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Besides their classical oxidoreductase activity, it is now well 
recognized that monothiol glutaredoxins (Grxs) with CGFS 
active sites participate to the maturation of iron-sulfur (Fe-S) 
proteins, at least in yeast and human, through their ability to 
bind Fe-S clusters, likely receiving it from scaffold proteins 
before transferring it to apoproteins.1-6 In addition, by inter-
acting with transcription factors such as Fep1, Php4, HapX, 
Aft1 or Aft2, CGFS Grxs also are involved in iron sensing and 
homeostasis in yeast and fungal species.7-11 Concerning BolAs, 
several pieces of evidence indicate that they can act themselves 
as transcriptional regulators, possessing a helix-turn-helix 
(HTH) motif necessary for nucleic acid-binding.12 Supporting 
this observation, some bacterial BolAs can bind to promoters 
of genes playing in particular a role in the maintenance of cell 
morphology.13-16 Moreover, a Chlamydomonas reinhardtii ortho-
log likely exhibits an endonuclease activity.17

In S. cerevisiae, monothiol Grx3 and Grx4 form a complex 
with a BolA protein, FRA2, but also with an aminopeptidase-
like protein named FRA1,18 confirming the initially suggested 
role of FRA2 in the regulation of iron homeostasis.19 By inter-
acting with and regulating the nuclear translocation of Aft1, 
this complex links the status of the mitochondrial Fe-S clus-
ter biogenesis to the regulation of the iron regulon i.e., genes 
responsible of iron uptake, transport and storage.18 From 
mutagenesis studies of Fe-S cluster ligands (the active site Cys 
of Grxs and an invariant His of BolA), it was proposed that 
the binding of the Fe-S cluster in the Grx-FRA2 complex is 
essential for Aft1 regulation.7,20,21 Using Aft2 as a model, it was 

recently demonstrated that it can accept an Fe-S cluster from 
a Grx3-FRA2 holo-heterocomplex leading to its dimerization 
and activity inhibition.11 It is not yet clear whether the regula-
tion of other Grx-regulated transcription factors rely on BolAs, 
but studies performed with E. coli and human proteins con-
firmed that the ability of monothiol Grx-BolA to form holo-
heterocomplexes is widespread.22-24

In our recent study, the physical interaction between mono-
thiol Grxs and BolAs from plants, initially suggested for some 
protein couples by a global yeast-two hybrid screening,25 was 
confirmed by binary yeast-two hybrid and bimolecular f luo-
rescence complementation approaches.26 Moreover, we have 
demonstrated that recombinant monothiol Grxs can reduce 
oxidized forms of AtBolA2 and to a lesser extent of AtSufE1 
thereby suggesting that the in vivo activity of BolA proteins 
could be modulated in a redox manner. As all eukaryote BolA2 
orthologs possess this conserved cysteine, this redox-regulation 
could well represent a general regulatory mechanism. However, 
we did not determine whether plant proteins also have the 
capacity to form Fe-S-bridged heterocomplexes. For this pur-
pose, several A. thaliana Grx and BolA protein couples were 
expressed in E. coli using a co-expression vector, one partner 
bearing an N-terminal poly-His tag enabling complex purifica-
tion by immobilized metal ion affinity chromatography if pro-
teins indeed stably interact. Complexes formed by physiological 
couples (His

6
AtGrxS14-AtBolA1, AtGrxS16-His

6
AtBolA1, 

or His
6
AtGrxS17-AtBolA2) were indeed purified from red 

colored bacterial pellets (Fig. 1). For all constructs, although 
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Several genomic analyses, high-throughput or targeted interaction studies including the purification of protein 
complexes indicated a physical and functional link between Bolas and monothiol glutaredoxins (Grxs) that is conserved 
both in prokaryotes and eukaryotes. in a recent work, we confirmed that several Arabidopsis protein couples, used as 
plant representatives, also physically interact. more interestingly, we determined that two Bola proteins, Bola2 and 
SufE1, contain a conserved cysteine that is sensitive to oxidizing treatments, unraveling a possible redox-control of 
Bola2 and SufE1 by monothiol glutaredoxins. By coexpressing physiological partners in E. coli, Grx-Bola heterodimers 
binding a labile, oxygen sensitive iron-sulfur cluster were isolated. altogether, these results illustrate the existence of dif-
ferent modes of interaction between monothiol glutaredoxins and Bola proteins in plants and probably in other organ-
isms. incidentally, the function of each partner could be differentially modulated depending on the type of interaction.
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Figure 1. See next page for legend.
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time-dependent color losses were observed because of the aero-
bic conditions, the presence of an Fe-S cluster was clearly evi-
dent from the red/brown color of the sample but also from the 
presence of absorption bands around 410 nm in the UV-visible 
spectra. Overall, although further spectroscopic analyses are 
required on anaerobically-purified complexes, these results 
established the capacity of plant proteins to form holo-heterodi-
mers and suggested that, as Grx holo-homodimers,4 Grx-BolA 
holo-heterodimers are also quite labile or oxygen sensitive.

We have already largely discussed in our seminal paper the 
functions attributed to BolAs and Grxs and how they could 
affect each other. Hence, we will not detail everything again 
but will concentrate on the new information obtained by us 
and others that could help clarifying the putative physiologi-
cal roles associated to Grx-BolA holo-heterodimers in plants. 
The current view is that holo-homodimer formed by mono-
thiol Grxs would preferentially act as scaffold and/or carrier 
proteins, whereas, from studies conducted in S. cerevisiae, Grx-
BolA holo-heterodimers would represent sensor systems of cel-
lular iron status. These different functions supposedly reflected 
a difference in Fe-S cluster lability, holo-heterodimers being 
more stable,22 and less efficient for Fe-S cluster transfer than 
Grx holo-homodimers.23 A sensing function for the cytosolic 
GrxS17/BolA2 couple is not evident first because there is no 
plant ortholog of Aft1 and second because A. thaliana plants 
with knockout or knock-down expression for GrxS17, although 
having pleiotropic phenotypes, do not have phenotypes clearly 
and easily attributed to a dysfunctioning of iron homeostasis.27 

Moreover, several recent reports suggest that holo-heterodimers 
could also have a role in the Fe-S cluster biogenesis systems. 
Indeed, human patients having a mutation in the gene coding 
for the mitochondrial BolA3 present defects in Fe-S proteins 
from respiratory complexes, in particular complex I, and very 
likely in lipoic acid synthase, which affects all lipoate-depen-
dent enzymes.28 Also, there are evidence for Fe-S cluster trans-
fer reactions involving holo-heterodimers since a ScGrx3-FRA2 
apo-heterodimer can accept an Fe-S cluster from an A-type 
carrier protein,29 and can efficiently and rapidly transfer it to 
Aft2.11 Interestingly, the assumed presence of A-type proteins 
in plant organelles but not in the cytoplasm,30 suggests that 
Grx-BolA holo-heterodimers might fulfill different functions 
depending on the subcellular compartmentation. Overall, these 
biochemical evidence further increase the roles possibly asso-
ciated to Grx-BolA complexes. An in-depth genetic investiga-
tion of plants mutated for monothiol Grxs and BolA, alone 
or in combination, is clearly required to differentiate all these 
possibilities.
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Figure 1. Co-expression of A. thaliana monothiol Grx and Bola in E. coli. For each protein couple, sequences coding for each protein were cloned in 
pCDFDuet vector allowing co-expression of an n-terminal his-tagged version of one protein and an untagged version of the other. the purification 
was achieved under aerobic conditions for each of the following co-expression experiments, atGrxS16-hisatBola1 (a), hisatGrxS14-atBola1 (B) and 
hisatGrxS17-atBola2 (C). after bacterial cell lysis, the soluble and insoluble fractions were then separated by centrifugation for 30 min at 27,000 g. 
the soluble fraction was then loaded onto a ni2+ hitrap chelatin resin (Sigma) pre-equilibrated with 50 mm tris-hCl buffer ph 8.0 containing 300 mm 
naCl, 10 mm imidazole. after extensive washing with the same buffer, the proteins were eluted with 50 mm tris-hCl buffer ph 8.0 containing 300 mm 
naCl, 250 mm imidazole. the presence of both atGrx and atBola in the different fractions was analyzed after protein separation on SDS-PaGE gels.  
t: total extract, i: insoluble fraction, S: soluble fraction, Ft: flow through fraction, W: washing fraction eluted with 10 mm imidazole, E: eluted fraction 
with 250 mm imidazole.
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