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Undamaged plants are known to become more defensive 
against biotic stresses (e.g., herbivory, pathogen infections) when 
exposed to volatiles from neighboring plants that are either 
infested, infected, or artificially damaged.1,2 One of the crucial 
questions that remains to be answered is how sensitive the receiver 
plant is to such volatiles.3 We recently showed that intermittent 
exposure of trace amounts (less than 140 pptV) of green leaf vola-
tiles emitted by a freshly damaged Arabidopsis plant to undam-
aged cospecific neighboring plants for 3 wks induced physiological 
responses in the exposed plants.4 These results demonstrated that 
plants can respond to long-term repeated exposure to subcritical 
amounts of chemical signals. To further support our results, we 
conducted headspace analyses of undamaged and artificially dam-
aged Arabidopsis Ler plants that were exposed to either artificially 
damaged conspecific plants or undamaged ones.

In this study, we damaged a plant by cutting one 5-mm slit in a 
leaf using ophthalmologic surgical scissors. Three-week-old emit-
ter plants were used. We damaged them twice per week (at 10 AM 
on Monday and Friday) for 3 wks. Two different treatments of 
receiver plants denoted as follows were performed during these 3 
wk: R-(damaged E) were receiver plants (R) exposed to volatiles 
from damaged emitter plants (E); R-(undamaged E) were receiver 
plants exposed to volatiles from undamaged emitter plants. After 
the 3-wk exposure period, 5 receiver plants from each treatment 
group were used for headspace analysis. We cut 4 leaves of each 
receiver plant (6 wks old) as the same way of the emitter plants. 
We used the damaged receivers for chemical analyses immediately 
after injury. Undamaged plants were used as control. We compared 

volatiles emitted from undamaged R-(undamaged E) vs undam-
aged R-(damaged E), and damaged R-(undamaged E) vs damaged 
R-(damaged E). Headspace sampling and GC-MS analysis of the 
headspace of the receiver plants were performed according to the 
methods previously reported.4 All experiments were repeated 3 or 
4 times.

(Z)-3-Hexen-1-yl acetate and (E)-2-hexenal emitted from 
infested Arabidopsis plants attract Cotesia glomerata, a parasit-
oid of cabbage white butterfly (Pieris rapae) larvae, while (Z)-3-
hexen-1-ol does not attract the wasp.5 The wasps show equal 
preference between undamaged R-(damaged E) and undamaged 
R-(undamaged E), but prefer damaged R-(damaged E) to damaged 
R-(undamaged E).4 Thus, we hypothesized that the amounts of 
(Z)-3-hexen-1-yl acetate and (E)-2-hexenal, were not significantly 
different between undamaged R-(damaged E) and undamaged 
R-(undamaged E), while the amounts in damaged R-(damaged E) 
were significantly higher than those in damaged R-(undamaged 
E). (Z)-3-Hexen-1-ol and (Z)-3-hexen-1-yl acetate were recorded 
in the headspace of odor source plants used in this study (Fig. 1). 
Aldehyde GLVs were under the detectable levels probably because 
the aldehydes were largely converted into corresponding alco-
hols and acetates as shown in our previous study.6 The amount 
of (Z)-3-hexen-1-yl acetate from undamaged R-(undamaged E) 
(3.72 ± 2.13 ng / plant) was not significantly different from that 
from undamaged R-(damaged E) (5.55 ± 2.42 ng / plant; P = 0.61, 
t test). Thus, the possibility that R-(damaged E) adsorbed GLVs of 
emitter plant origin on the surface of their leaves and re-emitted 
them was ruled out.7 By contrast, the amount of (Z)-3-hexen-1-yl 
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Intermittent exposure during a period of 3 weeks of undamaged Arabidopsis plants to trace amounts of volatiles emit-
ted by freshly damaged Arabidopsis plants resulted in an increase of subsequent artificial-damage-induced production of 
(Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol in the exposed Arabidopsis plants when compared with Arabidopsis plants 
exposed to undamaged Arabidopsis plant volatiles (control plants). We previously showed that (Z)-3-hexen-1-yl acetate 
attracts a parasitic wasp, Cotesia glomerata. Thus, the induced production of this volatile explained our previously reported 
finding that, when artificially damaged, the exposed plants were more attractive to C. glomerata than control plants.
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acetate from damaged R-(damaged E) (14.29 ± 2.19 ng / plant) 
was significantly higher than that from damaged R-(undamaged 
E) (9.79 ± 0.69 ng / plant; P = 0.049, t test). The same trends were 
also found for (Z)-3-hexen-1-ol: a significant increase was detected 
between damaged R-(damaged E) (1.10 ± 0.17 ng / plant) over 
damaged R-(undamaged E) (0.74 ± 0.02 ng / plant; P = 0.038, t 
test) but not between undamaged R-(undamaged E) (0.49 ± 0.08 
ng / plant) and undamaged R-(damaged E) (0.52 ± 0.21 ng / plant; 
P = 0.91, t test) (Fig. 1).

This study showed that the artificial-damage-induced produc-
tion of (Z)-3-hexen-1-ol and (Z)-3-hexen-1-yl acetate was enhanced 
by 3-wk periodic exposure of trace amounts (less than 140 pptV) 

of GLVs emitted by a freshly damaged 
Arabidopsis plant. Such increased pro-
duction in response to traces of GLVs 
is considered to be priming.8-10 The 
phytooxylipin pathway is involved in 
the production of GLVs in plants.11 
This pathway is probably primed 
by the exposure. Hirao et  al. (2012) 
reported that, when Arabidopsis (Col-
0) was treated with GLVs, the antho-
cyanin content was significantly 
increased by a subsequent treatment 
of methyl jasmonate.12 Their data sug-
gest that GLVs enhance the response 
to MeJA in Arabidopsis. As shown in 
our previous report, 1-wk exposure 
did not prime the exposed plants to be 
more attractive to C. glomerata while 
3-wk exposure did.4 Comprehensive 
molecular analyses of Arabidopsis 
plants with no exposure, with 1-wk 
exposure, and with 3-wk exposure 
would be needed to clarify the mecha-
nisms involved in this highly sensitive 
priming.
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Figure 1. The amounts of green leaf volatiles emitted from Arabidopsis plants subjected to the fol-
lowing treatments: plants exposed to volatiles from undamaged emitter plants were not damaged 
[undamaged R-(undamaged E)], plants exposed to volatiles from damaged emitter plants were not 
damaged [undamaged R-(damaged E)], plants exposed to volatiles from undamaged emitter plants 
were damaged [damaged R-(undamaged E)], and plants exposed to volatiles from damaged emitter 
plants were damaged [damaged R-(damaged E)]. See text for details.


