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Regulation of axillary bud development is crucial for the 
plant architecture, which in turn affects assimilate production 
and flower/seed fecundity. In Arabidopsis (Arabidopsis thali-
ana), axillary buds are formed on the base of foliage leaves, and 
develop into an inflorescence shoot after floral transition of the 
plant. Our recent work1 showed that florigen protein, FT, moves 
from leaves into the subtended axillary bud and promotes the 
phase transition of the axillary meristem, while BRC1, an axil-
lary bud-specific factor, suppresses it through interaction with 
FT and another florigen protein TSF. Interaction between BRC1 
and FT (and possibly TSF as well) is not mediated by 14-3-3 
protein, which is necessary for FT to form a complex with FD.2 
In the axillary buds of brc1 mutant, FT-downstream genes are 
over-induced, and ectopic expression of BRC1 in the shoot apical 
meristem causes delay in floral transition. These findings suggest 
that modulation of florigen signal is conferred by BRC1 through 
direct interaction with FT or TSF possibly present in the florigen 
complex (FT/14-3-3/FD or TSF/14-3-3/FD) in axillary buds. 
Genetic interactions between BRC1 and FT and other flowering-
pathway genes also support the model that BRC1 inhibits the 
activity of florigen in axillary buds.

It was also demonstrated that the 2 florigen genes are involved 
in the promotion of axillary shoot elongation.3 In axillary shoots 
of ft, tsf, and ft tsf mutants, the onset of elongation is delayed 
and the growth rate is reduced. It was also confirmed that these 
alterations are independent of the florigen’s effect on the flo-
ral transition in the primary shoot. These findings imply that 

florigen action is not restricted to the promotion of floral transi-
tion, but is also involved in coordinated systemic changes of the 
plant upon flowering. This fits well with a recent notion of multi-
faceted physiological roles of florigen in diverse plant species (for 
a review, see ref. 4).

Here, we report another possible role of the 2 florigen genes 
in axillary bud development revealed by ectopic overexpression 
analysis. It was previously reported that double overexpression 
of FT (or TSF) in combination with LEAFY (LFY ) under the 
control of cauliflower mosaic virus (CaMV) 35S promoter dras-
tically accelerates flowering, resulting in formation of the whole 
shoot system with a few leaves and a single terminal flower.5-9 
Closer observation revealed that ectopic overexpression of FT or 
TSF with LFY induced ectopic axillary buds at the base of cotyle-
donary petiole in 35S:LFY/-; 35S:FT/- or 35S:LFY/-; 35S:TSF/- 
plants, which do not usually appear in the wild-type plants of 
laboratory accessions such as Columbia (Col) and Landsberg 
erecta (Ler) (Fig. 1 and Table 1; see also Figure 3E of ref. 6). LFY 
or TSF single overexpression also induced ectopic buds at the 
cotyledonary axils, but at much lower frequency than the double 
overexpression, which resulted in ectopic bud formation at no less 
than one-fourth of cotyledonary axils (Table 1). The cotyledon-
ary buds of the double overexpression plants usually consisted 
of a single floral bud with peduncle, while those of the LFY or 
TSF single overexpression plants remained without macroscopic 
floral organs, indicating the single overexpression of either gene 
is insufficient to support further development (Fig. 1B). These 
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the wide variety of plant architectures is largely based on diverse and flexible modes of axillary shoot development. 
in Arabidopsis, floral transition (flowering) stimulates axillary bud development. the mechanism that links flowering and 
axillary bud development is, however, largely unknown. We recently showed that FLoWErinG LoCuS t (Ft) protein, 
which acts as florigen, promotes the phase transition of axillary meristems, whereas BranChED1 (BrC1) antagonizes the 
florigen action in axillary buds. here, we present evidences for another possible role of florigen in axillary bud develop-
ment. Ectopic overexpression of FT or another florigen gene TWIN SISTER OF FT (TSF) with LEAFY (LFY) induces ectopic 
buds at cotyledonary axils, confirming the previous proposal that these genes are involved in formation of axillary buds. 
taken together with our previous report that florigen promotes axillary shoot elongation, we propose that florigen regu-
lates axillary bud development at multiple stages to coordinate it with flowering in Arabidopsis.
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observations suggest that FT and TSF, combined with LFY, pro-
mote initiation or early development of axillary buds in addition 
to floral transition and elongation of axillary buds.

Ectopic buds at the cotyledonary axils in these plants are 
reminiscent of brc1 mutant, which sometimes develops axillary 
shoots on the cotyledonary axils.10 Although how phenotypes of 
these plants are related in terms of molecular interactions remains 
to be examined, it is envisaged that BRC1 acts antagonistically 
to FT and TSF at cotyledonary axils in a similar manner as we 
previously reported for axillary buds of foliage leaves. Besides 
brc1 mutant, some mutants such as shoot meristemless (stm) also 
develops ectopic cotyledonary buds, suggesting that Arabidopsis 
has potential to form buds at the cotyledonary axils, although 
initiation or early development of the buds is suppressed in the 

wild-type background of accessions such as Col and Ler 
and/or under normal laboratory growth conditions.11 It was 
previously suggested that LFY stimulates meristematic activ-
ity in Arabidopsis and other plants.12-15 This may explain why 
LFY single overexpression can initiate ectopic buds at the 
cotyledonary axils although the frequency is very low. That 
FT plays a role in axillary bud initiation was also previously 
proposed. In certain mutant backgrounds of Arabidopsis, 
such as stm-10, further loss of FT function causes reduction 
in the number of axillary buds, implying FT has a role in the 
initiation of axillary meristems redundantly with other fac-
tors.14,16 Our observation that ectopic overexpression of FT 
alone was not sufficient to induce cotyledonary meristems 
also indicates that FT requires other factors to promote the 
formation of axillary buds (Table 1). Thus, our present work 
provides support for the previously proposed role of LFY and 
FT in axillary meristem initiation or development.

In conclusion, florigen (FT and TSF) in Arabidopsis reg-
ulates meristem initiation or early development of axillary 
buds. Taken together with our recent findings and previous 

reports by others,1,3,14,16 we propose that florigen is involved in mul-
tiple steps of axillary bud development, likely to coordinate axillary 
shoot development with flowering. In other species, FT homologs 
are also associated with regulation of growth and maturation in 
various organs such as dormant buds in poplar, compound leaves 
in tomato, and tubers in potato.17-19 The modulation of florigen 
activity by BRC1 suggests the existence of specific modes of action 
and modulation of the florigen complex depending on organs. It is 
an important problem to elucidate detailed molecular mechanisms 
enabling multi-faceted roles of florigen.
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Figure 1. representative image of transgenic plants. 35S:LFY (homozygous) or 35S:LFY/- (hemizygous) (A, B), 35S:FT #1 (weak line) (C), 35S:LFY/-; 35S:FT #1/- 
(D), 35S:FT #11 (strong line) (E), 35S:LFY/-; 35S:FT #11/- (F), 35S:TSF #2 (strong line) (G), 35S:LFY/-; 35S:TSF #2/- (H), 35S:TSF #4 (very weak line) (I), 35S:LFY/-; 35S:TSF 
#4/- (J) are shown. Plants were grown on 1/2 mS agar plates for 15 d under 16h light/8h dark long day conditions at 22 °C. arrowheads indicate primary 
inflorescences or flowers. arrows indicate ectopic axillary buds at cotyledonary axils. transgenic lines (all in Col background) were described previously.6,8

Table 1. Frequency of ectopic buds at cotyledonary axils

Genotype
Number of 
axillary buds at 
cotyledonary axils

Frequency of axillary 
bud formation per 
cotyledonary axil

Number 
of plants

35S:LFY or 35S:LFY/- 2 0.04 25

35S:FT #1 0 0 41

35S:FT #11 0 0 42

35S:TSF #2 1 0.01 38

35S:TSF #4 0 0 45

35S:LFY/-; 35S:FT #1/- 6 0.38 8

35S:LFY/-; 35S:FT #11/- 9 0.25 18

35S:LFY/-; 35S:TSF #2/- 11 0.42 13

35S:LFY/-; 35S:TSF #4/- 0 0 14

Plants were grown under same conditions as in Figure 1 for 15 d and the number 
of axillary buds at cotyledonary axils was counted under a dissecting microscope. 
note that the combination between 35S:TSF #4 (very weak transgene) and 35S:LFY 
did not result in axillary bud formation at cotyledonary axils.
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