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 Mini-Review Mini-Review

Auxin and ROS

The plant growth regulator auxin has been well known for regu-
lating many growth and developmental processes such as meri-
stem development, cell division, cell elongation and maintenance 
of polarity.1,2 More recently, auxin’s function has also been con-
nected to plant defense against stress. Oxidative stress is a com-
ponent of many abiotic stress conditions such as drought,3 high 
temperature stress,4 salinity5 and heavy metal stress6 and biotic 
stress conditions such as herbivory7 and plant pathogen interac-
tions.8 During these stress conditions, levels of reactive oxygen 
species (ROS) increase, potentially resulting in oxidations of 
DNA, proteins and lipids. During plant adaptation, however, 
cellular repair machineries reduce at least some of these oxidized 
macromolecules. At the same time, ROS have additional signal-
ing roles in plant adaptation to the stress (Fig. 1).

Auxin and ROS are rapidly altered by environmental stress 
factors. ROS can have effects on auxin biosynthesis, transport, 
metabolism and signaling.9 Major ROS molecules in cells include 
superoxide anion (O

2
−), hydroxyl radical (·OH), singlet oxygen 

(1O
2
) and hydrogen peroxide (H

2
O

2
). They are produced in 
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Biotic and abiotic stress conditions produce reactive oxygen 
species (ROS) in plants causing oxidative stress damage. At 
the same time, ROS have additional signaling roles in plant 
adaptation to the stress. it is not known how the two seemingly 
contrasting functional roles of ROS between oxidative damage 
to the cell and signaling for stress protection are balanced. 
Research suggests that the plant growth regulator auxin 
may be the connecting link regulating the level of ROS and 
directing its role in oxidative damage or signaling in plants 
under stress. The objective of this review is to highlight some 
of the recent research on how auxin’s role is intertwined to that 
of ROS, more specifically H2O2, in plant adaptation to oxidative 
stress conditions.
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various cell compartments mainly chloroplasts, mitochondria, 
peroxisomes, endoplasmic reticulum, plasma membrane, cell wall 
and apoplast and this aspect has been extensively reviewed.10,11 
Hydrogen peroxide is one of the major ROS compounds pro-
duced in and outside the cells during abiotic and biotic stress con-
ditions.12 Studies show that exogenous auxin application induces 
H

2
O

2
 in plants13,14 and that may be the mode of action for auxin 

type herbicides.15 On the contrary, exogenous auxin reduced 
the H

2
O

2
 accumulation in the roots of tomato through altered 

expression and activity of H
2
O

2
 scavenging enzymes catalases, 

Cu-Zn-superoxide dismutase (SOD) and peroxidases.16 Reactive 
oxygen species production was shown to be essential for auxin-
regulated gravitropism in maize roots.17 Scavenging of ROS by 
the addition of antioxidants inhibited root gravitropism.17 It was 
shown that phosphatidylinositol 3-kinase activation was required 
for auxin-induced H

2
O

2
 production and root gravitropism.18 

Pre-treatment with inhibitors of phosphatidylinositol 3-kinase 
stopped ROS production in root tissue and root protoplasts of 
maize, while the addition of exogenous auxin induced phospha-
tidylinositol 3-kinase activity.18 A study on barley root tip indi-
cated that the application of auxin signaling inhibitor reduced 
cadmium-induced H

2
O

2
 production and growth response.19 

Auxin-induced plant cell elongation is mediated by the produc-
tion of ·OH, H

2
O

2
 and O

2
·−.20 The production of ·OH from O

2
− 

and H
2
O

2
 from peroxidase reactions act as cell wall loosening 

agents20 and help in extensibility by breaking the backbones of 
cell wall polysaccharides.21

Arsenite (AsIII) is a toxic metalloid known to induce oxida-
tive damage in cells. We used this as a tool to identify the role 
of auxin in oxidative stress tolerance in Arabidopsis.22 The auxin 
transporter mutant aux1 was more sensitive to AsIII than the 
wild-type. During AsIII stress, compared with aux1, wild-type 
Arabidopsis plants produced increased H

2
O

2
 which helped them 

tolerate the stress better than the mutant. This indicated that 
AUX1 had a positive role in induction of H

2
O

2
 production dur-

ing stress.22 Our results are corroborated by a study conducted on 
auxin signaling mutant.23 The auxin signaling mutant, tir1afb2 
(double mutant for auxin receptors TIR1-Transport Inhibitor 
Response1 and AFB2-auxin signaling F-box 2)24 showed reduced 
accumulation of H

2
O

2
 and superoxide anion, and had enhanced 

activities of antioxidant enzymes catalase and ascorbate peroxi-
dase.23 These results indicate that auxin homeostasis in specific 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

e25761-2 Plant Signaling & Behavior volume 8 issue 10

for auxin signaling, suggesting ABA’s role in its enhancement of 
auxin signaling.32

There are lines of evidence in Arabidopsis for localized accu-
mulation of auxin increasing H

2
O

2
 production.14 Exogenous 

auxin application was found to produce H
2
O

2
 and induced an 

accumulation of irreversible inactive form of auxin, 2-oxindole-
3-acetic acid (oxIAA).14 This form of auxin was not transported 
from cell to cell and was found at high levels in auxin transporter 
(ABCB) mutants. The oxIAA was not able to activate auxin sig-
naling suggesting the importance of auxin metabolism in manip-
ulating auxin signaling.14

Thiol Reduction Systems in Auxin Regulation

Thiol reduction systems, NADPH-dependent thioredoxin 
reductases and glutathione (GSH) affect the developmental pro-
cesses in Arabidopsis by interfering with auxin signaling.33 In this 
study, Trx reductase (ntra ntrb-mutant with inactivated cytosolic 
and mitochondrial thioredoxin reductases) and glutathione bio-
synthesis mutations (cad2-Cd hypersensitive) negatively altered 
auxin transport and metabolism and the triple mutant ntra ntrb 
cad2 had defects in the auxin-regulated phenotypes.33 Low gluta-
thione availability correlated with the reduction in expression of 
PIN auxin transporters PIN1, PIN2, PIN3, PIN4 and AUX1 and 
auxin response marker gene IAA1.33 Triple mutant ntra ntrb cad2 
had flowerless phenotype similar to the pin mutants which was 
rescued by the addition of GSH. Also, the mutant calli lacked the 
ability to regenerate shoots in the absence of exogenous auxin. In 
the same way, mutants of ROXY1 and ROXY2, CC-type glutare-
doxins show abnormalities in petal and anther development in 
flowers of Arabidopsis,34-36 suggesting auxin-related phenotypes.

Parallel to these observations, atgrxs17 Arabidopsis mutant for a 
GSH-dependent thiol transferase (glutaredoxin) were sensitive to 
high temperature stress and accumulated higher amounts of ROS 
and displayed altered auxin response phenotype.37 Arabidopsis 
mutants for AtGrxS17 displayed post embryonic growth phe-
notypes similar to that of auxin perception mutants.37 These 
mutants had altered auxin sensitivity and polar auxin transport37 
compared with wild-type plants. Exogenous GSH application 
rescued hyponastic leaf curling caused by altered auxin levels in 
catalase2 (cat2) mutant which accumulates high levels of H

2
O

2
.38 

These results together indicate that thiol reduction pathways are 
involved in the regulation of auxin homeostasis and resulting 
phenotypes.

Role of H2O2 and Auxin in Abiotic Stress Tolerance

Reactive oxygen species in plants are known to be produced dur-
ing biotic and abiotic stress conditions having dual roles (Fig. 1) 
of causing damage and signaling to induce defense responses.39,40 
Several studies suggest a link between auxin homeostasis and 
H

2
O

2
 in plant stress tolerance but the mechanistic details are not 

well understood. Auxin transport mutant aux1 was more sensi-
tive to arsenite stress than wild-type seedlings in Arabidopsis.22 
Wild-type plants recorded increased H

2
O

2
 on arsenite stress 

treatment but not in aux1 mutant indicating a positive role of 

tissues is important to regulate the production of H
2
O

2
 through 

altered expression of antioxidant enzymes.

Auxin and ROS Signaling

Production of superoxide by NADPH oxidase is the first step 
in the formation of H

2
O

2
.25,26 Auxin-induced NADPH oxi-

dase activity has been recorded in isolated vesicles and elon-
gating hypocotyls of soybean.27 This activity was inhibited by 
the addition of thiol reagents like dithiothreitol, and reduced 
glutathione.27 In Arabidopsis root, it is shown that transient 
increase in extracellular ATP(eATP) is perceived by the plasma 
membrane leading to the production of reactive oxygen species 
mainly through the action of NADPH oxidase (AtRBOHC) 
followed by the activation of Ca2+ channels.28 AtrbohC mutants 
were impaired for eATP buildup, ROS production, increase in 
Ca2+ and transcription of mitogen-activated protein kinase 3 
(MAPKinase3).28 Mitogen-activated protein kinase was found to 
be induced by H

2
O

2
 treatment which in turn was able to activate 

antioxidant enzymes.29 During salt stress tolerance, the H
2
O

2
 

and Ca2+ signaling was triggered by H+ coupled ion transport-
ers like H+-ATPase in Populus euphratica.30 Exogenous supply of 
auxin induced H+-ATPase activity in petunia pollen by hyper 
polarization of plasma membrane and transient increase in cyto-
solic Ca2+.31 Inhibitors of NADPH oxidase of plasma membrane 
blocked this process. Hydrogen peroxide application mimicked 
the exogenous IAA application in the male gametophyte indicat-
ing the process is mediated by production of ROS.31

Mitochondrial electron transport chain is a site of ROS pro-
duction. A study on Arabidopsis mutant abo6 coding a mitochon-
drial DEXH box RNA helicase indicated that these mutants 
accumulated more ROS than the wild-type and were impaired 

Figure 1. Dual role of reactive oxygen species (ROS) during stress. 
Green arrows indicate positive effects and red negative effects.
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signals.43 Because auxin could increase cytosolic calcium, 
the control on H

2
O

2
 levels by auxin could be due to CaM’s 

effects on catalase activity. A recent study demonstrated that a 
catalase-deficient mutant (cat2) had reduced catalase activity, 
increased H

2
O

2
 accumulation and reduced auxin levels in the 

Arabidopsis leaves, leading to an “up curling phenotype” under 
photorespiratory conditions.38 This implies that auxin levels in 
the leaves were modulated by H

2
O

2
 levels. Exogenous applica-

tion of auxin was also able to rescue the mutant phenotype.38 
The same results of rescued phenotype could be achieved by the 
application of GSH which was found to induce the transcrip-
tion of auxin biosynthetic genes.38

Accumulating evidence from studies in different plant spe-
cies indicate that auxin’s function in plants growth, develop-
ment and more recently in stress response could be mediated 
via ROS signaling. Key events relating to auxin and ROS 
regulating plant growth, development and stress tolerance are 
summarized in Figure 2. The regulated processes include root 
gravitropism, extension growth, pollen tube growth, arsenite 
tolerance and high temperature stress tolerance. Further stud-
ies are required to examine the link between auxin and ROS 
homeostasis and the signaling cascades. These studies also 
open new possibilities to alter crop tolerance to stress by engi-
neering auxin synthesis and metabolism, auxin signaling, ROS 
signaling and thiol-mediated regulatory pathways.44 New uses 
for exogenous auxin to optimize crop performance under stress 
could be explored.41

auxin transporter in production of ROS. Auxin transport 
mutant aux1 was also found to be hypersensitive to high tem-
perature and salt stress indicating a common functional role of 
auxin transport in stress tolerance to heat, salt and arsenite.22 
Increase in H

2
O

2
 was also correlated with reduced transcription 

of the catalase-3 in the wildtype.22 This can be attributed to the 
reduced auxin transport and accumulation in the roots of aux1 
mutant and its inability to induce H

2
O

2
 signaling.

Several other phenotypes of the ROS signaling mutants 
were reversible by the addition of exogenous auxin signifying 
the cross-link between auxin and ROS. Defects in shoot regen-
eration from the calli and secondary root production in Trx 
reductase mutant ntra ntrb cad2 were rescued by exogenous 
supply of auxin suggesting that the mutants were less sensitive 
to auxin or auxin was limiting in these mutants.33 High tem-
perature causes tissue specific reduction in auxin which leads to 
pollen sterility. Application of auxin completely reversed male 
sterility in barley and Arabidopsis.41 This is consistent with the 
report in Arabidopsis that auxin transporter PIN8, expressed 
in the male gametophyte is critical for auxin homeostasis and 
normal development of the male gametophyte.42 In the pres-
ence of cytosolic Ca, calmadulin (CaM) a calcium binding 
protein was able to bind to and activate catalase extracted from 
tobacco leaves.43 Activation of catalase by Ca2+CAM was found 
to be unique to plants and no such activation was found in 
bovine, human or fungal catalases, thus suggesting unique reg-
ulation of H

2
O

2
 concentration and signaling to environmental 

Figure 2. The metabolic interplay between auxin and hydrogen peroxide to control plant growth, development and stress tolerance. Green arrows 
indicate positive effects and red negative effects.
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