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Abstract

Objective—To examine the independent contributions of prenatal methamphetamine exposure

(PME) and prenatal tobacco exposure (PTE) on brain morphology among a sample of nonalcohol-

exposed 3- to 5-year-old children followed prospectively since birth.

Study Design—The sample included 20 children with PME (19 with PTE) and 15 comparison

children (7 with PTE), matched on race, birth weight, maternal education and type of insurance.

Subcortical and cortical volumes and cortical thickness measures were derived through an

automated segmentation procedure from T1-weighted structural magnetic resonance images

obtained on unsedated children. Attention was assessed using the computerized Conners’ Kiddie

Continuous Performance Test Version 5 (K-CPT™ V.5). PME effects on subcortical and cortical

brain volumes and cortical thickness were tested by general linear model with type III sum of

squares, adjusting for PTE, prenatal marijuana exposure, age at time of scan, gender, handedness,

pulse sequence and total intracranial volume (for volumetric outcomes). A similar analysis was

done for PTE effects on subcortical and cortical brain volumes and thickness, adjusting for PME

and the above covariates.

Results—Children with PME had significantly reduced caudate nucleus volumes and cortical

thickness increases in perisylvian and orbital-frontal cortices. In contrast, children with PTE

showed cortical thinning in perisylvian and lateral occipital cortices and volumetric increases in

frontal regions and decreases in anterior cingulate. PME was positively related and caudate

volume was inversely related to K-CPT reaction time by inter-stimulus interval, a measure of the
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ability to adjust to changing task demands, suggesting that children with PME may have subtle

attentional deficits mediated by caudate volume reductions.

Conclusions—Our results suggest that PME and PTE may have distinct differential cortical

effects on the developing central nervous system. Additionally, PME may be associated with

subtle deficits in attention mediated by caudate volume reductions.
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Introduction

Prenatal methamphetamine exposure (PME) is an important public health problem, with

recent estimates suggesting a 5% prevalence rate in regions with endemic use [1]. Like

cocaine, methamphetamine (MA) is a psycho-stimulant that blocks dopamine,

norepinephrine and serotonin reuptake, increasing concentrations of these neurotransmitters

in the synaptic cleft [2]. MA also enhances release of these neurotransmitters, inhibits

monoamine oxidase and causes maternal vasoconstrictive and anorectic effects [3]. PME

may additionally impact widespread neuroontogenic processes, such as cell production and

migration [4], alter development of the fetal stress response axis [5], and perturb oxidative,

mitochondrial and glutamate-associated excitotoxic pathways leading to neuronal damage

[6].

In well-controlled prospective research, PME has been linked to deficits in fetal growth [7],

to effects on infant arousal regulation, stress reactivity, motor control [8, 9], increased

externalizing behavior problems at ages 3 and 5 [10], and to subtle deficits among 5-year-

old children in inhibitory control [11], a key executive function (EF).

Neuroimaging studies of community-derived convenience samples of PME have identified

neurocognitive deficits in specific EFs such as inhibitory control, working memory,

sustained attention and visual-motor integration, along with volumetric changes in frontal-

striatal brain regions important in regulating these functions. For example, Chang et al. [12]

found smaller globus pallidus, putamen and hippocampal volumes, and borderline smaller

caudate volumes in children with PME, while Sowell et al. [13] found volume reductions in

the striatum, thalamus, parietooccipital and anterior prefrontal cortices, and volume

increases in the anterior and posterior cingulate, ventral and medial temporal, and

perisylvian cortices. However, data collected from these convenience samples may be

subject to recall bias and selection bias, both of which can result in overestimates of

negative outcomes [14]. Additionally, conclusions about the effects of PME on brain

development may be confounded by the high rates of polydrug exposure, particularly

alcohol and nicotine in exposed women [15]. For instance, prenatal alcohol exposure has

been associated with decreased cortical, subcortical and cerebellar volumes [16], and with

both decreased [17] and increased cortical thickness [18]. Likewise, neuroimaging studies of

prenatal tobacco exposure (PTE) have identified cortical thinning among exposed

participants in orbitofrontal, middle frontal and parahippocampal cortices [19]. In

convenience samples, these confounding exposures, if inadequately documented or
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underreported, along with the above biases, may result in the misattribution of effects.

Therefore, to the greatest extent possible, neuroimaging studies of prenatal exposure should

ideally both accurately identify and statistically adjust or stratify for coexposure to other

drugs of abuse.

The purpose of this study was to examine the independent contributions of PME and PTE on

structural brain development, which we pursued using FreeSurfer, a computer-assisted

whole-brain MRI morphometric analysis pipeline which we adapted for use with a validated

pediatric brain atlas [20]. We analyzed MR data sets and behavioral measures from a sample

of nonalcohol-exposed 3- to 5-year-old children followed prospectively since birth in the

largest federally funded prospective study of PME and child development, the Infant

Development, Environment and Lifestyle (IDEAL) study.

Methods

Study Design

This is a cross-sectional neuroimaging study of preschool-aged children enrolled since birth

in the Hawaii-site of the IDEAL study, currently being conducted at five clinical sites: the

University of California, Los Angeles; the University of Hawaii; Blank Children’s Hospital

– Iowa Health, and the Universities of Oklahoma and Tulsa. Detailed recruitment methods

for the IDEAL study have been reported previously [1, 21]. Briefly, between September

2002 and November 2004, all women delivering newborns at the above sites were

approached, screened for eligibility and consented to participate. Maternal exclusions were:

non-English speaking; <18 years of age; used opiates, LSD, PCP, or cocaine only during

pregnancy; institutionalized for retardation or emotional disorders; low cognitive

functioning, or current or past psychosis. Infant exclusions were: critically ill and unlikely to

survive; multiple gestation; life-threatening congenital anomaly; chromosomal abnormality

associated with mental or neurological deficiency; overt clinical evidence of an intrauterine

infection, or sibling previously enrolled in the study. 34,833 mother-infant pairs were

initially screened for enrollment, of which 17,961 (52%) were eligible for the study. Of

these eligible participants, 3,705 (21%) consented to participate. At recruitment,

sociodemographic and substance use information was collected by maternal interviews.

Meconium samples were collected from all infants and analyzed by a central laboratory (US

Drug Testing Laboratory, Des Plaines, Ill., USA) for drug metabolites. MA exposure was

determined by standardized maternal self-report at birth and at the 1-month visit and/or a

positive meconium screen with gas chromatography/mass spectroscopy confirmation. For

longitudinal follow-up, MA-exposed infants and mothers (n = 204) were matched to

unexposed comparison infant-mother pairs (n = 208) who denied MA use and had a negative

meconium screen for MA. The two groups were matched on maternal race, birth weight

category (<1,500, 1,500–2,500, >2,500 g), private versus public insurance, and education

(high school education completed vs. not completed). Prenatal exposure to alcohol, tobacco

and marijuana existed in both groups and were considered as background variables. Follow-

up assessments were conducted at 1, 12, 24, 30, 36, 60 and 66 months of age.
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Participants

This study evaluated MRI structural brain outcomes among study participants assessed

between the ages of 3 and 5 years. Only Hawaii-site IDEAL study participants without a

history of prenatal alcohol exposure were eligible given its well-known teratogenic effects

on the developing central nervous system (CNS). 120 children of the total Hawaii IDEAL

cohort of 153 children met this exclusion. Additional exclusion criteria included the

presence of implanted metallic objects and any medical or psychological condition that

would preclude MR imaging. Children were recruited after parent/guardian informed

consent was received. Institutional review board approval was obtained from the University

of Hawaii and the Queens Medical Center, both in Honolulu, Hawaii, and the study included

a federal certificate of confidentiality. Of the eligible 120 children, 64 (53.3%) were

consented to participate and 43 (33.3%) attempted or underwent MR imaging on one or

more occasions. Of these, 8 children, 3 PME and 5 non-PME, were either unable to be

acclimatized to the MRI or had excessive head movement resulting in poor quality images.

Thirty-five (29.2%) had analyzable brain imaging data, 20 (57.1%) with PME and 26

(74.3%) with PTE.

Structural MRI Acquisition and Data Analysis

Structural brain images were acquired using the volumetric magnetization-prepared rapid

gradient echo (MPRage) T1-weighted sequence run on a 3T Siemens Tim Trio scanner

(Siemens Medical Solutions, Erlangen, Germany). Children were acclimatized to the

scanner environment and provided a DVD movie of their choice to watch during scanning.

No sedation was used. Total scan time was approximately 20–25 min. The majority of

participants [PME = 17/20 (85%) vs. non-PME = 12/15 (80%)] were scanned using the

following MPRage pulse sequence: TR = 2,200 ms, TE = 4.91 ms, TI = 1,000 ms, flip angle

= 12°, field of view = 256 × 256 mm2, slice thickness = 1 mm, resolution = 1 × 1 × 1 mm.

Three PME and three non-PME participants were scanned using a modified MPRage pulse

sequence: TR = 2,530 ms, TE = 3.33 ms, TI = 1,100 ms, flip angle = 7°, field of view = 256

× 256 mm2, slice thickness = 1 mm, resolution = 1 × 1 × 1 mm. Two members of the

research team (C.D. and K.K.) reviewed each MRI and excluded data sets with significant

motion artifact from subsequent analysis. A neuroradiologist who was not involved in the

research protocol provided a clinical reading of each scan.

To reconstruct brain morphological features, the 3D MPRAGE data were processed via the

FreeSurfer software package v4.0.5 (http://surfer.nmr.mgh.harvard.edu) [22-24], using an

automated pipeline custom developed for an XNAT-based DICOM-server hosted at Weill

Cornell Medical College of Cornell University (https://ped-birn.med.cornell.edu/xnat/).

Scans were corrected for motion, normalized for intensity and skull-stripped using the

FreeSurfer software package. Subcortical volumes were derived by automated segmentation

using a validated pediatric atlas [20]. This automated segmentation technique assigns a

neuroanatomical label to each voxel on the image. The probability of each voxel being

assigned a certain label depends upon both participant-specific measures of image intensity

and spatial information, and participant-independent measures derived from the probabilistic

atlas. For cortical and subcortical volumes, the cerebrum was divided into the following

structures: cortical gray matter, subcortical white matter, thalamus, caudate, putamen,
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pallidum and hippocampus. Total intracranial volume (TICV) was computed for each

participant. Cortical thickness measures were derived by first identifying white matter

voxels to establish the gray-white matter interface as the starting point for cortical

segmentation. Subsequently, a deformable surface algorithm was applied to construct the

pial surface with submillimeter precision [24]. Segmentation requires the use of a set of

priors in the form of an atlas, which guides the identification of specific brain structures

based on location, tissue type and local spatial configuration [25]. The output was visually

reviewed and topological inaccuracies were manually corrected. In order to align sulcal and

gyral characteristics across participants, each reconstructed brain was registered to a

common spherical representation coordinate system [26]. Parcellation of specific cortical

areas was based on the system developed by Desikan et al. [27], and allowed for calculation

of the mean thickness for each area. Cortical thickness estimates were determined by

averaging the shortest distance from each point on the gray-white matter boundary to the

pial surface and the shortest distance from every point on the pial surface to the gray-white

matter boundary [24]. FreeSurfer’s segmentation and parcellation approach has been shown

to be robust to intensity overlap between different cortical structures and comparable to

manual labeling in accuracy [27-29]. We have extended that comparison by demonstrating

the enhanced validity of utilizing a set of manually edited pediatric priors for developmental

studies [20].

Cognitive and Behavioral Assessment

Cognition was measured at 36 months of age using the Bayley Scales of Infant

Development-II (BSID-II) Mental Scale, which tests memory, problem solving, early

number concepts, generalization and vocalizations [30]. A standard score, the Mental

Development Index (MDI), was derived, with a mean of 100 and an SD of 16. Behavior was

assessed at 36 months using the Child Behavior Checklist (CBCL) – Parent [31]. Summary

scores reported here are T scores (standardized by age and sex) for externalizing,

internalizing and total problems. The cut-off point for the normal range of these summary

scores is a T score <60, with borderline scores ranging from 60 to 63 and clinical scores

≤64.

Laboratory measurement of attention was assessed using the Conners’ Kiddie Continuous

Performance Test version 5 (K-CPT™ V.5), a 7.5-min computerized task administered at 66

months [32]. Children were presented with a series of common pictures on a computer

screen and asked to press the space bar in response to every picture shown except in

response to the picture of the ball. Pictures were presented for 500 ms with an inter-stimulus

interval (ISI) that varied between 1.5 and 3.0 s. For each ISI, 5 blocks consisting of 20 trials

(pictures) per block were presented. Reaction times (RT) were recorded to the nearest

millisecond. RT less than 100 ms were considered perseverations or anticipatory rather than

true responses. K-CPT measures of attention used in this study included omissions,

commissions, hit reaction time (HRT) and HRT by ISI. Omissions were defined as the

number of pictures to which the child did not respond. Commissions were the number of

times the child responded to the picture of the ball. Sustained attention (vigilance) was

assessed using the measure of HRT by block. HRT was computed as the mean response time

in milliseconds for all target responses for all 5 blocks of each ISI. HRT by ISI measured the
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slope of change in RT over the two ISIs. HRT by block measured the change in RT across

the 5 blocks of 20 trials per ISI. Logarithmic transformations of RT were used to calculate

HRT and HRT by ISI. Values for all measures were then converted to T scores comparing

the participant’s score with an age- and gender-matched normative group that had a mean of

50 and an SD of 10. High HRT T scores reflect slow RT and may be one indicator of

inattentiveness. High HRT by ISI T scores reflect slowing of RT as the ISI lengthens, and

may suggest problems adjusting to changing tempo and task demands. High HRT by block

scores indicate slowing of RT as the test progresses and may suggest difficulty with

sustained attention.

Covariates

Age at time of MRI, gender, handedness and TICV were included as covariates due to their

previously reported influence on brain morphology [33-35]. Handedness was assessed at the

66-month IDEAL study visit by asking the caregiver to indicate which hand the child uses to

write or draw with: left, right, both, or don’t know.

Statistical Analysis

PME effects on subcortical and cortical brain volumes and cortical thickness were tested by

the general linear model with type III sum of squares, adjusting for PTE, prenatal marijuana

exposure, age at time of scan, gender, handedness, pulse sequence, and TICV (for

volumetric outcomes). A similar analysis was done for PTE effects on subcortical and

cortical brain volumes and cortical thickness, adjusting for PME and the above covariates.

SAS 9.1.3 Service Pack 3 (SAS Institute Inc., Cary, N.C., USA) was used for statistical

analysis. Analysis of variance, χ2 test or Fisher’s exact test was used, as appropriate, to

examine group differences in demographic characteristics. Morphometric data derived from

FreeSurfer analyses in which the majority of values were greater than two standard

deviations from the mean were considered outliers and were eliminated from further

analysis. For subcortical morphometric analyses, volumes were highly correlated between

the two hemispheres; therefore, the average of each subcortical structure was computed and

used as the unit of statistical measure for subsequent analyses. From the full FreeSurfer data

set a priori, regions of interest (ROI) were extracted for the general linear model analyses

based on previous imaging studies of PME [12, 13], PTE [19, 36] and attention-deficit

hyperactivity disorder (ADHD) [37-39]. We included ROI previously reported to be related

to ADHD because of the hypothesized link between PME, PTE and the later development of

ADHD or ADHD-related endophenotypes [10, 40, 41]. ROI for the subcortical volumetric

analyses included subcortical white matter, thalamus, caudate, putamen, pallidum and

hippocampus. ROI for the cortical volumetric and thickness analyses included TICV,

cortical gray matter, the left and right dorsolateral prefrontal cortex (DLPFC), anterior

cingulate gyrus, orbital-frontal cortex (OFC), posterior cingulate, inferior frontal gyrus,

inferior parietal lobule, superior temporal gyrus, posterior aspect of the superior temporal

sulcus (Banks) and the lingual gyrus. As per FreeSurfer convention, the DLPFC was further

subdivided into the rostral and caudal middle frontal cortex [42]; the cingulate gyrus into the

rostral and caudal anterior cingulate cortex; the OFC into the lateral and medial OFC; the

inferior frontal gyrus into the pars opercularis, pars triangularis and pars orbitalis gyri, and

the inferior parietal lobule into the inferior parietal cortex and the supramarginal gyrus.
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Significance was defined as p < 0.05, but because of the small sample size and the

exploratory nature of this study, we considered p < 0.10 as indicative of a trend towards

significance. Linear regression (Pearson’s r) was employed to evaluate the association

between specific brain morphological measures and cognitive, behavioral and attentional

outcome measures.

Results

Characteristics of the Sample

Demographic and clinical characteristics of the study cohort, stratified by PME and PTE, are

presented in table 1. There were 20 participants with PME, 19 of whom also had

concomitant PTE (95.0%). Of the 15 participants without PME, 7 had PTE (46.7%). Of the

26 participants with PTE, 19 had PME (73.1%), but only 1 (11.1%) of the 9 participants

without PTE had PME. As expected from the original IDEAL study design, no differences

were found by PME status in maternal education, insurance status or infant birth weight.

PTE was unrelated to maternal education and insurance status, but was borderline

significantly associated with reduced birth weight (p = 0.064). Additionally, we found no

differences by either PME or PTE status in maternal age, prenatal care, Hollingshead ISP (a

measure of SES) at birth, maternal depression or psychological distress over the first 3 years

of the study, child gender, handedness or gestational age. PME and PTE were significantly

coassociated (p = 0.002) and prenatal marijuana exposure was associated with PME (p =

0.027) but not PTE. PME was highly related to reduced head circumference (p = 0.011) at

birth, but was not associated with either TICV (p = 0.385) or TICV after adjustment for age

at time of MRI (p = 0.336; data not shown). Age at acquisition of MRI and number of

participants scanned using the modified pulse sequence were unrelated to PME or PTE

status. As illustrated in tables 2 and 3, the imaged participants were highly representative of

both the overall and the nonimaged Hawaii-site IDEAL study cohorts, respectively, except

for race and degree of PTE.

Child Neurodevelopmental Outcomes

The average age of administration of the neurodevelopmental tests was as follows: Bayley

MDI: 37.06 ± 1.54 months; CBCL: 37.82 ± 2.99 months, and K-CPT: 68 ± 4.7 months. As

shown in tables 2 and 3, there were no differences in Bayley MDI scores comparing imaged

participants with the overall IDEAL study and the Hawaii site IDEAL study cohorts, and

previously published research on the entire IDEAL cohort did not identify differences in 36-

month Bayley MDI outcomes by PME status [43]. However, as shown in table 4, among the

imaged cohort, significant group differences were found in 36-month Bayley MDI scores,

with non-PME children showing poorer scores (PME: 89.56 ± 7.90 vs. non-PME: 81.14 ±

14.34; p = 0.043). This difference was largely attributable to one non-PME, non-PTE

participant whose score of 49 was close to 2.5 SD below the mean for the non-PME group

(PME: 89.56 ± 7.90 vs. non-PME: 83.62 ± 11.41; p = 0.097 for analysis without this

participant). In contrast, PME was significantly associated with higher (worse) HRT by ISI

scores (PME: 72.13 ± 20.41 vs. non-PME: 52.43 ± 7.54; p = 0.002) and borderline higher

HRT by block scores (PME: 64.64 ± 26.86 vs. non-PME: 46.45 ± 24.41; p = 0.060). No
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PME or PTE group differences were found in CBCL scores or in K-CPT omissions,

commissions or overall HRT.

Imaging Data

Subcortical Volumes—Table 5 shows the relationship between PME and PTE on

average volumes of cortical gray matter, subcortical white matter, thalamus, caudate,

putamen, pallidum and hippocampus, adjusting for PTE (in the case of PME) or PME (in the

case of PTE), marijuana, age at time of scan, gender, handedness, pulse sequence and total

ICV. Also shown is the effect of PME and PTE on total ICV, adjusting for the same

covariates except total ICV. Average caudate volumes were significantly reduced among

children with PME (PME: 3,540.2 ± 272.6 vs. non-PME: 4,043.4 ± 326.5; p = 0.001),

equivalent to an effect size of d = −1.67. No other group differences by PME or PTE were

identified.

Regional Cortical Thickness—Regional cortical thickness analyses are shown in table

6. After adjustment for covariates, PME was borderline related to increased cortical

thickness in the left hemisphere medial OFC (PME: 3.38 ± 0.29 vs. non-PME: 3.24 ± 0.25;

p = 0.054), right lateral OFC (PME: 3.43 ± 0.35 vs. non-PME: 3.35 ± 0.19; p = 0.062), and

right supramarginal gyrus (PME: 2.96 ± 0.39 vs. non-PME: 2.91 ± 0.37; p = 0.063).

In contrast, PTE was significantly related to cortical thinning in the right posterior aspect of

the superior temporal sulcus (PTE: 2.93 ± 0.35 vs. non-PTE: 3.37 ± 0.32; p = 0.024) and the

right lateral occipital cortex (PTE: 2.67 8 0.16 vs. non-PTE: 2.79 ± 0.20; p = 0.043), and

borderline associated with cortical thinning in the caudal middle frontal region of the left

DLPFC (PTE: 2.99 ± 0.20 vs. non-PTE: 3.10 ± 0.16; p = 0.058), the right supramarginal

gyrus (PTE: 2.87 ± 0.38 vs. non-PTE: 3.13 ± 0.32; p = 0.082), the left superior temporal

gyrus (PTE: 3.11 ± 0.24 vs. non-PTE: 3.30 ± 0.16; p = 0.069), the left lateral occipital cortex

(PTE: 2.54 ± 0.18 vs. non-PTE: 2.70 ± 0.22; p = 0.074) and the left (PTE: 3.26 ± 0.29 vs.

non-PTE: 3.58 ± 0.20; p = 0.095) and right (PTE: 3.17 ± 0.43 vs. non-PTE: 3.52 ± 0.23; p =

0.085) middle temporal gyri.

Regional Cortical Volumes—In general, there were few significant associations

identified between PME or PTE and regional cortical volumes (table 7). After adjustment

for covariates, PME was related to smaller volumes in the posterior aspect of the superior

temporal sulcus (banks of superior temporal sulcus) on the right hemisphere (PME: 2,814.30

± 593.83 vs. non-PME: 3,421.67 ± 745.28; p = 0.019) and borderline larger volumes in the

right pars opercularis gyrus (PME: 4,958.40 ± 745.69 vs. non-PME: 4,486.07 ± 862.60; p =

0.074). PTE was associated with borderline smaller volumes in the right rostral anterior

cingulate (PTE: 1,905.96 ± 355.77 vs. non-PTE: 2,048.67 ± 433.05; p = 0.054) and larger

volumes in the left frontal pole (PTE: 1,033.54 ± 292.18 vs. non-PTE: 909.33 ± 218.62; p =

0.069).

Correlation Analyses—As shown in figure 1, there were highly significant correlations

between PME, average caudate volume and K-CPT HRT by ISI scores, suggesting that

caudate volume mediates the relationship between PME and K-CPT HRT by ISI. There was
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no association between caudate volume and HRT by block (r = −0.191; p = 0.295). Caudate

volume was inversely associated with Bayley MDI scores (r = −0.357; p = 0.045), but the

directionality of this relationship was not affected by PME status (PME: r = −0.235; p =

0.347; non-PME: r = −0.149; p = 0.610). This association was largely attributable to one

non-PME, non-PTE participant whose score of 49 was close to 2.5 SD below the mean for

the non-PME group, and whose caudate volume was 4,170 mm3, one of the larger volumes

in our cohort (r = −0.309; p = 0.091, for analysis without this participant). Caudate volume

was not associated with the behavioral outcomes measured. No other associations were

found between any of the significant or borderline significant measures in subcortical

volume or cortical ROIs (both volume and thickness) and cognitive, behavioral or

attentional outcomes.

Discussion

Using multiple regression analysis with adjustment for important covariates, we identified

significant volumetric reductions in the caudate nucleus among preschool-aged children

with PME followed prospectively since birth. The magnitude of the volume reduction was

large as measured by Cohen’s d. We additionally found selected PME- and PTE-associated

group differences in regional cortical volume and thickness measures, consistent with the

postulated neurodevelopmental effects of MA and tobacco. Our findings refine and extend

previously published research by: (1) examining a priori-defined ROIs among a cohort of

preschool-aged children with prenatal drug exposure and an age- and socio-demographically

matched comparison group followed prospectively since birth; (2) excluding children with

prenatal alcohol exposure, and (3) using an analysis strategy designed to uncover the

independent contributions of PME versus PTE on brain morphometry.

The large PME-associated volume reductions observed in the caudate region in this study

are consistent with previous neuroimaging research [12, 13] and with a large body of clinical

and basic science research on the neurotoxicity of MA to striatal neurons [44, 45]. Our

findings of reduced caudate volumes parallel those seen in adolescents with prenatal cocaine

exposure [46], another stimulant with pharmacologic properties like MA. The caudate

volume deficits seen in our study (12.4%) were also of similar magnitude to the reductions

attributed to PME in the Chang et al. [12] and Sowell et al. [13] studies, 13 and 10–15%,

respectively, lending additional validity to our results. To test for evidence of a dose

response on striatal neurotoxicity, we examined the relationship between the level of MA

exposure [none, some (<3 days/week) and heavy (≥ 3 days/week)] and caudate volume.

While the overall ANOVA was highly significant [F(2, 31) = 11.27, p = 0.0002], the only

group difference that retained significance after Bonferroni multiple comparison test was

between some exposure and no exposure (difference of means: −509.5; 95% CI: −787.0,

−232.0; p < 0.05).

Sowell et al. [13] found that smaller caudate volumes in children with PME were associated

with lower full-scale intelligence quotients (FSIQ), but paradoxically with higher FSIQ

scores in children without PME. In their discussion, however, they suggest caution in

interpreting their preliminary finding. In our study we found a significant inverse

relationship between caudate volumes and Bayley MDI scores, a construct analogous to
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FSIQ, when PME and non-PME groups were combined, but the relationship, although in the

same direction, was no longer significant when stratified. As described in the results section,

the inverse relationship was skewed by a single participant who appeared to be an outlier. In

combination with the lack of any association between PME and Bayley MDI scores at 3

years of age in the entire IDEAL cohort [43], this suggests that the inverse relationship

between caudate volumes and Bayley MDI scores found in our study was spurious.

Consistent with this, several recent neuroimaging studies also did not find associations

between caudate volumes and FSIQ or Bayley MDI scores [47, 48].

Cumulative evidence suggests that, rather than directly determining intelligence, the caudate

functions instead in cognitive control processes such as the flexibility of responding and the

ability to change or regulate behaviors when task contingencies or goals change [49, 50].

Our findings relating PME, caudate volume and HRT by ISI scores, the latter possibly

indicating a difficulty adjusting to changing task demands, provide support for this caudate-

cognitive control relationship, and suggest a more subtle alteration in the neurodevelopment

of children with PME. Additionally, our findings relating PME to worse K-CPT HRT by

block scores, suggesting difficulty with sustained attention, replicate previous research [12]

in which PME was related to poorer performance on another sustained attention task, the

Test of Variable Attention [51]. Of note, we did not find accompanying group differences in

omissions or commissions, nor did we find brain behavior correlations with the HRT by

block scores. Similar subtle deficits in attentional functioning as were seen in participants in

this neuroimaging study have been recently confirmed in the entire IDEAL cohort among

children with PME [52].

Our PME- and PTE-associated cortical thickness findings showed regional coherence with

the existing literature and hypothesized PME and PTE effects. For example, we found

borderline increased cortical thickness in the left medial OFC, right lateral OFC and the

right supramarginal gyrus, part of the right inferior parietal lobule, consistent with prior

research implicating these regions with both stimulant exposure and attention [38, 53, 54].

Although these thickness increases have not been previously described in the literature on

PME, they have been observed in children with prenatal alcohol exposure [55], where they

were thought to reflect either compensatory or aberrant CNS development. If confirmed in

larger samples, these thickness increases may be consistent with the PME-associated cortical

volumetric increases described by Sowell et al. [13]. We additionally found possible PTE-

associated cortical thinning in several cortical regions implicated in previous neuroimaging

studies of PTE, including the caudal middle frontal and the temporal lobe [19, 36], the latter

consistent with the known effects of PTE on auditory processing [56]. If confirmed in

studies with greater power, our results suggest that prenatal MA and prenatal tobacco may

have distinct differential cortical effects on the developing CNS.

Overall, we found little evidence for widespread cortical volumetric or thickness changes

among preschool-aged children as a result of PME or PTE, although our relatively small

sample size may have limited our ability to identify group differences. Nevertheless, the

regions where we did see borderline and significant differences were consistent with areas

identified in previous studies and with the hypothesized effects of MA and tobacco on the

developing CNS [40]. For example, the borderline PME-associated volumetric increases
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seen in the right pars opercularis are consistent with the perisylvian cortex volumetric

increases identified by Sowell et al. [13], but we also found PME-associated volume deficits

in the right posterior aspect of the superior temporal sulcus. The borderline volume

reductions seen here in the right rostral anterior cingulate associated with PTE were in

contrast to those seen by Sowell et al. [13], who found PME-associated volume increases.

Their study did not control for or measure PTE, so it is possible that doing so might have

altered their results, a limitation acknowledged in their discussion. Given that several studies

have described cingulate cortex volumetric reductions in children [57] and adults [58] with

ADHD, along with the well-known association between PTE and ADHD [59] and the

recently described one between PME and increased CBCL externalizing and ADHD

problem behaviors in 5-year-old children [10], both our findings and those of Sowell et al.

[13] show consistent regional specificity.

There are several limitations to this study, the major one being the relatively small sample

sizes of the exposed and unexposed groups, which may have reduced our power to detect

significant differences or, conversely, have inflated our results. In fact, after adjusting our

subcortical and cortical results for multiple comparisons using the step-up Hochberg

Bonferroni method [60], only the caudate volume reduction remained significant at the p <

0.05 level, although the volume reduction and cortical thinning seen in the posterior aspect

of the right superior temporal sulcus indicated a trend toward significance with a p < 0.1.

Therefore, we would consider all of the results herein to be preliminary with the exception

of the findings on reduced caudate volumes associated with PME. A second potential

limitation comes from trying to separately adjust for PME and PTE in our analyses, given

the very high degree of correlation between the two exposures as shown in table 1.

Disentangling the effects of individual drugs among pregnant women who are poly-

substance users is a challenge [61]. As such, it is possible that residual confounding may

alternatively explain the observed findings. Third, our ability to identify group differences

may have been minimized because of offsetting effects of PME and PTE among participants

with coexposure (19 out of 35 participants), as PME tended to make the cortex thicker,

while PTE tended to make the cortex thinner. Fourth, although this study has definite

methodological strengths over studies derived from community convenience samples, it is

still possible that there was selection bias in recruitment, in that caregivers with children

having developmental delays or behavioral concerns may have been more inclined to enroll.

Finally, because this was a cross-sectional study, differentiation of actual causal processes

from epiphenomena and compensatory responses is difficult [62].

Conclusion

Consistent with previous research, we found significant volume reductions in subcortical

striatal structures related to PME. Reduced caudate volume appears to mediate the

relationship found between PME and K-CPT reaction time by ISI outcomes, a subtle EF

deficit suggesting that exposed children may have more difficulty adjusting to changing task

demands. We also identified PME-associated cortical thickness increases in perisylvian and

orbital-frontal cortices, a finding similar to the volumetric increases described by Sowell

[13]. In contrast to PME, PTE appears to be associated with cortical thinning in perisylvian
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and lateral occipital cortices, and with possible volumetric increases in frontal and

volumetric decreases in anterior cingulate regions.
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Fig. 1.
Correlations between PME, average caudate volume and K-CPT HRT by ISI.
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Table 2

Comparison of Hawaii IDEAL MR-imaged versus nonimaged multi-site IDEAL participants

MR-imaged participants (n = 35) Nonimaged IDEAL participants (n =
377)

p

Maternal/demographic characteristics

Race <0.001

 White 4 (11.4%) 156 (41.4%)

 Hispanic 1 (2.9%) 91 (24.1%)

 Hawaiian/Pacific Islander 20 (57.1%) 51 (13.5%)

 Asian 7 (20.0%) 50 (13.3%)

 Black 3 (8.6%) 18 (4.8%)

 American Indian 0 10 (2.7%)

 Other 0 1 (0.3%)

Low SES (Hollingshead V) 11 (31.4%) 82 (21.9%) 0.196

Public insurance 30 (85.7%) 333 (88.3%) 0.648

Partner at birth 17 (48.6%) 210 (55.7%) 0.417

Education <12 years 18 (51.4%) 154 (41.1%) 0.235

Maternal age, years 24.1 (5.6) 25.3 (5.6) 0.232

Gestational age at first prenatal visit, weeks 10.9 (4.8) 12.1 (7.5) 0.398

Prenatal MA use 20 (57.1%) 184 (48.8%) 0.345

Heavy MA use (≥3 days/week across pregnancy) 3 (8.8%) 32 (8.6%) 0.645

Prenatal tobacco use 26 (74.3%) 192 (50.9%) 0.008

Prenatal marijuana use 6 (17.1%) 70 (18.6%) 0.835

Neonatal/child characteristics

Gender (boy) 19 (54.3%) 201 (53.3%) 0.912

Birth weight, g 3,198 (602) 3,252 (599) 0.612

Length, cm 50.5 (3.0) 50.4 (3.4) 0.831

Head circumference, cm 33.7 (1.7) 33.9 (1.8) 0.515

Gestational age, weeks 38.8 (1.6) 38.6 (2.1) 0.593

SGA 8 (22.9%) 47 (12.5%) 0.084

Low birth weight (<2,500 g) 3 (8.6%) 44 (11.7%) 0.581

BSID-II MDI1 85.9 (11.8) 88.6 (13.6) 0.273

Values are number with percentage in parentheses or mean with SD in parentheses. SGA = Small for gestational age.

1
Measured at the 3-year visit: 32 MRI participants, 244 remaining IDEAL participants.
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Table 3

Comparison of MR-imaged versus nonimaged Hawaii-site IDEAL participants

MR-imaged participants (n = 35) Nonimaged Hawaii IDEAL participants
(n = 124)

p

Maternal/demographic characteristics

Race 0.106

 White 4 (11.4%) 22 (17.7%)

 Hispanic 1 (2.9%) 12 (9.7%)

 Hawaiian/Pacific Islander 20 (57.1%) 45 (36.3%)

 Asian 7 (20.0%) 40 (32.3%)

 Black 3 (8.6%) 5 (4.0%)

Low SES (Hollingshead V) 11 (31.4%) 36 (29.0%) 0.784

Public insurance 30 (85.7%) 109 (87.9%) 0.730

Partner at birth 17 (48.6%) 72 (58.1%) 0.318

Education <12 years 18 (51.4%) 52 (41.9%) 0.318

Maternal age, years 24.1 (5.6) 25.0 (5.4) 0.368

Gestational age at first prenatal visit, weeks 10.9 (4.8) 13.0 (7.5) 0.141

Prenatal MA use 20 (57.1%) 60 (48.4%) 0.360

Heavy MA use (≥3 days/week across pregnancy) 3 (8.8%) 14 (11.7%) 0.437

Prenatal tobacco use 26 (74.3%) 69 (55.6%) 0.047

Prenatal marijuana use 6 (17.1%) 15 (12.1%) 0.436

Neonatal/child characteristics

Gender (boy) 19 (54.3%) 64 (51.6%) 0.780

Birth weight, g 3,198 (602) 3,185 (518) 0.899

Length, cm 50.5 (3.0) 50.5 (2.7) 0.985

Head circumference, cm 33.7 (1.7) 33.8 (1.7) 0.731

Gestational age, weeks 38.8 (1.6) 38.5 (1.7) 0.370

SGA 8 (22.9%) 17 (13.7%) 0.189

Low birth weight (<2,500 g) 3 (8.6%) 12 (9.7%) 0.843

BSID-II MDI1 85.9 (11.8) 86.1 (17.1) 0.954

Values are number with percentage in parentheses or mean with SD in parentheses. SGA = Small for gestational age.

1
Measured at the 3-year visit: 32 MR-imaged participants, 74 nonimaged Hawaii IDEAL participants.
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