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The presence of a fibrous lamina underlying the nuclear 
envelope that binds to the nuclear pore complex (NPC) was 
first revealed by TEM in invertebrates in the 1950s (protozoa, 
gregarines, and annelids),1-4 and later in vertebrates.5 Yet, it was 
not until the 1970s that this structure was isolated from rat liver 
nuclei6 and its main polypeptides identified.7 These polypeptides, 
now known as lamins, have since been characterized extensively 
and shown to be restricted to metazoans.8 However, 2 lamin-like 
proteins were recently identified in unicellular eukaryotes: the 
Dictyostelium NE81 protein is considered to be an evolutionary 
precursor of lamins,9,10 while Trypanosoma NUP1 is an unrelated 
long coiled-coil protein with lamin-like functions, participating 

in the regulation of nuclear shape and structure, chromatin 
organization, and the distribution of NPCs.11 Lamins not only 
provide mechanical support to the nucleus and the nuclear envelope 
(NE) and promote the association between the nucleoskeleton 
(NSK) and cytoskeleton (CSK), but they are also involved in a 
multitude of nuclear functions such as chromatin organization, 
gene regulation, signaling, and DNA repair.12-14

The plant nuclear lamina was described by TEM in isolated 
NSKs in the early 1990s,15-20 and subsequently, a number of the 
similarities between the plant and vertebrate lamina were defined 
by field emission scanning electron microscopy (feSEM) of whole 
nuclei.21 Fully sequenced plant genomes lack genes encoding 
lamins22,23 or lamin-binding proteins, with the exception of the 
SUN-domain proteins.22,24 Given the crucial role of lamins in 
nuclear and cellular functions,12-14 the fact that plants possess a non-
lamin-based lamina has raised certain interest, and considerable 
research effort has been dedicated to the characterization of 
the proteins that compose the plant lamina. In this review, 
we summarize the current understanding of nuclear matrix 
constituent proteins (NMCPs)/little nuclei proteins (LINCs)/
crowded nucleus proteins (CRWN), the main candidates to fulfil 
lamin-like functions in plants, and we compare and contrast these 
proteins with the well-characterized lamins, the main components 
of the metazoan lamina. In addition, we discuss the main functions 
attributed to NMCPs and the evidence that must be accumulated 
in future studies to definitively consider these proteins as analogs 
of plant lamins.

Organization and composition of the metazoan lamina
The nuclear lamina is a complex protein meshwork attached 

to the inner nuclear membrane (INM) and the nucleoplasmic 
ring of NPCs.25,26 The metazoan lamina consists of a polymeric 
layer of lamins that belong to the intermediate filament protein 
superfamily, numerous transmembrane lamin-binding proteins 
that anchor the lamina to the INM, and chromatin-associated 
factors.14,27 The nuclear lamina not only provides support for the 
NE, NPCs, and chromatin anchoring sites but it is also involved in 
linking the NSK to the CSK, and in regulating signaling and gene 
activity.25 The ultra-structural organization of the lamina has been 

*Correspondence to: Susana Moreno Díaz de 
la  Espina; Email: smoreno@cib.csic.es
Submitted: 09/11/2013; Revised: 10/01/2013; Accepted: 10/01/2013
http://dx.doi.org/10.4161/psb.26669

NMCP/LINC proteins
Putative lamin analogs in plants?

Malgorzata Ciska and Susana Moreno Díaz de la Espina*

Department of Cell and Molecular Biology; Biological Research Centre; CSIC; Madrid, Spain

Keywords: LINC proteins, NMCP proteins, CRWN proteins, plant nuclear envelope, nuclear size, plant lamina, lamins

Abbreviations: BAF, barrier to autointegration factor; CSK, cytoskeleton; feSEM, field emission scanning electron 
microscopy; GFP, green fluorescent protein; HP1, heterochromatin protein 1; IF, intermediate filament; INM, inner 

nuclear membrane; LBR, lamin B receptor; LEM domain, LAP2/Emerin/MAN domain; LINC complex, linker of the 
NSK to CSK complex; LINC proteins, little nuclei proteins; MW, molecular weight; NE, nuclear envelope; NIF, nuclear 

intermediate filament protein; NLS, nuclear localization signal; NMCPs, nuclear matrix constituent proteins; NPC, nuclear 
pore complex; NSK, nucleoskeleton; NUA, nuclear pore anchor protein; TEM, transmission electron microscopy

Lamins are the main components of the metazoan lamina, 
and while the organization of the nuclear lamina of metazoans 
and plants is similar, there are apparently no genes encoding 
lamins or most lamin-binding proteins in plants. Thus, the 
plant lamina is not lamin-based and the proteins that form this 
structure are still to be characterized. Members of the plant 
NMCP/LINC/CRWN protein family share the typical tripartite 
structure of lamins, although the 2 exhibit no sequence similarity. 
However, given the many similarities between NMCP/LINC/
CRWN proteins and lamins (structural organization, position 
of conserved regions, sub-nuclear distribution, solubility, and 
pattern of expression), these proteins are good candidates to 
carry out the functions of lamins in plants. Moreover, functional 
analysis of NMCP/LINC mutants has revealed their involvement 
in maintaining nuclear size and shape, another activity fulfilled 
by lamins. This review summarizes the current understanding 
of NMCP/LINC proteins and discusses future studies that will 
be required to demonstrate definitively that these proteins are 
plant analogs of lamins.
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well characterized in amphibian oocytes, and it consists of 10-nm 
lamin filaments arranged in a regular orthogonal pattern. By 
contrast, more irregular filamentous networks have been observed 
in somatic cells.25,26

Lamins, the building blocks of the lamina
Lamins are the main components of the nuclear lamina.7 

Sequence comparisons and those of exon/intron patterns indicate 
that lamins are the founding members of the IF protein family.8 
Based on their structure, expression pattern, mitotic behavior, 
and biochemical characteristics, lamins have been classified into 2 

types (A and B).13,14 Most invertebrates have a single lamin gene 
encoding a type B lamin,8,28 while vertebrates possess 4 lamin 
genes: LMNB1, LMNB2, LIII (sometimes called XLMNB3), and 
LMNA that encodes lamins A and C. The LIII gene has been lost 
in mammals, and moreover, mammals possess an additional type 
A lamin, lamin C, which is produced by alternative splicing of 
lamin A transcripts.8 The tail domain of lamin A contains a unique 
90-amino acid segment not found in type B lamins, probably due to 
the insertion of a new exon in the last intron of a type B progenitor 
gene. Lamin A interacts with numerous nuclear proteins, and it is 

Figure 1. Evolutionary relationships of NMCP proteins. Sequences classified as NMCP1 (NMCP1 and NMCP3) are marked in red and those classified as 
NMCP2 in green. The 2 proteins of Physcomitrella patens are in blue. Dicotyledon species are represented by cian rhombi, monocotyledons by yellow 
triangles, and mosses by blue circles.
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involved in multiple nuclear and cellular functions, as witnessed 
by the broad spectrum of human diseases caused by LMNA gene 
mutations.29

Lamins have the conserved tripartite structure typical of 
IF proteins, consisting of a coiled-coil central rod domain that 
contains 4 coils (1A, 1B, 2A, and 2B), each separated from one 
another by 3 short linkers (L1, L12, and L2). The rod domain is 
flanked by a short N-terminal domain that contains a conserved 
phosphorylation site for cdk1,8 which is involved in head-to-tail 
polymerization, and a longer C-terminal tail domain containing 
a second conserved cdk1 phosphorylation site required for 
mitotic lamin depolymerisation.13 In addition, there is a nuclear 
localization signal (NLS) located between the C-end of the rod 
domain and the highly conserved IgG fold, as well as a C-terminal 
CAAX box (Fig. 2).12,30

The expression of lamin genes is developmentally regulated, 
and while lamin B2 is constitutively expressed in somatic cells, 
the expression of lamin B1 is more restricted. Lamin LIII is the 
predominant lamin in oocytes and embryos, yet its expression in 
somatic cells is restricted to a few differentiated tissues. Lamin 
A is expressed late in development, normally correlating with 
differentiation.29 Except for lamin C, all lamins are expressed as 
prelamins, and they undergo highly regulated and extensive post-
translational modification of the C-terminal CAAX box via cysteine 
farnesylation, which is followed by proteolytic cleavage of the AAX 
by a prenyl protease and carboxymethylation of the C-terminal 
cysteine. B-type lamins remain permanently farnesylated and 
carboxymethylated, whereas prelamin A undergoes the removal of 
15 amino acids from the C-terminus to produce the mature lamin 
A that lacks these farnesyl and carboxymethyl modifications.12,27

Lamins also undergo other post-translational modifications, 
such as phosphorylation and sumoylation. The polymerization 
and mitotic disassembly of lamins is regulated by extensive 
phosphorylation by cdk1, PKC, PKA, S6-kinaseII, and Akt. 
Lamins have 12 conserved phosphorylation sites that are involved in 
mitotic lamin polymerization and that are located in the head and 
tail domains. Other conserved phosphorylation sites are probably 
involved in the regulation of conserved functions, while unique 
phosphorylation sites likely mediate the differential regulation of 
lamins in distinct tissues.27

The assembly of lamins into the nuclear lamina is a complex 
multistep process. In vitro reconstitution and structural analysis 
revealed that the building blocks of lamin polymers are formed 
by parallel dimerization of the rod domains that then assemble 
longitudinally to form higher order head-to-tail lamin polar 
oligomers. Two head-to-tail oligomers then interact laterally to 
form tetrameric protofilaments, which further assemble to form 
10-nm filaments, as successfully assembled in vitro using Ce-lamin 
(most other lamins form paracrystalline arrays in vitro).13,31 The 
rod segments play an important role in lamin homodimerization, 
and in the formation of lateral and longitudinal contacts.32,33 
Moreover, mutational analyses suggest that the 2B coil plays a dual 
role in dimerization and in the interdimer interactions necessary 
for filament formation.33

Current information about the organization of lamins in 
vivo is largely based on studies of the amphibian oocyte lamina, 

which express a single type of lamin (LIII). By contrast, lamin 
organization in somatic cells remains poorly understood, probably 
due to the complex interactions of lamins with chromatin and other 
proteins or nuclear structures. In vivo lamins form an intricate 
orthogonal meshwork of filaments within the lamina,25,26,34 and 
they also reside in the nucleoplasm in a less organized state but 
with much greater mobility than that observed in the lamina.35 
Although type A and B lamins form separate filament networks 
at the nuclear envelope and in the interior of the nucleus, these 
individual networks interact to varying degrees.26,34,36,37 During 
the open mitosis of metazoans, type A and B lamins display 
different assembly and disassembly properties. When the NE is 
disassembled during late prophase, lamins are depolymerised by 
mitotic kinases, and while type A lamins are dispersed throughout 
the cytoplasm, type B lamins remain associated to the nuclear 
membranes that disperse throughout the endoplasmic reticulum, 
probably due to their permanent farnesylated state. Type A and B 
type lamins also undergo spatially and temporally distinct forms 
of assembly into the nuclear lamina at the end of mitosis. Type 
B lamins accumulate around decondensing chromosomes to form 
relatively stable complexes at telophase, while type A lamins are 
transported into the nucleus at a later stage, after the formation of 
an intact NE.12

Lamins are involved in many nuclear functions, such as: the 
regulation of nuclear shape and architecture; the association 
of the NSK to the CSK; epigenetic modifications; chromatin 
organization and positioning; DNA replication, repair, and 
transcription; and cell proliferation and differentiation. They also 
perform several structural functions including the regulation of the 
size, shape, and mechanical properties of the nucleus, and they are 
important for NE stabilization and the incorporation and spacing 
of NPCs.12-14,30,35,36,38 In addition, lamins participate in the physical 
connection between the nucleus and the CSK through their 
interaction with the LINC complex, which is formed by SUN – 
and KASH-domain proteins and is essential for nuclear positioning 
and migration, centrosome attachment to the nucleus, meiotic 
chromosome pairing, and mechanotransduction.39,40 Lamins 
also act as modulators of transcription through their influence 
on chromatin structure and organization as a result of direct 
interactions with either DNA, histones, and/or other chromatin-
associated proteins, such as LBR, HP1, and BAF, or their direct 
or indirect interaction with transcription factors that affect cell 
proliferation, differentiation, and apoptosis.13,41,42 The direct or 
indirect interaction of chromatin with lamins also has a strong 
effect on the epigenetic modification of histones.43,44 The absence 
of lamins affects the organization of chromosome territories and 
domains, and a role for lamins in the localization and function 
of centromeres and telomeres has also been demonstrated.45,46 
Lamins localize to replication foci and interact with PCNA, a 
component of the replication machinery,47 while mutations in 
lamins can produce genomic instability by compromising DNA 
repair.48 Together, all the above observations point to lamins as key 
determinants of nuclear architecture and function.

It is clear from the above that the interaction of lamins with 
distinct proteins, including structural and regulatory proteins, 
defines their activity.27,49 Lamin protein partners, mainly those 
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of lamin A, have been studied extensively.14,27,49 The proteins that 
interact with lamin A are involved in different nuclear activities, 
and they include components of the NSK and NPCs, such as 
lamins B1 and B2, actin (lamins have 2 actin binding sites in their 
tail domain),50 nesprin 1α and nesprin 2, lamin companion 1 
(LCO1), SUN1 and SUN2, the nucleoporins Nup153 and Nup88, 
and LEM domain proteins such as LAP2α, MAN1, LEM2, and 
emerin. Other partners include chromatin-associated proteins such 
as BAF, PCNA, HP1, and histones, as well as transcription factors 
like Rb or other proteins involved in transcription and signaling.27 
The partners of type B lamins are less well known, although 
lamin B1 is known to interact with the lamin B receptor (LBR), 
which contains 8 transmembrane domains, as well as with emerin, 
MAN1, actin, LCO1 and Nup153, PCNA, and histones.14,27

Some of the best characterized lamin-binding proteins are those 
that share the LEM domain, a motif of about 45 residues that folds 
as 2 α-helices and binds BAF, a mobile lamin-binding protein 
that interacts with histones.49 Most LEM proteins are integral 
proteins of the INM and have 1 or 2 transmembrane domains, 
while some have additional domains that bind DNA or chromatin-
binding proteins. All LEM domain proteins bind type A and/or 
B lamins through a direct interaction with the IgG fold in their 
tail domains.14 Emerin binds many other proteins in addition to 
lamins, including: structural proteins (e.g., nesprin1α, nesprin2β, 
actin, nuclear myosin c, and nuclear αII-spectrin); other INM 
proteins (e.g., MAN1, LUMA); proteins involved in signaling, 
transcription, and mRNA splicing; and BAF.51 Emerin forms 
several multiprotein complexes, some of which contain mainly 
architectural components and others containing chromatin and 
gene regulators.49,51 LAP2α and LCO1 bind lamin A and form 
three-dimensional scaffolds in the nuclear interior.35 Lamins, LEM 
proteins, BAF, and probably other INM proteins form a complex 
multiprotein network involved in anchoring chromatin to the 
NE.49 These functions and interactions of LEM proteins, lamins, 
and BAF are strongly conserved in metazoans, emphasizing their 
fundamental roles in the nucleus.

Other well-characterized lamin partners are the SUN-domain 
proteins of the INM, proteins that form trimers that interact 
with 3 KASH domain proteins of the ONM in the lumen of the 
NE, forming LINC complexes.39 SUN proteins are conserved 
in eukaryotes, including yeast and plants,52,53 and they are 
characterized by their C-terminal SUN domain, a 120 residue 
motif involved in binding the KASH domain, and a nearby 
coiled-coil domain that mediates trimerization.40,54 SUN domain 

proteins bind to lamins through a direct interaction with their 
nucleoplasmic N-terminal domain.55

The plant lamina
The presence of a peripheral layer similar to the metazoan 

lamina was identified by TEM in the NSK and nucleus of both 
dicot and monocot plants in the early 1990s.15-19,56 A more recent 
feSEM study of the nucleus revealed the presence of a plant lamina 
attached to the INM and linked to the nucleoplasmic ring of NPCs, 
with a highly organized filamentous structure similar to that of the 
metazoan nuclear lamina.21,57 Plants lack orthologs of lamins,22,23 
as well as most lamin-binding proteins except for the SUN 
proteins,52,58 although Nup136 is a functional analog of metazoan 
lamin binding protein, Nup153.59 The similar organization of the 
lamina and the fulfilment of the main activities of lamins in the 
plant nucleus suggest that plants express proteins that functionally 
replace lamins, and that probably share their structural and 
functional properties rather than sequence similarity, as described 
for NUP1 in Trypanosoma.11

Since the first description of a plant lamina, a few insoluble 
proteins have been identified in this structure, mainly by 
immunological methods.20,60 Some of these proteins are 
immunologically related to vertebrate lamins, and are of similar 
sizes, with comparable pI values and nuclear distributions.16,17,19,61 
These include the NIF group of proteins, which not only exhibit 
the aforementioned similarities with lamins, but they also form 
6–12-nm filaments in vitro.16,61 Unfortunately the sequence of 
these proteins remains unavailable to compare them to lamins.

As indicated above, the best candidates to fulfill the functions 
of lamins in plants are NMCPs, which have a predicted secondary 
structure similar to that of lamins and thus, should be able to 
dimerize and form filaments. NMCP1 was first described in 1993 
in carrot as a residual protein of the nuclear matrix with a pI value 
similar to that of lamins but a much higher molecular mass.18 This 
protein was later shown to have a predicted tripartite structure 
with a central coiled-coil domain similar to that of lamins,56 and to 
assemble and disassemble in mitosis like lamins.62 Four homologs 
of carrot NMCP1 were subsequently identified in a genome-wide 
search for coiled-coil proteins in Arabidopsis thaliana.23 These 4 
A. thaliana genes were named LINC (little nuclei) 1 to 4 after 
the phenotype of their corresponding mutants.63 This term is 
somewhat misleading, as it is already used to describe the linker 
of the NSK to CSK complex of the NE.40 Accordingly, it was 
proposed to change this term to CRWN (crowded nucleus), after 
another phenotype of the mutants,24 although this could add 

Figure 2. Comparison of the structure of NMCP proteins and lamins. Both have a tripartite structure with a central coiled-coil domain (orange boxes) 
flanked by cdk1 phosphorylation sites and a tail domain with an NLS (green boxes) and a conserved C-terminus (blue box in the case of the NMCPs and 
CaaX in the case of lamins). NMCP proteins lack the IgG fold typical of lamins (blue oval).
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further confusion to the field and in our opinion, the original term 
NMCP (nuclear matrix constituent proteins) should be used to 
refer to these proteins. More recently, searches of plant genomes 
have identified genes encoding other NMCP homologs in many 
different species, confirming that NMCPs are well conserved in 
plants.64,65 Mutational analysis in A. thaliana has revealed that 
NMCP proteins participate in some nuclear functions mediated 
by lamins in metazoans, such as the regulation of nuclear size 
and shape.63,66 Although NMCPs do not share strong sequence 
similarity with lamins, their predicted structure and sub-nuclear 
distribution suggest that they may participate in the formation of 
the plant lamina. This observation, along with their demonstrated 
role in regulating nuclear shape and size, make these proteins good 
candidates to be lamin analogs in plants.

The NMCP protein family
The NMCP protein family has been characterized using 

bioinformatic and biochemical approaches, as well as with 
molecular biology tools. Members of this family share a high degree 
of sequence similarity, and they have been identified in all land 
plants (Embryophytes) analyzed, including a moss (Physcomitrella 
patens) and vascular plants (Tracheophyte), although they 
appear to be absent from single cell plants (Volvox carteri and the 
unicellular algue Chlamydomonas reinhardtii). However, these 
proteins are not conserved in metazoans, yeast, or bacteria.65 Based 
on sequence similarities, structural analogies and phylogenetic 
relationships, and in agreement with a prior study that analyzed a 
small number of sequences, an exhaustive analysis of 97 sequences 
from 37 plant genomes (Table  S1) recently classified NMCP 
proteins into 2 clusters: NMCP1 and NMCP2 (Fig.  1).64,65 All 
plants carry 1 NMCP2 gene, and while monocots have 1 NMCP1 
gene, dicots carry several NMCP1 genes: 1 NMCP1 gene and an 
additional gene encoding other NMCP1-related proteins named 
NMCP3. A. thaliana carries 4 genes, LINC1-4.23,63 LINC1 is an 
ortholog of NMCP1, whereas LINC2 and LINC3 are classified as 
NMCP3-type genes and LINC4 is a NMCP2 protein (Fig. 1).64,65 
Like A. thaliana, some other dicots (Dacus carota, Capsella rubella, 
and Brassica rapa) express 2 NMCP3-type proteins, while Solanum 
tuberosum and Solanum lycopersicum contain 2 NMCP1-type but 
no NMCP3-type proteins (Fig. 1).

In vascular plants, NMCPs evolved from 2 genes: the NMCP1 
and NMCP2 progenitors. The 2 P. patens NMCPs evolved from a 
common NMCP progenitor gene and are included in the NMCP2 
cluster, suggesting that the archetypal NMCP progenitor was an 
NMCP2 protein (Fig. 1).65

All LINC genes are expressed in whole A. thaliana plants.66 The 
expression profile of LINC1-4 genes show that they are co-expressed 
with genes encoding proteins involved in the cell cycle, DNA 
processing and transcription.63 Microarray data from root tissues 
shows that A. thaliana LINC1, LINC4, and LINC3 are expressed 
most strongly, whereas LINC2 is generally expressed more weakly. 
The expression of NMCP/LINC proteins is developmentally 
regulated. LINC1 is strongly expressed in meristems, and less 
so between the elongation and the differentiated root zones, 
correlating with the pattern of expression of LINC1-GFP from 
its native promoter.67-70 The expression of LINC2 and LINC3 
also decreases from the meristem to the differentiated zone, with 

a particularly steep decrease in LINC2 expression between the 
meristematic and the elongation zones. The expression of LINC4 
decreases in the elongation zone but increases slightly again in the 
differentiated zone.68-70 NMCP1 western blots and the distribution 
of LINC1-GFP protein support these results and demonstrate that 
NMCP1/LINC1 is abundant in both proliferating and quiescent 
meristems, although it accumulates in much smaller amounts 
in the cells of the mature zone.65,67 The expression profile of 
NMCP1/LINC1 resembles that of lamin B1, which is abundant 
in proliferating and quiescent meristematic cells but is weakly 
expressed in differentiated cells.71-73

NMCP proteins have a tripartite structure with a central 
coiled-coil rod domain, and non-coiled head and tail domains 
(Fig. 2).56,63-65 Most NMCPs contain 2 coiled coils, separated by 
a linker of about 20 residues, which form a central rod domain 
that is predicted to dimerize. Short linkers have also been predicted 
to reside inside the coiled-coil segments. The length of the rod 
domain is conserved in NMCPs, as are the positions of the linkers 
in the NMCP1 and NMCP2 proteins.65 In addition, both termini 
of the NMCP coiled-coil domain are conserved in all NMCPs, 
suggesting that the structure of the rod domain is well conserved 
across the NMCP family and that it plays an important role in 
oligomerization. The NMCPs in Physcomitrella patens have a 
longer sequence than other NMCP proteins, and they contain a 
long insert in the rod domain. This insertion results in a unique 
distribution of coiled-coils and altered linker positions in Ppa 
proteins (Ciska et al., unpublished).

The general organization of coiled coils in lamins and NMCPs 
is similar, although the rod domain of NMCPs is twice as long as 
that of lamins (Fig. 2). NMCPs exhibit a high degree of sequence 
similarity in the rod domain, which contains 5 highly conserved 
regions at each end and within the second coil, just before the second 
linker. Another conserved region includes the linker separating the 
2 coils, and it is conserved in all NMCPs except for those in P. 
patens.65 Lamins exhibit a similar distribution of conserved motifs, 
and those located at either end of the coiled-coil domain are 
prime candidates to mediate the head-to-tail associations.32 The 
analogous structures, and the location of conserved motifs in the 
rod domain of NMCPs and lamins, suggest a similar mechanism 
of oligomerization and protofilament formation. This hypothesis 
is supported by the presence of consensus sequences recognized 
by cyclin dependent kinase (cdk1) and protein kinase (PKC)74 at 
either side of the rod domain.

NMCPs also contain several highly conserved motifs in the 
less conserved tail domain, including a NLS and NMCP-specific 
regions.65 A conserved region close to the NLS in NMCP1 proteins 
(RYNLRR), along with the NLS and the N-terminal region of 
the protein, is required for proper localization of the protein to the 
periphery of the nucleus in carrot (Masuda et al. unpublished). 
This region also contains a 5-amino acid stretch that is identical 
to a specific region of lamin A (EYNLRSRT)8 and that probably 
serves as an actin-binding site.50 Point mutations in this sequence 
in lamins cause severe laminopathies, suggesting an important role 
for this actin-binding site in lamin A.75 Like lamins, most NMCPs 
contain a predicted NLS in the tail domain, although the position 
and sequence is only conserved in NMCP1-type proteins. Few 
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sequences lack a predicted NLS, but 2 such sequences (AgNMCP2 
and DcNMCP2) localize to the nucleus, to which they are probably 
directed via an alternative pathway.64

NMCPs lack the C-terminal CAAX box typical of lamins, 
although the C-terminus of most members contains a highly 
conserved region that does not appear to be involved in NE 
association (Masuda et al., unpublished). The C-terminal conserved 
region is present in NMCP1 clusters and in monocot NMCP2, 
although it is absent in dicot NMCP2,64,65 which coincides with 
the appearance of NMCP3 proteins and suggests that this new 
protein class fulfils some of the functions of NMCP2. This region 
is preceded by a stretch of acidic amino acids that is also found at 
the end of the tail domain of vertebrate lamins.76

While the predicted molecular weights of NMCPs from dicots 
and monocots are similar (130–140 kDa for NMCP1 and 110–120 
kDa for NMCP2), the mobility of the endogenous proteins varies 
across species,64,65 probably due to post-translational modifications. 
In some monocots, the MW of the endogenous proteins is lower 
than predicted, suggesting the involvement of alternative splicing 
or proteolytic cleavage. It is also possible that the differences in 
NMCP size are also present at the transcript level. NMCP genes 
may encode multiple transcripts, and while an NMCP1 protein in 
Sorghum bicolor (Sbi04 g030240.1) is predicted to contain 1156 
amino acids, for example, a protein product of the alternative 
transcript is predicted to lack 134 C-terminal amino acids (Sbi04 
g030240.3).

Like lamins, NMCP proteins are predominantly distributed 
in the nuclear lamina, although they are also found in the 
nucleoplasm, as demonstrated by immunofluorescence confocal 
microscopy, immuno-TEM, and the expression of YFP/GFP-
LINC proteins. These observations suggest that the proteins are not 
only involved in nuclear functions associated with the lamina, but 
also in those mediated by internal lamins such as transcription, cell 
cycle progression, differentiation, and chromatin organization.35 
A predominant distribution at the nuclear periphery has been 
reported for carrot and celery NMCP1 and NMCP2,56,64 and A. 
thaliana LINC1 and LINC4.63,66 A. thaliana LINC2 and LINC3 
are exclusively nucleoplasmic,63,66 while onion NMCP1 displays 
both an internal and peripheral localization.65 The mechanisms 
that direct the proteins to these nuclear compartments are not yet 
understood. A very recent study demonstrated that the localization 
of carrot NMCP1 to the nuclear periphery involves a N-terminal 
141 amino acid stretch, the conserved motif R/Q/HYNLRR/H 
and the NLS (Masuda et al., unpublished). Nonetheless, the 
interactions with other proteins necessary for proper localization 
remain unknown. While immuno-TEM has demonstrated 
the presence of onion NMCP1 in the NE in close proximity to 
NPCs,65 feSEM experiments will be necessary to unequivocally 
confirm that this protein is a component of the filaments that form 
the plant lamina.21

As demonstrated by immunofluorescence, the interphase 
distribution of NMCP1 in onion varies in different root cell 
populations, as does its expression. AcNMCP1 is regularly 
distributed along the nuclear envelope in meristematic cells, 
while its distribution in this structure in differentiated cells is 
discontinuous, with areas depleted of protein. A similar distribution 

has been reported for Ce-lamin in aging cells of C. elegans.77 In 
quiescent meristematic nuclei the protein accumulates in aggregates 
in the nucleoplasm that may reflect sites of stored protein ready for 
early activation during root germination, as described for similar 
quiescent structures containing packed nuclear ribonucleoproteins 
(RNPs) and actin.78,79 The detection of NMCP proteins in 
NSK fractions18,65,66 confirms that these proteins are insoluble 
components of the peripheral lamina and that like lamins, they are 
present in a minor fraction in the internal NSK.

NMCPs associate to the NE during interphase but they have 
a distinct spatial and temporal distribution when this structure 
disassembles during mitosis.62,64,66 All NMCPs disassemble 
in prometaphase after NE breakdown but they subsequently 
behave distinctly. NMCP1/LINC1 proteins accumulate on 
segregating chromosomes during anaphase, although carrot 
and celery NMCP1 first associate with the mitotic spindle, and 
then they are finally incorporated into the NE during telophase. 
NMCP2, LINC4, LINC2, and LINC3 disperse throughout the 
cytoplasm, and they are then incorporated into the surface of the 
chromosome and NE envelope following different pathways and at 
different times during telophase. Accordingly, NMCP2 associates 
to cytoplasmic nuclear membrane-derived vesicles while LINC4 
binds to punctuate structures in the cytoplasm before relocating 
to the chromosome surface during telophase.62,64,66 The pathway 
responsible for the assembly of the NMCP1 and LINC1 proteins 
during mitosis differs from that of lamins, which do not associate 
to segregating chromosomes,12 suggesting that NMCPs and lamins 
are subject to distinct assembly processes in the NE.

The functions of NMCPs remain largely unknown. Although 
quadruple LINC mutants are not viable, indicating that NMCP/
LINC proteins participate in essential processes, single, double, 
and even some triple mutants are viable.24 The phenotypic effects 
of LINC mutations are not as severe as those caused by lamin 
mutations that produce a broad spectrum of laminopathies14,29 and 
they mainly involve plant dwarfism, as well as reduced cellular and 
nuclear size.63,66,67 Furthermore, single mutants do not produce 
abnormal phenotypes at the whole plant level, indicating a degree 
of complementation between different LINC proteins.63,66

Disrupting the cytoskeleton by latrunculin B and /or 
propyzamide treatment has no effect on plant nuclear morphology, 
indicating that it is maintained by intranuclear factors and not 
by the CSK.66 While the underlying molecular mechanisms are 
unknown, several studies have implicated NMCP/LINC proteins 
in the regulation of nuclear shape and size,63,66,80 a role also played 
by lamins.14 LINC mutations result in a decrease in nuclear size 
and alterations in the shape of differentiated nuclei,63,66,67 while 
nuclear size is increased by LINC4 overexpression.66 Analyses of 
mutants have revealed that although all LINCs are involved in the 
regulation of nuclear shape and size to different extents, LINC1 
and LINC4 play predominant non-redundant roles.63,66,67 LINC1 
is mainly expressed in meristematic tissues, but it is required to 
achieve a differentiated nuclear shape, and it has been proposed to 
participate in a key differentiation step after nuclear formation.63,67 
Downregulation of Ce-lamin expression in C. elegans embryos 
also results in misshapen nuclei.81 Also, mutations inside the rod 
domain which disrupt the lamin filament formation sometimes 
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show the same phenotype.82,83 Changes in the nuclear shape are 
observed in some lamin mutations in a developmental – and 
tissue-specific manner83 as occurs in A. thaliana linc mutants.66,67 
Both phenotypes could be caused by the disruption of the proper 
formation of the lamina, which disrupts regulation of nuclear shape. 
The increase in nuclear size that occurs during seed germination 
is also dependent on LINC1 and LINC2 proteins.80 A variety of 
mechanisms regulating the nuclear size have been described in 
various experimental systems, but the nuclear import and NE 
proteins, especially lamins, seem to be the key factors involved,84,85 
just like the LINC/NMCP proteins are in A. thaliana.66,67,80

Other nuclear proteins reported to affect nuclear shape in plants 
include the SUN domain proteins,54,86 the KASH-like domain 
WIP proteins,54 the WIT proteins,87 and Nup136, a functional 
homolog of animal Nup15359 producing a similar phenotype to 
that of linc1linc2 mutants. All that suggests that the plant proteins 
forming the nucleocytoplasmic linker: SUNs, WIPs and WITs87 
and Nup136 interact with NMCP/LINC proteins and act in 
concert to regulate nuclear morphology, similar to the way in 
which animal lamins interact with SUN proteins and Nup153 to 
regulate nuclear shape.12

The role of NMCP proteins in chromatin organization remains 
unclear. NMCP proteins do not affect DNA content as all linc 
mutants have normal ploidy levels,63,66 although double linc1linc2 
mutations affect the organization of heterochromatin, as witnessed 
by a significant decrease in the number of chromocenters, probably 
due to coalescence.63 Nevertheless, similar changes in the relative 
heterochromatin fraction and the distribution of heterochromatic 
regions (a centromeric 180 bp repeat, pericentromeric subtelomeric 
45s rDNA repeats, and pericentromeric sequences) are observed 
during germination in linc1/linc2 mutants and in the wild types,80,88 
indicating that LINC1 and LINC2 proteins do not participate in 
the control of heterochromatin compaction. Functional LINC3 

and LINC4 proteins may complement the loss of some NMCP 
functions, and thus, the involvement of LINC proteins in these 
functions cannot be completely ruled out. Further analysis of 
the nuclear organization in mutants, including those carrying 
mutations in other LINC/NMCP genes, is required to verify the 
role of NMCP proteins in chromatin organization.

A key function of lamins in animals is to regulate nuclear 
positioning and movement, processes that are mediated by the 
interaction of type A lamins with SUN and KASH proteins to 
form the LINC complex, and which requires the Samp1 protein 
to stabilize the binding of SUNs to lamins, as well as cytoplasmic 
actin.89 In plants, nuclear movement in response to blue light is 
mediated by phototropin2, and it involves thick actin filaments 
that associate to the nucleus.90 The nuclear components involved 
in this interaction remained unknown. However, a new type of 
nucleocytoplasmic linker consisting of a Myosin Xl-i motor that 
binds to both the actin CSK and the WIT proteins in the outer 
nuclear membrane that in turn interact with the SUN-WIP bridge 
has been described that is involved in rapid and long distance 
nuclear movement in response to environmental stimuli.87 Analyses 
of single and double linc1/4 and linc2/3 mutants have ruled out a 
role of NMCP proteins in blue light-induced nuclear movement 
and positioning, although protein complementation cannot be 
completely discounted.66 These results, along with the revelation 
that the SUN and KASH-like protein WIP are not required for 
nuclear movement in developing root hairs,54,86 strongly suggest 
that the organization of the bridges between the NSK and CSK, 
as well as the mechanisms regulating nuclear movement in plants, 
differ from those of animals.

Analysis of the binding partners of NMCPs will contribute to 
our understanding of their functions, as well as to the composition 
and organization of the protein networks that form the NE 
and NSK in plants. As discussed above, the functional analysis 

Table 1. Main features of NMCP proteins and lamins. 

NMCPs lamins

Types
NMCP1 (monocots 1; dicots 2–3 genes)

NMCP2 (1 gene)
B-type (invertebrates 1; vertebrates 2–3 genes)

A-type (1 gene in vertebrates and in few invertebrates)

Structure
Central coiled-coil rod domain, head and tail

Rod domain flanked by cdk1 sites
NLS in the tail domain

Central coiled-coil rod domain, head and tail
Rod domain flanked by cdk1 sites

NLS in the tail domain

Conserved regions Extremes of the rod domain, linkers and C-terminus Extremes of the rod domain, linkers and C-terminus

Polimerization state Predicted to dimerize Dimerize and form filaments

MW Variable (70-200 kDa) 65-74 kDa

pI Acidic Acidic (B-type lamins); neutral (A-type)

Solubility NSK component NSK component

Subcellular localization Lamina, nucleoplasm Lamina, nucleoplasm

Functions

Nuclear shape and size
Chromatin organization (?) (decreased num-
ber of chromocenters but the distribution of 

heterochromatic regions not changed)
Not involved in light induced nuclear movement

Nuclear shape and architecture
Chromatin organization and positioning

Connecting NSK and CSK
DNA replication, repair and transcription

Cell proliferation and differentiation

Genes Min. 2 in most plants Min. 3 in vertebrates, 1 in most invertebrates

Where? Multicellular land plants Metazoan
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Future directions and perspectives
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