carbon assimilation proteins indicates
that the skin might retain a functional photosynthetic apparatus or its remnants undergoing
degradation in mature berries.

4.4 Biotic and abiotic stress responses

Grape ripening-related proteins (GRIPs) are abundant in postvéraison ripening berries [66].
Grip22-related proteins, which have been identified to be allergens in Kiwi [67], were found
to be expressed in either the pulp (SSP:3111, TC55027) or the skin (SSP:7108, TC55027).
However, the corresponding transcript for this protein showed no tissue-specific expression
(Table 3). These two Grip22 proteins did differ in their experimentally determined pl,
suggesting tissue-specific posttranslational modification. GRIP homologs in Kiwi are known
to undergo glycosylation, which may be critical for the allergenic potential of these proteins
[68, 69]. A second allergenic protein (SSP:1009, TC65039), which was more abundant in
the pulp, and identified as a major allergen in cherry [70], is actually a pathogenesis-related
(PR) protein (Table 3). Two skin-abundant PR proteins (SSP:7104, SSP:7105; TC68949)
were also identified as PR10 proteins and are probably different products encoded by the
same gene as judged by their relative proximity within the gel. PR10 has been observed
previously to be expressed in mature berry skin [18] and increased in abundance during the
later stages of ripening and are thought to play a role in berry protection [20]. SSP:4006
(TC58333) corresponds to a PR4 protein, which known to have antifungal activity [71], and
thus may also contribute to berry protection. Another PR protein, -1,3 glucanase (SSP:
6212, TC61082), which is induced by fungal pathogen treatment [72], was found to be most
abundant in skin tissue (Table 3) as was the corresponding transcript encoding this protein
[30]. p-1,3 glucanases have also been found to increase in activity [18] and protein
abundance during berry ripening in skin tissue [19, 20] (Additional Table 6).

A number of heat shock proteins (HSPs) were also found in the skin. SSP1706 (TC54161)
was found to be a close homologue of a watermelon HSP70 [73]. Unfortunately, no peptides
corresponded with N-terminal transit peptide of the grape homologue, so the subcellular

Proteomics. Author manuscript; available in PMC 2014 July 10.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Grimplet et al.

Page 15

location of this protein cannot be predicted. A second HSP (SSP:3719, TC53932)
corresponds to a tobacco HSP90, which has been shown to play a key role in the
conformational regulation of R protein recognition complexes and viral resistance [74].
Various other classes of HSPs, including multiple HSP70 isoforms have been described in
grape berries [19] (Additional Table 6).

Preventing oxidative browning of grapes caused by polyphenol oxidase (PPO) is a major
concern for the dry fruit industry and the production of white wine [75]. SSP:1012
(TC51691), which corresponds to a polyphenol oxidase gene described previously [76], was
most abundant in the skin consistent with an earlier report that confirmed that grape berry
skins contain high amounts of PPO activity [77]. However, more abundant isoforms (SSP:
1004, SSP:1007; TC51691) of PPO were identified (see Additional Table 5), but these did
not show differential abundance among berry tissues. Several PPO isoforms are abundantly
expressed in berry skins at véraison [20] and then their abundance declines towards ripening
[19, 20] (Additional Table 6). Members of another class of stress proteins, the late
embryogenesis abundant (LEA) proteins (SSP:1403, SSP:2518), exhibited pulp-specific
expression patterns. These proteins belong to the SK,, group of acidic dehydrins [78]. The
apparent molecular weight of these two proteins is higher than predicted consistent with
previous observations for this group of proteins [79]. A late embryogenesis protein was also
reported previously to be expressed in berry skin [20].

4.5 Organic acids

Tartrate is one of the most abundant organic acids in grape berries. The enzyme catalyzing
the formation of tartrate (L-idonate dehydrogenase) in berries has been recently identified
and belongs to the ascorbic acid degradation pathway [80]. The innermost region of the
berry pulp surrounding the seed has been shown to contain the highest tartrate
concentrations, but seeds were not assayed directly by these authors [81]. We observed that
tartrate is significantly less abundant in the seed than in surrounding tissues (Figure 6C),
despite the observation that transcripts for L-idonate dehydrogenase are most abundant in
seeds [30]. More detailed analysis of the expression of the genes and corresponding
enzymes that participate in tartrate biosynthesis is needed. The detection of high
concentrations of threonate in the pulp of berries (Figure 6C) also reinforces the hypothesis
that ascorbate is metabolized into oxalate and threonate in grape although the catalyzing
enzyme remains unknown [82]. Malate, like tartrate, is among the most abundant organic
acids and the major determinant of titratable acidity in berries. Malate was more abundant in
the pericarp than in the seed consistent with previous results [81] and the relative transcript
abundance for malate biosynthetic enzymes [30]. Succinate was also more abundant in the
skin than in pulp, as was succinate dehydrogenase (SSP:5704, TC51756)) (Table 3).
Succinate has not been detected previously in grape berry juice [83], likely due to the
difference in detection methods employed and the low relative abundance of succinate,
which is about 100-fold less abundant than the major organic acids.

4.6 Carbohydrates

The major forms of stored carbohydrates in berries are glucose and fructose, which are
derived mainly from sucrose exported from the leaf and transported in the phloem to the
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berry cluster [84] or derived from starch reserves within the berry itself [27]. This study
confirmed these previous observations as pulp and skin accumulated much larger amounts
of fructose and glucose than sucrose (Figure 6D). In contrast, seed tissues accumulated more
sucrose than glucose and fructose (Figure 6D) consistent with earlier observations [85].
Gluconate, which can be metabolized via the oxidative pentose phosphate pathway in plants
[86], is more abundant in skin than in pulp and seed (Figure 6D). High concentrations of
gluconate can cause severe problems in winemaking processes including the control of
alcoholic fermentation, biological aging, and stability [87]. Trehalose was found
predominantly in the seed and skin (Figure 6D) where it may function as an osmoprotectant
in these tissues or play roles in cell wall structure, cell division, glycolysis and starch
accumulation [88]. In grape berry, trehalose phosphate synthase (1608440 _at; TC48283)
tissue-specific mMRNA accumulation showed a similar pattern with trehalose itself [30].

4.7 Water-deficit stress responses

Approximately 7% of all skin and pulp proteins showed a two-fold or greater change in
abundance in response to water deficit stress (Tables 5 and 6; Additional Tables 2 and 3)
indicating that water-deficit stress can have a major impact on protein expression profiles in
grape pericarp tissues. In skin, there was an apparent increase in the abundance of
proteosome alpha (SSP4204, TC54618) and beta (SSP:5109, TC68818) subunits and several
peptidases (Table 5), indicating that water-deficit stress is likely to increase protein turnover
in the berry. Induction of multiple proteosome subunits in response to water-deficit stress
has been observed previously in grapevine leaves [16]. Skin tissue also exhibited an
increased abundance of cytosolic ascorbate peroxidase (SSP:5215, TC51718). Water-deficit
stress is known to increase the mRNA expression of cytosolic ascorbate peroxidase in
various plant species, including cowpea, where it is responsible for H,O, detoxification and
protection against oxidative stress [89].

In contrast, some proteins appeared more abundant in skin of berries from well-watered
vines. For example, two isozymes involved in flavonoid biosynthesis, chalcone isomerase
(SSP:3220, TC55034) and leucoanthocyanin dioxygenase (SSP:5501, TC69652) were
significantly more abundance in well-watered vines (Table 5). Interestingly, a second, skin-
specific isozyme of chalcone isomerase (SSP:3210) and leucoanthocyanin dioxygenase
(SSP:5411), respectively, showed no significant change in abundance following water
deficit stress. Water deficit causes an increase in the mRNA of most flavonoid biosynthetic
enzymes [30, 90, 91] and an increase in flavonoid content of both berries and wine [46, 90,
91]. These secondary isozymes are likely to fulfill flavonoid biosynthesis demands under
water-deficit conditions demonstrating the existence of a division of labor between these
different isozymes depending on water status.

In contrast, pulp tissues exhibited a completely different set of proteins with differential
expression to water-deficit stress (Table 6). For example glutamate decarboxylase (SSP:
5619; TC54345), which catalyzes the decarboxylation of L-glutamate to form gamma-
aminobutyrate (GABA) and CO, [92], was more abundant and glutamate accumulation
declined significantly under water-deficit stress (Figure 7). Interestingly, the product of this
reaction, GABA, has been observed to be more abundant under water-deficit tissues of green
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coffee beans [93] and tomato suspension cells which led to increased rates of glutamate
decarboxylation into alanine and GABA [94]. The observed reduction of glutamate
abundance and increase in alanine under water stress (Figure 7) in grape berry pulp indicates
that glutamate decarboxylase is also involved in metabolic adjustments under water stress in
grape berry pulp. In contrast, no change in glutamate abundance was observed in the skin
following water-deficit stress. In addition, the large increases in myo-inositol and sucrose
observed under water deficit stress (Figure 7) probably reflect their respective roles as
osmoprotectants and precursors for the formation of raffinose series sugars, which are
critical to enhanced water-deficit stress tolerance [95]. A class 1V endochitinase (SSP:3113,
TC68794) was also induced by water-deficit stress as is commonly observed for many other
PR proteins. This class of protein was shown previously to accumulate during the later
stages of berry ripening to high concentrations [96]. The observed increase in shikimate in
pulp under water-deficit stress may be related to an increase of shikimate derived volatile
compounds as well as tannins, flavonoids, and lignans [97].

Several other pulp proteins were significantly enhanced in their expression under well-
watered conditions including methionine synthase (SSP:6715, TC52137), which catalyzes
the transfer of a methyl group from 5-methyltetrahydrofolate to homocysteine resulting in
methionine formation. UDP-glucose pyrophosphorylase (UGP, SSP:8602, TC57645)
abundance was significantly higher in pulp from well-watered vines. UGP catalyzes the
formation of UDP-glucose from the phosphorylation of glucose-1-phosphate and
participates in the biosynthesis of carbohydrates and cellulose in sink tissues [98]. In grape
leaves, increased UGP abundance was correlated with a decrease of sucrose abundance [17],
as was observed here.

4.8 mRNA and protein expression correlation

Comparison of mMRNA and protein expression patterns between the skin and pulp revealed
that most proteins (82%) showed the same tissue-preferential expression pattern, as did their
corresponding mRNAs with a Pearson correlation coefficient of 0.46. These data indicate
only a moderate correlation between mRNA and protein expression patterns in these tissues.
However, if the magnitude of tissue-specific expression were considered at the two-fold or
greater ratio of differential expression for both mRNA and protein levels, then only 32% of
proteins showed similar patterns of expression between these two tissues with a Pearson
correlation coefficient between protein and mMRNA abundance log, difference ratios of 0.216
(Fig. 5A).

Comparison of mRNA and protein expression patterns between the seed and pericarp also
revealed that most proteins (81%) showed the same tissue-preferential expression patterns.
In contrast to pericarp tissues, however, a majority of seed proteins (69%) presented a two-
fold or greater ratio difference in both protein and mRNA relative abundance. However, the
Pearson correlation coefficient between protein and mMRNA abundance log, difference ratios
for the seed vs. pericarp was only 0.017 (Fig. 5B). These data indicate a rather poor
correlation between mRNA and protein expression patterns for genes expressed
preferentially within a specific tissue. About half (52%) of pericarp proteins showed the
same water-status-dependent trend in expression as did their corresponding mRNAs,

Proteomics. Author manuscript; available in PMC 2014 July 10.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Grimplet et al.

Page 18

however, none of the transcripts/protein comparisons displayed a two-fold or greater
difference in expression.

Other studies comparing relative protein abundance with relative transcript abundance
estimated by EST counting, northern blotting, or microarray expression profiling generally
showed a moderate to weak correlation (r = 0.50 or less) depending on the study [99-102].
Our results and results from these studies indicate that more than half of documented protein
accumulation differences are determined after transcription via protein modifications,
differential rates of translation, or differences in protein stability and turnover.

5 Concluding remarks

This large proteomic study has for the first time surveyed the tissue-specific differences in
protein expression of mature wine grape (Vitis vinifera) berries. More than 1,700 protein
spots were mapped by 2D PAGE and more than 250 proteins were identified by MALDI-
MS/MS that showed tissue-specific expression among skin, pulp, and seed tissues. About 90
identified proteins showed differential expression between the skin and pulp and 163
identified proteins showed seed-specific expression. The skin was significantly enriched in
proteins of the phenylpropanoid and amino acid biosynthesis pathways and photosynthesis
and pathogenesis-related response proteins. In contrast, the seed proteome was completely
distinct from that of the pericarp and was comprised largely of seed storage, maturation, or
late embryogenesis abundant proteins. Comparison of tissue-specific protein expression
patterns with available mMRNA expression patterns revealed that a majority (81%-82%) of
proteins showed qualitative, tissue-preferential expression pattern consistent with their
corresponding mRNAs. However, relatively fewer pericarp (32%) or seed (69%) proteins
showed similar patterns of quantitative expression among tissues. These results clearly
indicate that protein accumulation patterns are strongly influenced by post-transcriptional
processes in agreement with other large-scale proteome studies in plants.

The impact of water-deficit stress was also studied and found to have a profound influence
on tissue-specific protein expression patterns resulting in significant changes in the
expression of approximately 7% of pericarp proteins. Skin responses to water deficit stress
were diverse with an obvious increase in the abundance of proteosome subunit proteins and
proteases, reactive oxygen detoxification enzymes, and selected enzymes involved in
flavonoid biosynthesis, whereas the pulp showed increases in isoflavone reductase,
glutamate decarboxylase and an endochitinase. In contrast, water-deficit caused little effect
on the expression of seed proteins as might be expected as the seeds in mature berries would
be at the end of their developmentally programmed preparative phase for desiccation
tolerance present in most orthodox seeds.

Finally, a limited survey of 32 metabolites by GC-MS showed that 18 exhibited tissue-
specific differences in abundance with skins accumulating high concentrations of caffeic
acid, proline, shikimate, and gluconate. Water-deficit stress caused increases in alanine,
catechine, myo-inositol, shikimate and sucrose, but decreases in glutamate and tartrate in
pulp tissue. Overall, these results provide many novel insights into the likely tissue-specific
origins and the influence of water deficit stress on the tissue-specific accumulation of
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enzymes that catalyze the formation of key flavor and aroma compounds in wine including
organic acids, specific sugars, phenylpropanoids, proanthocyanins, and volatile compounds.
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Figure 1.
2D-PAGE analysis of Vitis vinifera cv. Cabernet Sauvignon berry skin proteins. Proteins

that exhibited a significant (p < 0.05) two-fold or greater change between the skin and pulp
are indicated by circles and standard spot numbers on a representative gel. See Table 3 for
detailed listing of proteins.
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Figure 2.
2D-PAGE analysis of Vitis vinifera cv. Cabernet Sauvignon berry pulp proteins. Proteins

that exhibited a significant (p < 0.05) two-fold or greater change between the skin and pulp
are indicated by circles and standard spot numbers on a representative gel. See Table 3 for
detailed listing of proteins.
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Figure 3.

2D-PAGE analysis of Vitis vinifera cv. Cabernet Sauvignon berry seed proteins. Proteins
that exhibited a significant (p < 0.05) two-fold or greater change between the seed and
pericarp tissues are indicated by circles and standard spot numbers on a representative gel.
See Table 4 for detailed listing of proteins. Inset: spot 7203 (arrow), which was more
abundant in seed of well watered than water-deficit treated berries.
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Figure 4.

Spots whose abundance differed significantly (p < 0.05; two-fold or greater change) with
water status. A) Pulp proteins more abundant under well-watered conditions. B) Pulp
proteins more abundant under water-deficit conditions. C) Skin proteins more abundant
under well watered conditions. D) Skin proteins more abundant under water-deficit
conditions are indicated by circles and standard spot numbers on a representative gel. See
Tables 5 and 6 for detailed listing of pulp and skin proteins, respectively.
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Correlation of protein and mRNA abundance in different berry tissues. Values are expressed
as log, ratio of abundance: A) in pulp vs. skin B) in seed vs. pericarp. Solid diamonds
represent individual gene products following similar trends for both mRNA and protein

expression.
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Identification and quantitative differences of selected metabolites within different tissues: A)
phenylpropanoids, B) amino acids, C) organics acids, and D) sugars. Skin (black bars), pulp
(gray bars), seed (white bars). Up arrows indicate that the metabolite was significantly
(ANOVA p<0.005, two-fold change or greater) more abundant than in tissues with a
horizontal or arrow down. Horizontal arrows indicate that the metabolite was significantly
(p<0.005, two-fold change or greater) less abundant than in tissues with an up arrow and
more abundant than in tissues with a down arrow. Down arrows indicate that the metabolite
was significantly (p<0.005, two-fold ratio change or greater) less abundant than in tissues
with a horizontal or up arrow. Error bars represent standard deviation of the mean, n = 5.
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Figure 7.
Metabolites that differed significantly (ANOVA p< 0.05) between pulp derived from well

watered and water-deficit treated vines. Asterisk (*) indicates metabolites that exhibited a
two-fold or greater change in abundance. Error bars represent standard deviation of the
mean, n = 5. Values within bars are the ratio relative to the internal standard (ribitol).
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Figure 8. Enzymes and metabolites differentially expressed across tissues within a simplified

flavonoid biosynthetic pathway

Underlined names indicate the enzymes or metabolites more abundant in skin; Boxed name

indicates the metabolite more abundant in the seed.
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Table 1

Physiological data for berries harvested from vines grown under well watered and water-deficit stress
conditions.

Sample Stem water potential (MPa)  Berry refractive index (°Brix)  Berry size (mm)

Well watered vine -0.58 (+0.07)@ 19.78 (+1.02)2 11.23 (+0.33)2

Water-deficit vine -0.86 (+0.11)&P 21.73 (x0.74)2P 11.27 (0.30)2
an =6.

Page 33

bDifference between well watered and water-deficit were determined by to be significant (p-value < 0.01) by the student’s t-test. Standard errors

are indicated in parentheses.
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Average numbers of spots and coefficients of variation (CV) for each berry tissue and water treatment

Table 2

Page 34

condition. The spots were counted regardless of their intensity (1) or according to CV values greater than

0.01% or 0.05% of the total intensity of all spots.

Skinww  SkinWD  PulpWwW  PulpwD

SeedWW  SeedWD

Total spots 1046 1046
Average CV (total spots) 0.84 0.74
Spots (1>0.01%) 835+59 87030
Average CV (1>0.01%) 0.65 0.58
Spots (1>0.05%) 462455  509+20
Average CV (1>0.05%) 0.55 0.56

1046
0.82
855+30
0.64
457+37
0.56

1046
0.81
855468
0.63
482+48
0.55

695

0.74
608+41
0.59
365+109
0.53

695
0.76
602+23
0.60
366158
0.54

WW = well watered; WD = water-deficit treated. n = 6.
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