
 Short Communication

www.landesbioscience.com	 Plant Signaling & Behavior	 e27933-1

Plant Signaling & Behavior 9, e27933; February; © 2014 Landes Bioscience

Short Communication

Xylan is the second most abundant polysaccharide in plant 
biomass. It is the predominant hemicellulose in secondary walls of 
xylem and fibers in angiosperms.1 Xylan consists of a linear chain 
of β-1,4-linked xylosyl residues with a degree of polymerization 
up to 120.2 The reducing end of the xylan backbone from 
gymnosperms and dicots also contains a distinct tetrasaccharide 
sequence, β-D-Xyl-(1→3)-α-l-Rha-(1→2)-α-D-GalA-(1→4)-
D-Xyl.3-6 Xylan from dicots is typically substituted with single 
residues of α-D-glucuronic acid (GlcA) and 4-O-methyl-α-D-
glucuronic acid (MeGlcA) at O-2. Xylan from lignified tissues of 
grasses is substituted with α-L-arabinose (Ara) at O-3 in addition 
to the 2-O-linked GlcA and MeGlcA, and that from cereal grains 
is mainly substituted with Ara residues at O-2 and O-3.1 Although 
xylan substituents are typically single sugar residues, those of grass 
xylan can be disaccharides composed of 2-O-Ara-Ara or 2-O-Xyl-
Ara linked at O-3 to the xylan backbone, and the Ara substituents 
may be esterified by ferulic acid at O-5.1 Xylan from wood of 
Eucalyptus globulus was found to contain disaccharide side chains 
composed of MeGlcA substituted at O-2 with α-D-galactose 
(Gal).7 In addition to sugar substitutions, xylosyl residues in the 
xylan backbone may be acetylated at O-2 and/or O-3.8 Since xylan 

is one of the factors contributing to the recalcitrance of cellulosic 
biomass to saccharification,9 it is important to have a thorough 
understanding of xylan structure and of how genetic modification 
of xylan content and structure may alter lignocellulosic biomass 
recalcitrance in order to custom-design biomass composition 
tailored for biofuel production.

Arabidopsis has been used as a model to identify genes involved 
in xylan biosynthesis and to study how alterations of xylan content 
and structure impact secondary wall biosynthesis. As a typical 
dicot xylan, Arabidopsis xylan consists of the xylosyl backbone, the 
reducing end tetrasaccharide sequence, and substitutions of xylosyl 
residues with GlcA/MeGlcA residues and acetyl groups.5,10 Genetic 
and biochemical studies of xylan biosynthesis in Arabidopsis 
have revealed that the elongation of the xylosyl backbone 
requires glycosyltransferases from both GT43 (IRX9/I9H and 
IRX14/I14H) and GT47 (IRX10/IRX10L) families,5,11-16 the 
biosynthesis of the reducing end tetrasaccharide sequence involves 
glycosyltransferases from GT8 (IRX8 and PARVUS) and GT47 
(FRA8/F8H) families,5,6,11,17-19 the substitutions by GlcA residues 
is mediated by 3 GT8 glycosyltransferases (GUX1/2/3),20,21 
and the methylation of GlcA residues is catalyzed by 3 DUF579 
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Arabidopsis xylan consists of a linear chain of β-1,4-linked D-xylosyl residues, about 10% of which are substituted with 
single residues of α-D-glucuronic acid (GlcA) or 4-O-methyl-α-D-glucuronic acid (MeGlcA) at O-2. In addition, about 
60% of xylosyl residues are acetylated at O-2 and/or O-3. Previous studies have identified a number of genes responsible 
for elongation of the xylan backbone, addition of the GlcA substituents, and methylation of the GlcA residues. Yuan 
et al. (2013) have recently reported that the 2-O- and 3-O-monoacetylation of xylosyl residues in Arabidopsis xylan 
requires a DUF231 domain-containing protein, ESKIMO1 (ESK1), and proposed that ESK1 and its homologs are putative 
acetyltransferases responsible for xylan acetylation. It was noticed that the 1H nuclear magnetic resonance (NMR) 
spectra of the acetylated xylan from the esk1 mutant and the wild-type Arabidopsis exhibited a prominent proton 
signal peak at 5.42 ppm in addition to resonances corresponding to known acetylated structural groups of xylan. Here, 
we performed detailed structural investigation of wild-type Arabidopsis acetylated xylan using 2-dimensional 1H-1H 
and 1H-13C NMR spectroscopy and found that the signal peak at 5.42 ppm in the 1H NMR spectrum was attributed to 
GlcA residues substituted at O-2 with α-D-galactose (Gal), indicating the presence of Gal-GlcA disaccharide side chains 
in Arabidopsis xylan. This finding was further supported by analysis of endoxylanase-digested xylan using matrix-
assisted laser desorption ionization-time-of-flight mass spectrometry. Our study demonstrates that Arabidopsis xylan 
contains Gal-GlcA disaccharide side chains in addition to GlcA, MeGlcA, and acetyl substitutions.
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domain-containing methyltransferases (GXM1/2/3).22,23 
Mutations of genes responsible for the biosynthesis of the 
xylan backbone and the reducing end tetrasaccharide sequence 
all lead to a reduction in xylan content and concomitantly a 
defective secondary wall thickening. Recently, Yuan et  al.24 
have demonstrated that a DUF231 domain-containing protein, 
ESKIMO1 (ESK1), is required for the acetylation of xylan during 
secondary wall biosynthesis in Arabidopsis. The esk1 mutation 
causes a specific reduction in the 2-O- and 3-O-monoacetylation 
of xylosyl residues in xylan and severe defects in secondary wall 
thickening and plant growth. It was hypothesized that ESK1 
and its close homologs were putative acetyltransferases catalyzing 
O-acetylation of xylosyl residues in xylan.

It was noticed that the 1H nuclear magnetic resonance (NMR) 
spectra of the acetylated xylan from the esk1 mutant and the wild-
type Arabidopsis exhibited a prominent proton resonance peak 
located at 5.42 ppm in addition to the resonances corresponding to 
2-O- and 3-O-monacetylated xylosyl residues, 2,3-di-O-acetylated 
xylosyl residues, and 3-O-acetylated xylosyl residues substituted at 
O-2 with GlcA (Fig. 1).24 A proton resonance at 5.42 ppm has been 

previously observed in the 1H NMR spectrum of xylan from E. 
globulus and it was attributed to disaccharide side chains composed 
of MeGlcA substituted at O-2 with α-D-Gal.7 About 10% xylosyl 
residues in E. globulus xylan are substituted with MeGlcA residues 
and one-third of the MeGlcA substituents are attached with Gal 
residues. The Gal-MeGlcA disaccharide substituents in xylan have 
thus far only been reported in E. globulus, and it is not known 
whether they are also present in xylans from other species. One 
study has found that xylan from maize bran contains Gal-Xyl-Ara 
trisaccharide substituents.25

To investigate what structure the observed 5.42-ppm 
proton resonance in Arabidopsis acetylated xylan is attributed 
to, we employed 2-dimensional (2D) total correlation NMR 
spectroscopy (TOCSY) to analyze the structural units of wild-
type Arabidopsis xylan. It has previously been shown that in the 2D 
1H-1H TOCSY spectrum of E. globulus xylan, the H-1 signal of the 
Gal-MeGlcA disaccharide substituents at 5.42 ppm has correlation 
cross peaks with H-2 proton at 3.77 ppm.26 The H-1 signal of 
Arabidopsis xylan at 5.42 ppm also has correlation with H-2 proton 
at 3.7 ppm (Fig.  1), indicating that the cross peak corresponds 

Figure 1. Two-dimensional 1H-1H TOCSY NMR spectrum of acetylated xylan from wild-type Arabidopsis stems. Acetylated xylan was extracted with 
DMSO28 and digested with β-endoxylanase M6 (Megazyme) to generate xylooligosaccharides,16 which were subsequently subject to structural anal-
ysis using NMR spectroscopy.29 The spectra aligned at the top and the left of the figure are the 1D 1H NMR spectra of Arabidopsis xylan. The identi-
ties of the resonance peaks in the top spectrum are marked. The following abbreviations are used: GlcA/MeGlcA-2Gal, GlcA/MeGlcA substituted at 
O-2 with galactose; Xyl-2,3Ac, 2,3-di-O-acetylated xylosyl residues; Xyl-3Ac-2GlcA, 3-O-acetylated xylosyl residues substituted with O-2 with GlcA/
MeGlcA; Xyl-3Ac, 3-O-acetylated xylosyl residues.
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to the Gal-MeGlcA disaccharide substituents. 
Unlike E. globulus xylan that has only MeGlcA 
substituents,26 Arabidopsis xylan contains both 
GlcA and MeGlcA substituents. Since the proton 
resonances for GlcA and MeGlcA are overlapped 
in the 2D NMR spectrum,27 it is not discernable 
whether the cross peak at H-1 of 5.42 ppm and 
H-2 of 3.7 ppm in the 2D TOCSY spectrum of 
Arabidopsis xylan contains both Gal-GlcA and 
Gal-MeGlcA, and thus it is designated as Gal-
GlcA/MeGlcA (Fig.  1). Other correlations in 
the 2D TOCSY spectrum of Arabidpsis xylan 
correspond to GlcA/MeGlcA (the H-1/H-2 cross 
peak at 5.3/3.55 ppm), 2,3-di-O-acetylated xylosyl 
residues (H-3/H-5ax at 5.17/3.53 ppm, H-3/H-4 
at 5.17/4.05 ppm, and H-3/H-5eq at 5.17/4.2 
ppm), 3-O-acetylated xylosyl residues substituted 
at O-2 with GlcA (H-3/H-5ax at 5.08/3.48 ppm, 
H-3/H-2 at 5.08/3.7 PM, H-3/H-4 at 5.08/3.98 
ppm, H-3/H-5eq at 5.08/4.2 ppm, and H-1/H-2 
at 4.73/3.69 ppm), and 3-O-monoacetylated 
xylosyl residues (H-3/H-5ax at 4.98/3.48 ppm, 
H-3/H-4 at 4.98/3.93 ppm, H-3/H-5eq at 
4.98/4.13 ppm, and H-3/H-1 at 4.98/4.58 ppm). 
The spectral positions of these proton cross peaks 
are in good agreement with those reported for 
acetylated xylans from E. globulus and aspen,8,26 
thus validating the reliability of the 2D TOCSY 
spectrum of Arabidopsis xylan.

To confirm the identity of the 5.42-ppm proton 
resonance in Arabidopsis acetylated xylan as Gal-
GlcA/MeGlcA disaccharide substituents, we 
next analyzed the structural units of Arabidopsis 
xylan using 2D heteronuclear single-quantum 
correlation NMR spectroscopy (HSQC). The 
2D 1H-13C HSQC spectrum of Arabidopsis xylan 
showed a cross peak of H-1 and C-1 signals 
at 5.42 and 98 ppm (Fig.  2) corresponding to 
the resonances of Gal-MeGlcA disaccharide 
substituents, which is the same as that observed in E. globulus 
xylan.26 Congruent with the 2D HSQC spectra of acetylated 
xylans from E. globulus and aspen,8,26 other cross peaks of the 
1H and 13C chemical shifts in the spectrum of Arabidopsis xylan 
correspond to GlcA/MeGlcA (the H-1/C-1 signals at 5.28/98.8 
ppm), 2,3-di-O-acetylated xylosyl residues (H-3/C-3 at 5.17/74 
ppm), 3-O-acetylated xylosyl residues substituted at O-2 with 
GlcA (H-3/C-3 at 5.08/75 ppm), 3-O-monoacetylated xylosyl 
residues (H-3/C-3 at 4.98/76.3 ppm and H-1/C-1 at 4.58/102.5 
ppm), and non-acetylated internal xylosyl residues (H-1/C-1 at 
4.42/104 and 4.48/103 ppm). Because xylooligomers released 
from xylanase digestion of acetylated xylan were used for NMR 
spectroscopy, cross peaks of H-1 and C-1 signals for reducing end 
α-xylose (H-1/C-1 at 5.18/93.2 ppm) and reducing end β-xylose 
(H-1/C-1 at 4.58/97.6 ppm) were prominent.

To further substantiate the existence of the disaccharide side 
chain Gal-GlcA/MeGlcA in Arabidopsis xylan, we next applied 

matrix-assisted laser desorption ionization-time-of-flight mass 
spectrometry (MALDI-TOF-MS) to examine xylooligomers 
released from xylanase digestion of Arabidopsis xylan. The 
MALDI-TOF spectrum showed the expected prominent ion 
peaks [M+Na]+ at mass-to-charge ratio (m/z) 745, 759, 877, 
and 891 that are attributed to GlcA-substituted Xyl

4
, MeGlcA-

substituted Xyl
4
, GlcA-substituted Xyl

5
, MeGlcA-substituted 

Xyl
5
, respectively (Fig.  3).17 Noticeably, the spectrum also had 

ion peaks at m/z 775 and 907, which correspond to the expected 
masses of (Gal-GlcA)-substituted Xyl

3
 and (Gal-GlcA)-

substituted Xyl
4
, respectively. No ion peaks corresponding to the 

expected masses of (Gal-MeGlcA)-substituted Xyl
3
 (m/z 789) 

and (Gal-MeGlcA)-substituted Xyl
4
 (m/z 921) were detected. 

The MALDI-TOF-MS data showing the presence of ions 
corresponding to (Gal-GlcA)-substituted xylooligomers not only 
is consistent with the 2D NMR data but also demonstrate that the 
disaccharide side chain in Arabidopsis xylan is mainly composed 

Figure 2. Two-dimensional 1H-13C HSQC NMR spectrum of acetylated xylan from wild-
type Arabidopsis stems. Acetylated xylan was extracted with DMSO28 and digested with 
β-endoxylanase M6 (Megazyme) to generate xylooligosaccharides,16 which were subse-
quently subject to structural analysis using NMR spectroscopy.29 The spectrum aligned at 
the top of the figure is the 1D 1H NMR spectra of Arabidopsis xylan. See the abbreviations 
in Figure 1. Xyl-red-α, reducing end α-Xyl; Xyl-red-β, reducing end β-Xyl; Xyl-int, non-
acetylated internal Xyl.
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of GlcA substituted with Gal and that MeGlcA substituted with 
Gal, if present, is a minor component.

In summary, our results from the 2D 1H-1H and 1H-13C NMR 
spectroscopy and the MALDI-TOF-MS provide unequivocal 
evidence demonstrating that Arabidopsis xylan contains Gal-GlcA 
disaccharide side chains in addition to substitutions with GlcA, 
MeGlcA and acetyl groups (Fig. 4). Since GlcA substituents are 
common structural units of xylans from different species, it will be 

interesting to investigate whether 
Gal-GlcA substitutions of xylan 
also occur commonly in various 
plant species. Further studies 
on the functional roles of the 
Gal-GlcA substitutions in xylan 
properties and identification of 
glycosyltransferases responsible 
for Gal-GlcA substitutions 
of xylan will enrich our 
understanding of the mechanisms 
controlling xylan biosynthesis.
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