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RNA editing mediated by adenosine deaminases acting on RNA (ADARs) converts adenosine (A)

to inosine (I) residues in dsRNA templates. While ADAR-1-mediated editing was essentially

described for RNA viruses, the present work addresses the issue for two d-retroviruses, human T-

cell leukemia virus type 2 and simian T-cell leukemia virus type 3 (HTLV-2 and STLV-3). We

examined whether ADAR-1 could edit HTLV-2 and STLV-3 virus genomes in cell culture and in

vivo. Using a highly sensitive PCR-based method, referred to as 3DI-PCR, we showed that

ADAR-1 could hypermutate adenosine residues in HTLV-2. STLV-3 hypermutation was obtained

without using 3DI-PCR, suggesting a higher mutation frequency for this virus. Detailed analysis of

the dinucleotide editing context showed preferences for 59 ArA and 59 UrA. In conclusion, the

present observations demonstrate that ADAR-1 massively edits HTLV-2 and STLV-3 retroviruses

in vitro, but probably remains a rare phenomenon in vivo.

RNA editing mediated by adenosine deaminases acting on
RNA (ADARs) has been shown to be one of the most pre-
valent post-transcriptional RNA modification mechanisms
in higher eukaryotes (Bass, 2002; Samuel, 2001). These
enzymes convert adenosine (A) to inosine (I) residues in
dsRNA templates. Inosine is essentially recognized by the
translational machinery as guanine (G), leading to pro-
teins that are frequently non-functional (Li et al., 1991).
Three ADAR genes are known. They are specific for dsRNA.
While ADAR-1 and ADAR-2 are expressed in many tissues,
ADAR-3 is only expressed in the nervous system (Bass, 1997,
2002; Chen et al., 2000; Melcher et al., 1996). ADAR-1 gene
consists of 17 exons across a 30 kb sequence (George &
Samuel, 1999; Wang et al., 1995). ADAR-1 transcription is
initiated from multiple promoters, one being inducible
by type I and II interferons (IFNs), while the others are
constitutively active (George & Samuel, 1999; Liu et al.,
1997). Interestingly, of the ADAR-1 gene transcripts i.e.
ADAR-1L and -1S, only the former can be induced by IFN-
a/b and c, underlining its role in antiviral responses. ADAR-
1 editing was initially described in the context of sub-
acute sclerosing panencephalitis, a rare chronic degenerative
disease that occurs several years after measles virus infection
(Cattaneo et al., 1987, 1988; Patterson et al., 2001; Wong
et al., 1989, 1991). ADAR-1 editing was originally confined

to negative-stranded viruses such as measles virus, vesicular
stomatitis virus (O’Hara et al., 1984), human parainfluenza
virus (Murphy et al., 1991), lymphocytic choriomeningitis
virus (Grande-Pérez et al., 2002), respiratory syncytial virus
(Martı́nez et al., 1997; Rueda et al., 1994), influenza virus
(Suspène et al., 2011; Tenoever et al., 2007) and Rift Valley
fever virus (Suspène et al., 2008). Recently, measles and
influenza virus genomes derived from inactivated seasonal
influenza and live-attenuated measles vaccines were also
shown to be edited by ADAR-1 (Suspène et al., 2011).

ADAR editing is not restricted to negative-stranded viruses
since the hepatitis C virus (Taylor et al., 2005) genome was
also found to be edited. Among retroviruses, AAG editing
was first described for Rous-associated virus RAV-1 (Hajjar
& Linial, 1995), avian leukosis virus (Felder et al., 1994) and
more recently for human immunodeficiency virus-1 (HIV-
1) (Doria et al., 2009; Phuphuakrat et al., 2008) although at a
low frequency. The d-retrovirus group includes four human
T-cell leukemia viruses (HTLV-124), and their simian T-cell
leukemia virus counterparts (STLV-1, -2 and -3) (Mahieux &
Gessain, 2011; Slattery et al., 1999). STLV-1 is widely dis-
tributed in Asian and African non-human primates with
STLV-3 being only found in African non-human primates
(Mahieux & Gessain, 2011).

Journal of General Virology (2012), 93, 2646–2651 DOI 10.1099/vir.0.045146-0

2646 045146 G 2012 SGM Printed in Great Britain



HTLVs- or STLVs-edited genomes have not been described
so far. Since, these viruses mostly replicate through clonal
expansion of the infected cell, they may be less prone to
genetic editing (Wattel et al., 1995). We have recently
developed a PCR-based method, referred to as 3DI-PCR,
that allows selective amplification of ADAR-edited RNAs
(Suspène et al., 2008). Here, we show that HTLV-2 and
STLV-3 RNAs can be efficiently and massively edited by
ADAR-1.

In the first series of experiments, 293T cells were trans-
fected (PolyFect; Qiagen) for 48 h with 2 mg plasmid
encoding the full-length HTLV-2 genome (pH 6neo) (Chen
et al., 1983), in the presence or absence of 0.5 mg ADAR-1
expression plasmid. Total RNA was recovered using Trizol
and cDNA was synthesized by using random primers. A
fragment of the HTLV-2 pX gene (nt 6660–6937) was am-
plified by using the previously described 3DI-PCR technique
(Suspène et al., 2008). pH 2Sout 59-CATAACCAGTAT-
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Fig. 1. HTLV-2 genome is susceptible to ADAR-1 editing. (a) Selection of ADAR-1 hypermutated HTLV-2 sequences. The
HTLV-2 sequence is given with respect to the retroviral plus strand. Only differences among hypermutated sequences are
shown. The number of substitutions per sequence is indicated to the right. # and % indicates the number of AAG transitions
and the percentage of A targets edited to G, respectively. (b) 293T cells were transfected or not with an ADAR-1 expression
plasmid. Twenty-four hours after transfection, cell extracts were processed for Western blot analysis using an anti-ADAR-1
(ab88574; Abcam) antibody. (c) Mutation matrices of HTLV-2 hyperedited sequences. The 19 UAC transitions are distributed
among several sequences. No UAC hyperedited sequence was found. (d) Frequency distribution of AAG editing per clone [#

and % as in (a)].
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TCCCTTATCAACCC-39 and pH 2Rout 59-TTCTGCAG-
GAGCGTGAGGAGCGGGAGC-39 primers were used for
the first PCR round, while pH 2Rin 59-GCTATAATA-
GACCTGCTAGCTTCTGC-39 and pH 2Sin 59-CGGC-
GCAGAAAGGAGCGCCTGCGG-39 primers were used for
the second PCR round. 3DI-PCR products corresponding to
extracts obtained only from cells that have been transfected
with both HTLV-2 and the ADAR-1 plasmid were recovered
at a PCR denaturation temperature as low as 64.8 uC. They
were then cloned and sequenced.

In the first series of analyses, 55 extensive and monotonously
AAG-edited HTLV-2 pX sequences were recovered (Fig. 1a).
As a control, a Western blot analysis was performed in cells
transfected or not with the ADAR-1 expression plasmid

(Liu et al., 1997) (Fig. 1b). ADAR-1 enzyme was able to
extensively deaminate HTLV-2 RNA (Fig. 1a, c). Of note,
hyperedited sequences could not be recovered in the absence
of exogenously expressed ADAR-1 (data not shown). The
AAG editing frequency distribution per clone shows some
lightly edited genome with 1–5 mutations (~20 %) and a
majority of highly mutated genomes (i.e. .20 mutations
~73 % of all A nucleotides, Fig. 1d). The mean editing
frequency was ~46 % (range 1.5–78 %) (Fig. 1d). The dinu-
cleotide context associated with adenosine editing showed a
clear preference for 59ArA and 59 UrA and an aversion for 59

GrA and 59 CrA (Fig. 2a, left panel), which is in agreement
with the literature (Lehmann & Bass, 2000; Suspène et al.,
2008, 2011). In contrast, we could not detect any obvious 39

context (Fig. 2a, right panel).
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Fig. 2. HTLV-2 sequence context among sites of ADAR-1 deamination. (a) Dinucleotide analysis in 59 (left) and 39 (right) of
HTLV-2-edited genomes. Dots indicate the edited base. x2 analysis indicates dinucleotide frequencies that significantly deviate
from the expected values (P,0.05, *). (b) Deamination frequencies across the HTLV-2 target sequence. Base-specific
deamination frequencies were calculated among a collection of 55 sequences from all the reactions and are given as a function
of local sequence context. The horizontal bar indicates the mean site deamination frequency, assuming no effect of the
sequence context. Values on the top of each histogram represent the number of deaminated A among the 55 ADAR-1 HTLV-2-
edited sequences. (c) Amplification of ADAR-1 cDNA obtained from 20 HTLV-2-infected individuals. The expected size of the
amplified product is 185 bp. Mw, Molecular mass marker.
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With a large number of clones sequenced, we defined site-
specific editing frequency (Fig. 2b). Among the sixty-seven
potential adenosine targets that are present in the HTLV-2
pX RNA template, we observed that some positions were
highly refractory to mutations (see for example A09, A22 and
A38). On the other hand, others were strongly deaminated.
As an example, A51 was edited in 42 out of 55 clones sequenced
(i.e. ~76 %). One residue (A63) was totally refractory to
ADAR-1 editing.

In order to demonstrate a possible effect of ADAR-1
editing in vivo, peripheral blood mononuclear cells were
obtained from 20 HTLV-2-infected individuals and imme-
diately frozen (Douceron et al., 2012). Total RNA was
extracted and cDNA was subsequently obtained using
random primers. Given the fact that tax is usually expressed
in less than 50 % of all HTLV-infected individuals, we
amplified an env region by PCR and 3DI-PCR. However,
hyperedited sequences could not be recovered upon cloning
and sequencing of the 20 different 3DI-PCR products,

suggesting that ADAR-1 editing is a rare event in vivo
in HTLV-2-infected individuals (data not shown). As a
control, ADAR-1 expression was detected by RT-PCR
among the 20 HTLV-2-infected individuals, demonstrating
that all ex vivo samples contained detectable levels of the
ADAR-1 transcript (Fig. 2c).

To determine whether ADAR-1 editing could occur for
another d-retrovirus, 293T cells were transfected (Polyfect;
Qiagen) with an STLV-3 (PPAF-3) infectious molecular
clone (Calattini et al., 2006; Chevalier et al., 2007) without
overexpressing ADAR-1. Forty-eight hours post-transfection,
total cellular RNA was recovered and cDNA was synthesized
with random primers as described above. A fragment of
the PPAF-3 pX mRNA was amplified by a nested PCR
procedure. PCR products obtained at a 95 uC denaturation
temperature were cloned and sequenced. Surprisingly, out of
five clones sequenced, we recovered three ADAR-edited
sequences (Fig. 3a). These sequences uniquely displayed
AAG transitions (Fig. 3b), with a ~29 % mean adenosine
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Fig. 3. STLV-3 genome is susceptible to ADAR-1 editing. (a) The sequence is given with respect to the retroviral plus strand.
Only differences among hypermutated sequences are shown. The number of substitutions per sequence is indicated to the
right. # and % indicate the number of AAG transitions and the percentage of AAG edited, respectively. (b) Mutation matrices
of STLV-3 hyperedited sequences. (c) Dinucleotide analysis in 59 (left) and 39 (right) of STLV-3-edited genomes. Dots indicate
the edited base. x2 analysis indicates dinucleotide frequencies that significantly deviate from the expected values (P,0.05, *).
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substitution frequency per clone (range ~22–38 %). Once
again and similar to the HTLV-2 results (Fig. 2), a sig-
nificant preference for 59 ArA and 59 UrA contexts was
observed (Fig. 3c). As ADAR-1 is constitutively expressed
in 293T (Wang & Samuel, 2009), the majority of STLV-3-
edited sequences can probably be ascribed to the ADAR-1
deaminase.

The present study shows that HTLV-2 and STLV-3, two
primate retroviruses, can be massively edited by ADAR-1
in cell culture. For HTLV-2, the selective and sensitive 3DI-
PCR method was necessary to recover ADAR-1-edited
sequences. By contrast ADAR-1-edited STLV-3 sequences
were recovered after conventional nested-PCR. Since 293T
cells were used for both experiments and since HTLV-2
and STLV-3 sequences were cloned in the same backbone
SV2neo vector, this differential sensitivity to ADAR-1 is
likely to be related to the viral genome. HTLV-2 and STLV-
3 have different genetic structure at the 39 end of their
genome, although none of their gene products are known
to be IFN antagonists. Another variable could be the degree
of secondary structure in the target sequence. Indeed,
ADAR-1 editing occurs by flipping out the adenosine in a
dsRNA structure. Local structural differences might there-
fore explain the differences between HTLV-2 and STLV-3
results. If ADAR-1 was packaged more efficiently into
STLV-3 capsids, the viral genome would probably be more
efficiently edited. In any case, the susceptibility of STLV-3
to restriction by ADAR-1 is striking. The present data do
not exclude editing of viral mRNAs in the cytoplasm as
opposed to editing of genomic RNA within the virion.

The contrasts between the ADAR-1 and APOBEC3G editing
enzymes are remarkable. Indeed, both are induced by IFN-a
and target HTLV-1 or HIV-1 retroviruses. While these two
retroviruses infect the same CD4+ T-lymphocytes, ADAR-1
massively edits HTLV-2 sequences in vitro, albeit at low
frequency. While recent work has shown that HIV-1 can be
edited by ADAR-1, very few AAG mutations could be
detected (Doria et al., 2009; Phuphuakrat et al., 2008). Of
note, we also failed to detect massive editing of HIV-1 TAR
or env RNA with our 3DI-PCR approach (data not shown).
In contrast, in the absence of Vif, HIV-1 cDNA is massively
edited by APOBEC3G and 3DPCR(Suspène et al., 2005) is
not needed to recover these sequences. By contrast, HTLV-1
cDNA is susceptible to APOBEC3G editing, but sensitive
3DPCR is necessary to recover edited sequences.

In conclusion, the present observation demonstrates that
ADAR-1 massively edits HTLV-2 and STLV-3 retroviruses
in vitro, but probably remains a rare phenomenon in vivo.
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