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Introduction

p68, a member of DEAD-box helicase family is highly con-
served in eukaryotes and involved in almost all RNA metabolic 
processes. Recently, a number of studies showed that helicases 
are not only involved in many cellular processes including 
plant growth and development1-7 but also provides stress tol-
erance in transgenic plants.3,7-13 The appropriate regulation of 
gene expression is important for all cellular processes, in which 
transcriptional control is primarily concerned with improved 
survival. Mostly, genes are expressed in transgenic plants under 
the control of promoter, a DNA sequences required for appro-
priate spatial and temporal expression pattern. The most widely 
used promoter for expression of transgenes is CaMV 35S pro-
moter (caulif lower mosaic virus) but sometime it may causes 
some undesirable effect in plants such as gene silencing, delayed 
growth, dwarfism and low yield.14-18

So, inducible and tissue-specific promoters are required to 
study the gene regulatory networks in plant.19,20 Cis-acting reg-
ulatory elements present in promoter sequence may function 
as molecular switch by controlling transcriptional regulation 
of gene activities. Previously, it was reported that promoter of 
helicases contained stress responsive cis-elements21-24 but the 

isolation of stress-inducible and tissue-specific promoters25,26 is 
still interest in the fiend of molecular breeding, biotechnology 
and agriculture.

In this study, we have isolated and functionally character-
ized the promoter of Psp68 in response to abiotic and hormonal 
treatment by Agrobacterium-mediated transient assay. In silico 
analysis also identified that the promoter of Psp68 harbored 
multiple stress responsive cis-acting elements. Transient assay 
showed that promoter of Psp68 drives high levels of GUS expres-
sion under abiotic stress and hormonal treatment. Therefore, 
this promoter could be used for the study of the spatio-temporal 
expression pattern and development of stress tolerant transgenic 
crops in the future.

Results

Isolation of the promoter of Psp68
Pea genomic DNA library was prepared by digesting 

genomic DNA with different restriction enzymes (EcoRV, 
DraI, PvuII and SspI) in 4 separate tubes to generate blunt ends 
of genomic DNA. The digested genomic DNA was purified 
and further ligated into BD genome walker kit. The primary 
PCR was done by using AP1 as forward (5′-GTAATACGAC 
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helicases are molecular motor proteins that perform a variety of cellular functions including transcription, trans-
lation, DNa replication and repair, RNa maturation, ribosome synthesis, nuclear export and splicing processes. The 
p68 is an evolutionarily conserved protein which plays pivotal roles in all aspect RNa metabolism processes. It is well 
established that helicases provides abiotic stress adaptation in plants but analysis of cis-regulatory elements present 
in the upstream regions is still infancy. here we report isolation and functional characterization of the promoter of a 
DeaD-box helicase Psp68 in response to abiotic stress and hormonal regulation. The promoter of Psp68 was isolated 
by gene walking PcR from pea genomic DNa library constructed in BD genome walker kit. In silico analysis revealed 
that promoter of Psp68 contained a TaTa, a caaT motif and also harbors some important stress and hormone associ-
ated cis regulatory elements, including e-box, aGaaa, GaTa-box, acGT, Gaaaa and GTcTc. Functional analyses were 
performed by Agrobacterium-mediated transient assay in tobacco leaves. Very high level of GUs activity was observed 
in agroinfiltrated tobacco leaves by the construct carrying the Psp68 promoter::GUs, subjected to abiotic stress and 
exogenous hormonal treatments. stress-inducible nature of Psp68 promoter opens possibility for the study of the 
gene regulation under stress condition. Therefore, may be useful in the field of agriculture and biotechnology.
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TCACTATAGG GC-3′) primer and gene specific reverse 
primer R3 (5′-CCTCGCATTC TCTTCCTCGT A-3′). Four 
DNA genomic libraries were used as a template for the first 
PCR. The PCR products were resolved on a 1% agarose gel and 
a smear was observed in all the 4 libraries. Secondary PCR was 
done using primary PCR product as template (1: 10 dilution) 
with AP2 (5′-ACTATAGGGC ACGCGTGGT-3′) as forward 
and R2 (5′-AGAAGAGTTG GAGTGA-GGGTACG-3′) as a 
reverse primer. The PCR products were resolved on 1% aga-
rose gel but only library 4 gave a band size of 750 bp. After 
the nested PCR, the specific band was purified and cloned 
into pGEM-T vector (data not shown) and sequenced. After 
sequencing, 531bp upstream regions was successfully isolated 
and verified by finding the overlapping regions at the 3′ end 
of Psp68 gene.

In silico analysis of Psp68 promoter
To identify the transcription start site, putative TATA box 

and CCAAT box, the promoter sequence of Psp68 were ana-
lyzed by using Plant Prom Database. The promoter region has 
a TATA (TACAAA, consensus TATAAA) and CCAAT box 
at position −81 and −117bp respectively (Fig. 1). To identify 
the cis-regulatory elements, present in the Psp68 promoter, the 
sequence was analyzed using PLANTCARE and PLACE data-
bases (Fig. 1). Various cis-acting elements including E-box, 

AGAAA, GATA-box, dehydration and salt responsive elements 
(ACGT and GAAAA) and auxin response factor (GTCTC) 
were identified in the promoter sequence (Fig. 1). The additional 
cis-acting elements presents among others are 8 transcriptional 
activators elements (NGATT, GANTTNC, MACCWAMC 
and CTGACY), 4 mesophyll-specific gene expression elements 
(YACT), 6 pollen specific activator elements (GTGA and 
AGAAA), 10 (AAAGAT, CTCTT, AAAGAT and CTCTT) 
nodule specificity regulatory elements, one light-activated 
(ACTTTG), and one WRKY transcription factors (TGAC) 
element (Table 1). A complete list of all predicted cis-elements 
present in the Psp68 promoter was shown in Table 1.

Cloning of Psp68 promoter in binary vector and 
Agrobacterium transformation

The PCR amplified Psp68 promoter fragment was first 
cloned into pGEMT easy vector. It was then released by 
BamHI and HindIII restriction digestion and further cloned 
in pCAMBIA-1391Z (promoter less vector) binary vector in 
the same restriction site. Cloning of the Psp68 promoter was 
confirmed by colony PCR and restriction analysis (data not 
shown). The fusion construct containing Psp68 promoter-GUS 
(β-glucuronidase) in pCAMBIA-1391Z was further trans-
formed Agrobacterium tumefaciens strain (LBA4404) and veri-
fied by colony PCR using promoter specific primers.

Figure 1. Psp68 promoter sequence. a schematic representation showing various cis-elements present in the upstream region of Psp68 gene as 
determined by PLace program. TaTa-box and caaT sequences and various cis-acting elements are shown in different color.
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Regulation of Psp68 promoter activities
To compare the regulation of Psp68 promoter activity, we 

used transient expression by agro infiltration in the tobacco 
leaves.27 This method was selected to avoid long-time regen-
eration protocol. The Psp68 promoter was fused with GUS 
reporter gene in pCAMBIA-1391Z vector and infected into the 
leaves of tobacco by Agrobacterium infiltration. The CaMV35S 
promoter fused with GUS and WT tobacco plants used was as 
positive and negative control respectively, in order to determine 
Psp68 promoter activity.

Activities of Psp68 promoter in tobacco leaves
To check whether the isolated 5/-f lanking region of Psp68 

genes have promoter activity, the constructs containing pro-
moter of Psp68 ::GUS and CaMV35S::GUS were agroinfiltrated 
into the leaves tobacco. Both the constructs drove strong levels 
of GUS expression but maximum GUS gene expression was 
driven by the CaMV35S promoter (Fig. 2). No GUS expression 
was observed for the negative control. These results indicated 

that the promoter sequence isolated from the upstream of the 
Psp68 gene was functional in tobacco leaves.

Abiotic stress-induced activities of Psp68 promoter
The impact of abiotic stress (salt, PEG and cold) on the 

activities of Psp68 promoter was verified by transient assay in 
the leaves tobacco (Fig. 3). Abiotic stress treatment applied on 
agroinfiltrated leaves increases the expression of GUS activity 
(Fig. 3A). The effect of abiotic stress was varied for the Psp68 
promoter; GUS activity increased ~15-folds in response to salt 
stress but upon PEG and cold treatment the expression was 
increased ~20 and ~11-folds respectively (Fig. 3B). The CaMV 
35S promoter also displayed high GUS activity levels. These 
results indicated that the promoter of Psp68 is a stress inducible 
promoter.

Hormone-induced GUS Activity
In the agroinfiltrated leaves of the tobacco, the Psp68 pro-

moter construct showed GUS positive expression in response to 
hormonal (Auxin, ABA and MeJA) treatments (Fig. 4). High 

Table 1. Prediction of cis-regulatory elements of PsP68 promoters using PLace database

Element name and number Sequence Function

aRR1aT (5)
eeccRcah1 (1) MYBPLaNT (1) BOXNTchN48 (1)

NGaTT GaNTTNc MaccWaMc cTGacY Transcriptional activators

acGTaTeRD1 (2) acGT Responsive to dehydration

aRFaT (1)
sURecOReaTsULTR11 (3)

TGTcTc
GaGac

auxin response factor

caaTBOX1 (3)
GaTaBOX (5)

NTBBF1aRROLB1 (1)

caaT
GaTa

acTTTa

Responsible for the tissue specific promoter activity.
Tissue-specific and auxin-regulated expression

cacTFTPPca1 (4) YacT elements for mesophyll-specific gene expression

caReOsReP1 (1) caacTc Gibberellin-upregulated proteinase expression

ccaaTBOX1 (1) ccaaT enhanced expression of chimaeric heat shock

DOFcOReZM (5) aaaG Transcription factors

GTGaNTG10 (3)
POLLeN1LeLaT52 (3)

GTGa
aGaaa

Late pollen gene
Responsible for pollen specific activation

INTRONLOWeR (1) TGcaGG catalog of splice junction

MYBcOReaTcYcB1 (1) aacGG activator of reporter gene

MYBPZM (1) ccWacc controls phlobaphene pigmentation

NODcON1GM (2)
NODcON2GM (3)

Ose1ROOTNODULe (2)
Ose2ROOTNODULe (3)

aaaGaT
cTcTT

aaaGaT
cTcTT

Nodule specificity of cis-acting regulatory elements.
activated in the infected cells of root nodules

seBFcONssTPR10a (1) YTGTcWc Potato silencing element binding factor

sORLIP2aT (1) GGGcc
Involved in the network of

phytochrome a-regulated gene expression

TaaaGsTKsT1 (1) TaaaG Transcription factors in guard cell-specific gene expression

TBOXaTGaPB (1) acTTTG Light-activated gene transcription

WBOXNTeRF3 (1) TGacY
Rapid and transient activation of transcription of the eRF3 

gene by wounding in tobacco leaves

WRKY71Os (1) TGac
early nuclear events in plant defense signaling: rapid 

gene activation by WRKY transcription factors
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GUS expression was observed in response to Auxin and MeJA 
followed by ABA treatment (Fig. 4A). To quantify the GUS 
expression, equal amounts of protein was isolated from agro-
infiltrated leaves and assayed for f luorescence. GUS activity 
increased ~11, ~8 and ~10-folds respectively by application of 
Auxin, ABA and MeJA treatments (Fig. 4B). The variation in 
the activity may be due to present of hormone-induced cis-act-
ing elements in different position of Psp68 promoter.

Discussion

Cis- regulatory elements present in the promoters of stress-
responsive gene controlled many essential biological processes 
including abiotic stress responses, hormone responses and 
developmental processes. In plants, a number of cis-regulatory 
elements have shown to be essential for the transcription of 
stress-responsive genes.28,29 A recent chromatin immunopre-
cipitation study identified that ETHYLENE RESPONSE 
FACTOR1 bind with stress-specific GCC or DRE/CRT ele-
ments and upregulates specific suites of genes in response to 
abiotic stresses.30 Drought and salt stress lead to increase ABA 
accumulation which may triggers adaptive responses.31 The 
presence of either a single ABRE or multiple ABREs is suffi-
cient to confer ABA-mediated osmotic stress.32 The significance 
of a few cis- regulatory elements (G-box and ABREs) combi-
nations have also been showed that stress-responsive genes are 
regulated by multiple transcription factors. 33,34 Therefore, to 
understand the regulatory gene networks in stress-responsive 
cascades, functional analyses of cis-acting elements is desirable.

The promoter of Psp68 contain canonical E-box element 
which is critical for p68 promoter activity. 35 E-box motifs can 
be recognized by Myc-Max heterodimers that are known to 

function in the regulation of many growth regulating genes. 
E-box motif is found in other DEAD-box proteins in human 
Ddx5, mouse MrDb (Myc-regulated DEAD-box protein) and 
Drosophila.36,37 The p68 function as transcription coactiva-
tors by binding with CBP, the CREB-binding protein.38 The 
CBP bridges the CRE/CREB complex to components of the 
basal transcription apparatus and it is possible that p68 directly 
influence its own transcription. Furthermore, the promoter of 
Psp68 contains overrepresentation of different transcriptional 
activators elements. These findings indicated that transcription 
of Psp68 might be highly complex and developmentally regu-
lated. Several putative cis-regulatory elements associated with 

Figure  2. Transient expression of Psp68 promoters in agroinfiltrated 
tobacco leaves. GUs activity was determined 48h after infiltration of 
tobacco leaves with agrobacterium (OD0.7) containing promoter::GUs 
and caMV35s::GUs constructs, or WT (negative control). Data repre-
sent the mean and sD of 4 independent experiments.

Figure  3. Psp68 promoter-GUs analysis in response to abiotic stress. 
(A) GUs activity in agroinfiltrated leaves. GUs was detected in X-Gluc 
solution followed by stress treatment. (B) effect of abiotic stress on 
the transient expression of Psp68 promoter in agroinfiltrated tobacco 
leaves. Two days after infiltration with A. tumefaciens (OD 0.7) contain-
ing either Psp68 promoter::GUs or caMV35s::GUs constructs, tobacco 
leaves were sprayed with 200 mM Nacl, 20% PeG. For cold treatment 
infiltrated leaves were kept on 4  °c. after treatment, all the samples 
were used for quantification assay. Infiltrated leaves of WT without 
treatment (water) used as negative control. Data represent the mean 
and sD of 4 independent experiments.
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tissue-specific expression (GATA and CAAT motifs), pollen 
specific activator elements (GTGA and AGAAA motifs), meso-
phyll (YACT motif ) and guard cell-specific (TAAAG motif ) 
gene expression elements and nodule specific regulatory ele-
ments (AAAGAT, CTCTT, AAAGAT and CTCTT motifs) 
were identified in Psp68 promoter sequences. Apparent enrich-
ment of these tissue-specific expression regulatory elements 
indicates the involvement of Psp68 gene in wide range of cel-
lular process but need to validate.

The expression of Psp68 was induced by abiotic stress. Salt 
(GAAAAA) and dehydration (ACGT-box) responsive cis-acting 
elements were identified by computational analysis. The pro-
moter of Psp68 is able to drive GUS expression in agroinfiltrated 
leaves of tobacco challenged with NaCl, PEG and cold stress. 
The presence of the GT-1 like element (5/-GAAAAA-3/) in 
the upstream region of Psp68 gene might be responsible salin-
ity specific expression. Earlier report showed that in response 
to salinity stress, the GA sequence in GT-1 cis regulatory ele-
ment bind to nuclear factor(s)39 resulting salinity stress toler-
ance. In this study, GUS activity was also observed in response 
to PEG and ABA treatments. The existence of ACGT-box and 
ABRE elements might support the above statement. In response 
to dehydration, ABA levels increased. It has been reported that 
most dehydration-inducible genes are also induced by ABA40,41 
and ABA is known be involved in dehydration-inducible gene 
expression in land plants. 40-42 The promoter sequence of Psp68 
also contain cold responsive element like CCGAC (DRE). 
Earlier, the DRE/CRT and ABRE elements found together 
in the promoters of many well-studied cold-regulated genes in 
Arabidopsis43, 44 which is consistent with a role for the ABA regu-
lation of cold-induced genes.

Auxin is a major plant hormone, required for many devel-
opmental processes in plant45 including root formation,46 apical 
dominance47 and growth-related tropisms.48 The transcriptional 
response to auxin is mediated by the auxin responsive cis-regu-
latory elements present in the upstream region of auxin respon-
sive genes.49 We have identified 5 auxin responsive cis-regulatory 
elements in Psp68 promoter sequence. Furthermore, high GUS 
expression was observed in the agroinfiltrated tobacco leaves 
upon treatment with auxin. This indicated that Psp68 gene may 
play an important role in auxin-mediating signal transduction 
pathways. Although conserved similar sequence were observed 
in the promoter of many auxin responsive genes, 50,51 it remains 
need to be tested the functional significance of these conserved 
sequences. Jasmonates are another growth regulators52 impor-
tant for plant biotic and abiotic stress responses. 53-55 Either GCC 
or G-box elements are required for MeJA-inducible expression of 
different genes. A number of studies have been identified these 
elements in a variety of plant gene promoters and their role in 
response to light, anaerobiosis, and various phytohormones.56,57 
We found 7 GCC motifs in the promoter of Psp68 and pro-
moter:: GUS analysis also detected very high level of GUS 
expression under MeJA treatment, indicating a positive regula-
tory role of Psp68 gene toward abiotic stress tolerance.

The promoter of Psp68, drive the expression reporter gene in 
response to abiotic stress and hormonal treatments. The Psp68 

promoter contains dehydration, salt, cold, auxin ABA and MeJA 
related cis-elements, which may regulate the expression of this 
gene. Therefore, Psp68 promoter could be used as a new and 
powerful candidate for the study of tissue specific and stress 
responsive transgene expression in crop plants.

Materials and Methods

Isolation of Psp68 promoter: gene walking by PCR
Pea genomic DNA was isolated by a previously described 

method58 and ~5 µg genomic DNA was digested overnight at 
37 °C with 4 blunt end cutting restriction enzymes: DraI, EcoRI, 
PvuII and StuI/SmaI independently. Following digestion, the 
genomic DNA was purified by phenol-chloroform precipitation 

Figure 4. Psp68 promoter-GUs analysis in response to hormonal treat-
ment. (A) GUs activity in agroinfiltrated leaves. GUs was detected in 
X-Gluc solution followed by hormone treatment. (B) effect of abiotic 
stress on the transient expression of Psp68 promoter in agroinfiltrated 
tobacco leaves. Two days after infiltration with A. tumefaciens (OD0.7) 
containing either Psp68 promoter::GUs or caMV35s::GUs constructs, 
tobacco leaves were sprayed with 100 µM auxin, 100 µM aBa and 
10 µM MeJa and used for quantification assay. Water treated infiltrated 
leaves of WT used as negative control. Data represent the mean and sD 
of 4 independent experiments.
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and each pool of DNA fragments was ligated to the BD Genome 
Walker Adaptor as per the manufacturer’s instruction. The primer 
AP1corresponding to gene-specific primer R3 was used for pri-
mary PCR reactions. The 50 µl reactions mixture contain 0.4 µl 
stock diluted DNA, 0.2 µM of each primer and 0.5 µl Advantage® 
2 Polymerase mix (Clontech, USA) with the following conditions: 
35 cycles, 94 °C 45s, 64 °C 30s, 72 °C 1 min. The primary PCR 
were then diluted in 50 fold for prior to the nested-PCR reaction 
using the primer AP2 in combination with R2 in the same cycle 
conditions. The bands of interest were separated by electrophoresis, 
purified and cloned into pGEMT vector and sequenced.

In silico analyses of promoter sequence
Homologies to sequence were searched in Basic local align-

ment search tools (BLASTN and BLASTX) and was aligned 
using the ClustalW program. The prediction of transcriptional 
start site, TATA-box and CAAT-box were done using Plant Prom 
Database.59 Putative cis-acting elements were identified by using 
Plant CARE Database (http://bioinformatics.psb.-ugent.be/
webtools-/plantcare/html/).

Plasmid constructions
The Psp68 promoter was amplified from Psp68 promoter-

pGEMT clone, using the primers by introducing BamHI and 
HindIII restriction sites. The amplified bands were run on 1% 
agarose gel, cut, eluted and again ligated into pGEMT-easy clon-
ing vector. The clone was verified by colony PCR and restriction 
digestion analysis with BamHI and HindIII enzymes. The Psp68 
promoter was further cloned in pCAMBIA-1391Z in the same 
restriction site. The colonies were checked by PCR, followed by 
restriction analysis with BamHI and HindIII restriction enzymes. 
The Psp68 promoter cloned in pCAMBIA-1391Z vector was again 
transformed in Agrobacterium tumefaciens (LBA4404) and con-
firmed by colony PCR using Psp68 promoter specific primers.

Agrobacterium-mediated transient assays
Agroinfiltration assays were performed by a previously described 

method earlier. 27 The Psp68 promoter, transform in Agrobacterium 
tumefaciens (LBA4404) were grown in LB medium containing 50 
µg/ml rifampicin, 50 µg/ml kanamycin and incubated overnight 
at 28 °C. The cells were harvested by centrifugation at 3,0009 g 
for 15 min and further resuspended in infiltration media (10 mM 
MgSO4, 200 µM acetosyringone, 20 mM MES pH 5.6). Fully 
expanded leaves of tobacco (Nicotiana tobaccum cv USA) plants 
grown in greenhouse at 22 °C were agroinfiltrated by using a 1-ml 
syringe. After 48h, infiltrated leaf discs were collected.

Stress treatments
For salinity and drought stress, tobacco leaves were agroinfiltra-

tion with 200 mM NaCl and 20% PEG solution or water as a con-
trol and then collected after 24h. For cold treatment, infiltrated 
leaf discs kept on 4 °C and collected after 24h. For hormonal 
stress, tobacco leaves were agroinfiltration with 10 μM naphtha-
lene acetic acid (auxin), 100 μM ABA and 10 μM MeJA respec-
tively or water as a control and then collected after 24h.

GUS activity detection
The leaf discs were incubated overnight at 37 °C in GUS assay 

solution containing 1 mg/ml X-Gluc, 5 mM potassium ferro-
cyanide, 5 mM potassium ferricyanide, 0.2% Triton X-100 in 
100 mM sodium phosphate buffer (pH 7.4) followed by washing 
with 70% ethanol solution till the chlorophyll cleared.

GUS activity quantification
β-Glucuronidase activity was quantified by fluorometric 

GUS assays. Agroinfiltrated leaves were homogenized in 1 ml 
extraction buffer containing 10 mM EDTA, 50 mM NaH

2
PO

4
 

pH 7, 0.1% sodium lauryl sarcosine, 10 mM β-mercaptoethanol 
and 0.1% Triton X-100. The homogenate was centrifuged at 
12,000 rpm for 15 min at 4 °C and finally supernatant was col-
lected. The concentration of protein was measured by Bradford 
method60 by using bovine serum albumin (BSA) as a standard. 
GUS activity was performed by earlier described method61 and 
expressed as picomoles of 4-MU (methylumbelliferone) per min-
ute per milligram of protein.
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