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Short Communication

The phytohormone abscisic acid (ABA) regulates many 
aspects of plant growth and development as well as response 
to abiotic and biotic stresses.1,2 During seed development, ABA 
regulates maturation, dormancy, and germination. ABA medi-
ates responses to abiotic stresses, such as drought, cold, salin-
ity, and UV radiation, as well as pathogen attack.2 Adverse 
environmental conditions result in increased ABA production 
and perception, which initiate signaling events that culminate 
in changes in gene expression required for stress tolerance. 
Cellular responses to ABA are mediated by a suite of tran-
scription factors including members of the B3, APETALA2- 
(AP2), and basic leucine zippers (bZIPs) domain families.2-5 
One of the most studied ABA-responsive transcription factors 
is Abscisic Acid Insensitive (ABI) 5. ABI5 is 1 of 13 function-
ally and structurally related bZIP proteins, referred to as ABA 
response element binding (AREB) or ABA-responsive promoter 
elements (ABRE) binding factors (ABFs), which mediate cel-
lular responses to ABA.4-6 Each ABRE/ABF protein contains 4 
conserved domains (named C1-C4) and a DNA binding bZIP 
domain within the carboxyl terminal (Fig.  1A).5 ABRE/ABF 
are ABA- and/or stress-inducible genes and the encoded pro-
teins function as homo- or hetero-dimers that bind to ABRE 
elements found in the regulatory regions of many stress-related 
genes.7,8

ABI5 was identified via a forward genetic screen for muta-
tions that rendered seeds/seedlings insensitivity to the inhibi-
tory effects of ABA.9,10 Subsequently, overexpression of ABI5 
was found to confer hypersensitivity to ABA.11 ABI5 is expressed 
in various tissue types at varying levels throughout the plant’s 

life cycle. In the developing embryo, ABI5 levels gradually 
increase, with highest levels occurring in mature seeds.8 Post-
germination, ABI5 levels are low to non-detectable. Low levels 
of expression occur in vegetative tissues such as f lowers, siliques, 
root tips, and leaf veins.8 ABA-mediated increase in ABI5 lev-
els occur mainly within a narrow developmental time frame 
from 1 to 2 days post-germination.12 During this time frame, 
ABA promotes the accumulation of ABI5 via 2 mechanisms, 
increased transcription and reduced proteolysis. Transcription 
factors ABI3 and ABI4 as well as ABI5 are required for ABA 
induced ABI5 expression.8,13 Post-germination, in unstressed 
conditions, low levels of ABI5 are maintained via degradation 
of the transcription factor by the 26S proteasome, a large multi-
catalytic protease complex.12,14,15 Upon exposure to stress con-
ditions such as drought or salinity or elevated levels of ABA, 
proteasome-dependent turnover decreases and ABI5 becomes 
more stable.12,15 The accumulated ABI5 then induces expression 
of ABA-responsive genes required for growth inhibition and 
stress tolerance.11,16

Proteasomal degradation of ABI5 is dependent upon the 
ubiquitination pathway. Ubiquitination is the covalent attach-
ment of ubiquitin, a small, compact and highly conserved pro-
tein, to select substrates. Attachment occurs via an isopeptide 
bond between a C-terminal glycine of the ubiquitin and a 
lysine (K) residue in the substrate protein. Ubiquitin conjuga-
tion requires the sequential action of 3 enzymes: the ubiquitin 
activating enzyme (E1) which activates ubiquitin, the ubiquitin 
conjugating enzyme (E2), which accepts the activated ubiqui-
tin forming an E2-ubiquitin intermediate, and the substrate 
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Post-translational modifications (PTMs) such as phosphorylation, ubiquitination, and sumoylation play significant 
roles in regulating abscisic acid (ABA) signaling. The targets for PTM are usually transcriptional regulators such as 
Abscisic acid Insensitive 5 (ABI5). PTM regulate ABI5 stability as well as activity. The abundance of ABI5 is tightly con-
trolled by the ubiquitination-26S proteasome system. E3 ubiquitin ligases such as KEG negatively regulate ABA sig-
naling by promoting ABI5 ubiquitination and subsequent degradation by the 26S proteasome. In our recent study 
we demonstrated that, in the absence of ABA, KEG-mediated turnover of ABI5 occurs within the cytoplasm. Whereas 
ubiquitination promotes ABI5 degradation, sumoylation prohibits degradation of the transcription factor. While phos-
phorylation has been shown to regulate ABI5 activity, our studies and others suggest that the phosphorylation status 
of ABI5 does not play a significant role in modulating ABI5 turnover.
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recruiting ubiquitin ligase (E3), which facilitates transfer of 
ubiquitin from the E2 to the selected protein. For targeting 
to the 26S proteasome, the conjugation process is repeated to 
generate a polyubiquitin chain using K48 of ubiquitin to create 
ubiquitin-ubiquitin linkages.17 The importance of ubiquitina-
tion in regulating ABA signaling is exemplified by the num-
ber of ubiquitin ligases that are found to be involved in plant 
responses to ABA.18,19 Ubiquitin ligases which directly target 

ABI5 include Keep on Going (KEG), a single subunit RING-
type E3, which interacts with the E2 and ABI5 via its RING 
domain and ankyrin repeats, respectively.20 Post-germination, 
in the absence of ABA or stress, KEG is required to maintain 
low levels of ABI5 so as to ensure early seedling establish-
ment.20,21 Loss of KEG function leads to accumulation of ABI5, 
hypersensitivity to ABA, and post-germinative growth arrest.20 
We recently demonstrated that KEG, which is localized to the 

Figure  1. Phosphorylation does 
not impact ABI5 turnover and 
interactions with KEG E3 ligase. (A) 
Schematic representation of ABI5 
showing the conserved regions, C1 
- C4, and basic leucine zipper (bZIP) 
domain. Lysine (K) residues linked 
to ubiquitination (K344, bold and 
italics) and sumoylation (K391, bold 
and underlined) are highlighted. 
Phosphorylation sites within each 
conserved region (C1-C4) are shown 
in bold. Phosphoamino acids (ser-
ine [S] and threonine [T]) that were 
changed to alanine (A) or aspara-
gine (D) are indicated (larger font 
and numbered). (B) Cell-free protein 
degradation assays. Phosphorylation 
sites in all 4 conserved domains 
(ABI5AAAA and ABI5DDDD) of ABI5 were 
mutated to A or D. Recombinant 
Flag-His tagged ABI5, ABI5AAAA and 
ABI5DDDD were incubated with pro-
tein extracts prepared from wild 
type Arabidopsis seedlings. Samples 
were taken at the indicated times 
and the level of ABI5 proteins deter-
mined by western blotting using His 
antibodies. Coomassie staining was 
used to confirm equal loading. (C) 
Yeast-2-hybrid experiments show-
ing interactions between KEG and 
a series of ABI5 phosphomutants. 
Phosphorylation sites in the C2 
(ABI5S145A and ABI5S145D), C4 (ABI5S439A 
and ABI5S439D), or all 4 conserved 
domains (ABI5AAAA and ABI5DDDD) of 
ABI5 were mutated to A or D. ABI5 
cDNA constructs were fused to the 
GAL4 binding domain (BD) and 
KEG cDNA encoding for the ankyrin 
repeats (KEGAnkyrin) was fused to 
the GAL4 activating domain (AD). 
Interaction was analyzed by growth 
on selection medium without Trp, 
Leu, His, and Ade (SD/-T/-L/-H/-A). 
ABI5DDDD produced a high level of 
autoactivation. The pGADT7 and 
pGBKT7-Rec empty vectors were 
used as negative controls. (D–E) 
BiFC analysis in tobacco epidermal 
cells. Fluorescence indicates inter-
actions between KEGAA-YN (RING 
mutant lacking E3 ligase activity) and 
ABI5AAAA-YC (D) or ABI5DDDD-YC (E). 
Bars = 100 μm.
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cytoplasm and trans-Golgi network/early endosome, targets 
nuclear-localized ABI5 for proteasomal degradation within the 
cytoplasm.22,23 KEG-mediated degradation requires interaction 
with the C3 domain of ABI5 as well as a carboxyl terminal 
K344 (Fig. 1A).23 Loss of the KEG-interacting C3 domain or 
K344 in conjunction with a nuclear localization signal (NLS) 
results in accumulation of ABI5 in the cytoplasm.23 KEG-
mediated degradation of ABI5 is postulated to prohibit nuclear 
localization of the transcription factor so as to further inhibit 
ABA signaling. We have previously shown that ABA treatment 
promotes KEG ubiquitination and subsequent degradation, 
which would then allow for accumulation and transport of 
ABI5 into the nucleus and activation of the transcription factor 
via phosphorylation.21

Protein ubiquitination is reversible. Deubiquitinating 
enzymes (DUBs) are proteases that release ubiquitin moieties 
from modified proteins prior to degradation, thus preventing 
substrate turnover. The Arabidopsis genome is predicted to 
encode for numerous DUBs; however, only a few have been 
characterized.24 These include ubiquitin-specific protease 
(UBP) 3 and UBP4, which are essential for pollen maturation; 
UBP26, which is involved in seed development; and UBP15, 
which is required for apical dominance and flowering.25,26 
Although DUBs have been linked to tolerance of abiotic stresses 
such as salt and heavy metal, enzymes that regulate ABA sig-
naling or target ABI5 for deubiqutination have not yet been 
identified.27,28

Protein ubiquitination and subsequent degradation is mod-
ulated by other reversible PTMs such as phosphorylation and 
sumoylation. Phosphorylation is the addition of a phosphate 
group to tyrosine (Y), serine (S), or threonine (T) residues of 
a substrate protein. Families of kinases and phosphatases cata-
lyze the addition or removal, respectively, of phosphate groups 
from different proteins. As one of the most prevalent forms 
of PTM, it is not surprising that there is interplay between 
phosphorylation and ubiquitination. Cross-talk between the 
2 modifications can occur in many different ways. For exam-
ple, phosphorylation of a substrate may facilitate recognition 
by the E3 ligase, or phosphorylation may directly activate an 
E3 ligase. In many cases, phosphorylation is a perquisite for 
ubiquitin-dependent proteasomal degradation. One well-stud-
ied example is IκBalpha, where phosphorylation by IκB kinase 
(IKK) results in recognition of IκBalpha by the F-box protein 
E3RSIκB, a substrate receptor for a Cullin-based E3 complex.29 
IKK-mediated phosphorylation leads to IκBalpha polyubiquiti-
nation and targeting to the proteasome for degradation.30 ABI5 
has 4 conserved phosphorylation sites, each found within 1 of 4 
conserved regions, C1-C4 (Fig. 1A). Phosphorylation of ABI5 
is accomplished by members of the Sucrose Non-fermenting1-
related protein kinases (SnRK) 2 and CBL-interacting pro-
tein kinase (CIPK) families.31,32 Serine/Threonine Protein 
Phosphatase 6 (PP6) was recently shown to dephosphorylate 
ABI5 and negatively regulate ABA signaling.33 Phosphorylation 
of ABI5 is required for activation of the transcription factor.34 
However, phosphorylation does not seem to modulate ABI5 sta-
bility, at least in the absence of ABA (Fig. 1). If phosphorylation 

is required prior to protein degradation, then replacing ABI5 
phosphoamino acids with alanine, which is expected to pro-
hibit phosphorylation, should stabilize the transcription fac-
tor. However, in cell free degradation assays, the turnover of a 
mutant version of the transcription factor with all 4 phospho-
amino acids (S42, S145, T201, and S439) replaced with alanine 
(ABI5AAAA) was similar to that of wild type ABI5 (Fig.  1B). 
Also, changing all 4 phosphoamino acids to asparagine (D), 
which mimics constitutive phosphorylation, did not affect deg-
radation of the phosphomutant (ABI5DDDD) compared with 
the wild type transcription factor (Fig.  1B). Similarly, Wang 
et al. (2013) reported that changing 3 of the 4 phosphoamino 
acids (S42, S145, and T201) to alanine did not alter ABI5 
abundance.35 In addition, altering the phosphoamino acids did 
not interfere with the ability of ABI5 to interact with KEG in 
yeast 2-hybrid assays or during bimolecular f luorescence com-
plementation (BiFC) analysis (Fig. 1C to E). Compared with 
wild-type ABI5, single mutations within the C2 (ABI5S145A and 
ABI5S145D) or C4 (ABI5S439A and ABI5S439D) region or loss of all 
4 phosphorylation sites (ABI5AAAA) did not alter ABI5 interac-
tion with KEG ankyrin repeats (KEG497–829) in yeast (Fig. 1C). 
Unfortunately, ABI5 with all 4 phosphorylation sites changed 
to D (ABI5DDDD) produced a high level of autoactivation, and 
prohibited study of this ABI5 form in yeast (Fig.  1C). BiFC 
assays were performed using Agrobacterium-mediated transient 
expression in tobacco leaf epidermal cells. Full-length KEG 
containing a non-functional RING E3 ligase domain (KEGAA) 
was used so as to prohibit substrate ubiquitination and degra-
dation upon protein-protein interactions. BiFC fluorescence 
signals were observed following co-expression of KEGAA fused 
to the amino (N)-terminal YFP fragment (KEGAA-YN) with 
ABI5AAAA or ABI5DDDD fused to the carboxyl (C)-terminal YFP 
fragment (ABI5AAAA –YC or ABI5DDDD-YC) indicating that 
the YFP fluorophore was reconstituted due to the interaction 
between KEGAA and the ABI5 phosphomutants (Fig. 1D and 
1E). Overall, phosphorylation does not seem to modulate ABI5 
interaction with KEG or influence ABI5 turnover. However, 
the possibility that one or more of the phosphoamino acids 
may be required for modulating ABI5 abundance in the pres-
ence of ABA, so as to attenuate signaling, still remains to be 
determined.

Sumoylation is another reversible PTM that modulates 
ABI5 stability. The process involves the covalent attachment 
of small ubiquitin-related modifier (SUMO) to a lysine resi-
due on a selected substrate.35 Similar to ubiquitin conjuga-
tion, sumoylation requires the sequential action of 3 enzymes, 
E1 activating enzymes, E2 conjugating enzymes, and E3 
ligases. Deconjugation is accomplished by specific proteases 
that cleave SUMO from substrates.35 Sumoylation has been 
shown to antagonize ubiquitin-dependent protein degrada-
tion. Continuing with the example of IκBalpha, ubiquitina-
tion promotes proteasome-mediated degradation, whereas 
sumo modification stabilizes the protein.36 In Arabidopsis, 
SUMO conjugation utilizes an E1 heterodimer consisting of 
SUMO-activating enzyme 1(SAE1) and SAE2 and a single E2 
SUMO-conjugating enzyme (SCE1).37 Few Arabidopsis SUMO 
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E3s have been identified including SIZ1 [for SAP (scaffold 
attachment factor, acinus, protein inhibitor of activated signal 
transducer, and activator of transcription) and Miz1 (Ms32-
interacting zinc finger) domain] and High Ploidy2 (HPY2)/
Methyl Methane Sulphonate Sensitivity21 (MMS21).37 A role 
for SUMO in regulating of ABI5 abundance is evidenced by 
the low levels of ABI5 observed in siz1 seedlings compared 
with wild type before and after ABA treatment.38 Sumoylation 
of ABI5 requires K391. Overexpression of a mutant ABI5 har-
boring a K391 to arginine (R) mutation in abi5-4 background 
results in hypersensitivity to ABA, which suggests that, in 
addition to stabilizing AB15, SUMO modification negatively 
regulates ABA signaling.38 Thus, sumoylation is thought to 
maintain a degradation-resistant inactive pool of ABI5 in the 
absence of the hormone. Interestingly, ABI5 sumoylation site 
(K391) is within the same domain as the lysine (K344) residue 
required for KEG-dependent turnover of the transcription fac-
tor (Fig. 1A). In the cases of IκBalpha, SUMO modification 
has been shown to compete with ubiquitination for a common 
lysine residue.36 This does not seem to be the case for ABI5, 
however, whether or not the proximity of the 2 sites allows for 

cross-talk between sumoylation and ubiquitination remains to 
be determined. However, K391 as a site for ubiquitination still 
remains a possibility that needs to be pursued.

Reversible post-translational modifications such as phos-
phorylation, ubiquitination, and sumoylation play significant 
roles in regulating ABA signaling. The use of PTMs allows 
cells to rapidly and efficiently turn on and off signaling events 
in accordance with their external environment or in response 
to perception of specific stimuli. By targeting transcriptional 
regulators such as ABI5, PTMs can precisely regulate transcrip-
tional activity and effectively tailor cellular responses required 
for stress tolerance.
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