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Short Communication

Stomatal pores are formed by pairs of guard cells and medi-
ate transpiration and carbon dioxide uptake. Stomatal movements 
modulate the rate of transpirational water loss, which is closely 
involved in drought tolerance of plants.1

Arabidopsis siz1 mutant, which is impaired in the SIZ-type 
small ubiquitin-related modifier (SUMO) E3 ligase, accumulates 
more salicylic acid (SA) than Arabidopsis wild-type plants (Col-
0)2 and SIZ1 is involved in regulation of abiotic stress responses.3-5 
Reactive oxygen species (ROS) levels in siz1 guard cells are higher 
than those in the wild-type guard cells and light-induced stomatal 
opening was inhibited by the siz1 mutation, reducing water loss 
and enhancing drought tolerance.6 These phenotypes are sup-
pressed by introduction of nahG gene, which encodes a salicylate 
hydroxylase that catalyzes the conversion of SA to catechol, into 
the siz1 mutant. Peroxidase inhibitors, salicylhydroxamic acid 
(SHAM) and azide, suppressed the inhibition of light-induced sto-
matal opening in the siz1 mutant, suggesting that ROS production 
mediated by peroxidases is involved in the inhibition of stomatal 
opening. In other SA-accumulating mutants, cpr5 and acd6, ROS 
was accumulated in guard cells, light-induced stomatal opening 
was impaired, and drought tolerance was enhanced.6 These results 
suggest that SA accumulation induces ROS accumulation, result-
ing in inhibition of light-induced stomatal opening. However, it is 
to be clarified whether transpirational water loss is suppressed in 
the cpr5 and acd6 mutants and whether ROS production mediated 
by peroxidases is involved in the inhibition of light-induced stoma-
tal opening in the cpr5 and acd6 mutants. In this study, the water 
loss from detached rosette leaves of the cpr5 and acd6 mutants and 

the effects of SHAM and azide on the inhibition of light-induced 
stomatal opening in the cpr5 and acd6 mutants were examined.

In order to examine whether ROS production mediated by 
peroxidases is involved in the inhibition of light-induced stomatal 
opening of cpr5 and acd6 mutants, SHAM and azide were used as 
inhibitors for peroxidase. Stomatal opening assay was performed as 
described previously.6 Our previous result demonstrated that the 
inhibition of light-induced stomatal opening in siz1 mutants was 
suppressed by SHAM and azide but not by an inhibitor of NADPH 
oxidase, diphenyleneiodonium chloride (DPI). In agreement with 
our previous result, the inhibition of light-induced stomatal open-
ing in the cpr5 and acd6 mutants was suppressed by SHAM and 
azide but not by DPI (Fig. 1). These results suggest that ROS pro-
duction mediated by peroxidases is involved in the inhibition of 
light-induced stomatal opening of cpr5 and acd6 mutants. Together 
with the previous study,6 these results suggest that SA accumula-
tion induces ROS production mediated by peroxidases, resulting 
in inhibition of light-induced stomatal opening. Water loss analysis 
of the detached leaves of cpr5 and acd6 mutants was performed as 
described previously.6 Water loss from rosette leaves of the cpr5 and 
acd6 mutants was slower than that of the wild-type plants (Fig. 2). 
Introduction of nahG gene into cpr5 and acd6 mutants increased 
the rate of water loss (Fig. 2), which is consistent with the stomatal 
phenotypes of cpr5 and acd6 mutants (Fig. 1). Moreover, the water-
loss phenotype of cpr5 and acd6 mutants is in agreement with that 
of another SA-accumulating mutant, siz1.6

Transcription of drought-responsive genes, which encodes 
RD29A, β-glucosidase, RNA-binding, ribonuclease, dehydrin 
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We investigated stomatal phenotype and drought tolerance of Arabidopsis salicylic acid-accumulating mutants, acd6 
and cpr5. In these mutants, the light-induced stomatal opening was impaired and the impairment of stomatal opening 
was restored by peroxidase inhibitors, salicylhydroxamic acid and azide. The acd6 and cpr5 mutant plants were more 
tolerant to drought stress than wild-type plants. Introduction of nahG gene into the acd6 and cpr5 mutants prevented 
the inhibition of stomatal opening and reduced the drought tolerance. Drought tolerance-related genes were more 
highly expressed in the cpr5 and acd6 mutant plants than in the wild-type plants. These results suggest that accumula-
tion of salicylic acid improves drought tolerance through inhibition of light-induced stomatal opening in Arabidopsis.
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LTI30, unknown protein (At5g61820), and alternative oxidase, 
was upregulated in the cpr5 and acd6 mutants under non-stress 
condition (Fig.  3). Transcription levels of these genes in nahG 
cpr5 and nahG acd6 mutants were lower than those in the cpr5 

and acd6 mutants (Fig.  3), suggesting that expression of these 
genes are upregulated by SA accumulation. Dehydrins play an 
important role in response to drought stresses.7 Therefore, these 
drought-response genes could be involved in the inhibition of 
light-induced stomatal opening by SA accumulation in the cpr5 
and acd6 mutants.

This study demonstrates that endogenous SA accumulation 
improved drought tolerance accompanied by ROS production 
mediated by peroxidases and inhibited light-induced stomatal 
opening in Arabidopsis (Figs. 1 and 2). Moreover, accumula-
tion of SA is induced by water deficiency in Phillyrea angustifo-
lia8 and application of SA enhances drought tolerance of tomato 
and bean.9 Arabidopsis adr1 and myb96–1d mutants, which accu-
mulate SA, exhibit SA-dependent drought tolerance.10-13 These 
results indicate that SA accumulation plays a role in drought tol-
erance.14 Stomatal closure promoted by SA is also one of strategy 
for preventing bacterial entry.15,16 Because the siz1, cpr5, and acd6 
mutants highly accumulate SA,15-17 the inhibition of light-induced 
stomatal opening in these mutants is likely to contribute to block-
ing pathogen invasion as well as drought tolerance.

Together with our previous study,6 we concluded that SA 
accumulation induced ROS production mediated by peroxidases, 
inhibiting light-induced stomatal opening, which confers drought 
tolerance on Arabidopsis.
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Figure 1. Peroxidases are involved in the inhibition of the stomatal opening of cpr5 and acd6 mutants. Four- to 6-week-old leaves were floated on 
buffer solution, containing 50 mM KCl, 50 μM CaCl2, 10 mM MES-Tris, pH 6.15. The stomatal aperture was measured after 2 h of incubation in the dark 
condition (Initial) and after 2 h of incubation in the dark condition and 3 h of incubation under light (Control). SHAM (2 mM), azide (1 μM), or DPI (20 
μM) was added to the assay solution 30 min before light condition. Values are means ± SE (n ≥ 3). * indicates a significant difference from Control (P 
< 0.05), which is determined by the Student t-test.

Figure 2. The cpr5 and acd6 mutants exhibited drought tolerance. The 
rosette leaves of 3-week-old plants were detached and were weighted 
at 0 h, 1 h, and 2 h. Water loss (mg mm-2) was calculated as fresh weight 
loss (mg) divided by leaf area (mm-2). Leaf area was measured by ImageJ 
software. Data are means ± SE (n = 10). * indicates a significant differ-
ence from Col-0 (P < 0.05), which is determined by the Student t-test.



www.landesbioscience.com	 Plant Signaling & Behavior	 e28085-3

Figure 3. Drought-responsive genes are induced by the cpr5 and acd6 mutation. The relative expression level of these genes was measured by quan-
titative RT-PCR. RD29A expression was examined as a marker for drought stress. Three-week-old Col-0 (a), cpr5 (c), cpr5 nahG (d), acd6 (e), acd6 nahG 
(f) plants, grown under normal conditions, and Col-0 plants 1 h after detached (b), were harvested. Data are means ± SD.
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