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Rhizobium infects host legumes to 
elicit new plant organs, nodules 

where dinitrogen is fixed as ammonia 
that can be directly utilized by plants. 
The nodulation factor (NF) produced 
by Rhizobium is one of the determinant 
signals for rhizobial infection and nod-
ule development. Recently, it was found 
to suppress the innate immunity on host 
and nonhost plants as well as its analogs, 
chitins. Therefore, NF can be recog-
nized as a microbe/pathogen-associated 
molecular pattern (M/PAMP) like chi-
tin to induce the M/PAMP triggered 
susceptibility (M/PTS) of host plants 
to rhizobia. Whether the NF signaling 
pathway is directly associated with the 
innate immunity is not clear till now. In 
fact, other MAMPs such as lipopolysac-
charide (LPS), exopolysaccharide (EPS) 
and cyclic-β-glucan, together with type 
III secretion system (T3SS) effectors 
are also required for rhizobial infection 
or survival in leguminous nodule cells. 
Interestingly, most of them play similarly 
negative roles in the innate immunity of 
host plants, though their signaling is not 
completely elucidated. Taken together, 
we believe that the local immunosuppres-
sion on host plants induced by Rhizobium 
is essential for the establishment of their 
symbiosis.

During microbe-plant interactions, the 
microbe/pathogen associated molecular 
pattern (M/PAMP, including fragments of 
flagellin and EF-Tu) produced by microbes, 
triggers the innate immunity of host plants 
(PTI).1 It is the first line of plants com-
bating with microbes. To break this line, 
many bacteria inject several effectors into 
host cells through a type-III secretion 

system (T3SS) to disturb PTI for trigger-
ing susceptibility (ETS), and successfully 
invade hosts.2 However, plants evolve a 
serial of resistance (R) proteins to recog-
nize those effectors for induction of hyper-
sensitive response (HR) and cell death to 
prevent further invasion, called effectors 
triggered immunity (ETI).2 Noticeably, 
M/PAMPs can also trigger susceptibility 
(M/PTS) of a host to microbes or patho-
gens. For example, cyclic-β-glucan from 
Xanthomonas campestris pv campestris 
suppresses host immunity and enhances 
bacterial infection.3 Compared known 
data, we find that M/PTS and ETS share 
similar features: (1) both types of immune 
reagents produced by microbes, (2) sup-
pressing host immune or defense response 
to promote infection. Therefore, both M/
PTS and ETS are immunosuppression 
responses, which have been described in 
mammalian immunology.

Symbiosis is established between 
Rhizobium and legumes through complex 
mutual interactions. During this process, 
rhizobia infect host plants through a chan-
nel (thread) on the tip of a root hair cell 
or a crack between two plant cells. Then 
the duplicated bacterial cells release from 
infection threads into plant nodule cells 
via endocytosis. After proliferation and 
differentiation, they turn into bacteroids 
fixing dinitrogen as ammonia. Several 
signals from rhizobia have been identified 
including nodulation factors (NFs), lipo-
polysaccharide (LPS) and exopolysaccha-
ride (EPS).4,5 Here, we re-examine these 
molecules and their signaling at the point 
of immunology.

NF is a group of lipo-chitin oligo-
saccharide synthesized by most rhizobia 
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after treatment by specific f lavonoids 
from host legumes.6 NF is required for 
rhizobial infection and nodule develop-
ment for most Rhizobium-legume symbi-
oses.6 NF works as a signal perceived by a 
couple of LysM receptor kinases (includ-
ing LjNFR1–5, MtNFP and MtLYK3) to 
elicit calcium spiking and reprogram the 
expression of downstream genes.7 Several 
genes (such as SYMRK, CCAMK, NIN, 
NSP1 and NSP2 in Lotus japonicus) have 
been identified to consist of a NF signal-
ing pathway.7 It has been reported that 
NF plays its regulatory roles in reactive 
oxygen species (ROS) production.8,9 
Interestingly, the MAPK cascade is asso-
ciated with NF signal transduction.10 
Therefore, according to composite ele-
ments, the NF signaling pathway is simi-
lar with those PTI signaling pathways. 
Noticeably, Bradyrhizobium japonicum 
NF has been found to suppress the 
immune response on the leaves of nonhost 
Arabidopsis thaliana and host soybean.11 
Although GmNFR1 and GmNFR5 were 
not essential for this immunosuppression 
in leaves and a new LysM kinase could 
perceive NF in Arabidopsis, it is possible 
that the NF signaling pathway is associ-
ated with suppression of host defense in 
legume roots.

LPS is composed of core oligosaccha-
ride, lipid A and O-antigen as a com-
ponent of cell wall in Gram negative 
bacteria including all Rhizobium spe-
cies.12 LPS produced by some pathogens 
acts as a pathogenic factor.13 Biosynthesis 
of LPS is essential for Rhizobium infect-
ing host plants or survival in host cells.14 
It is interesting that purified LPS from 
Sinorhizobium meliloti can suppress the 
oxidative burst in Medicago truncatula 

suspension cells, but elicit it on non-host 
plants.15 These data suggest that rhizobial 
LPS plays key roles in local immunosup-
pression of host legumes during sym-
biosis. Although the signal transduction 
of LPS is not clear in plants, it is pos-
sible that LPS negatively modulates host 
immunity during most of Rhizobium-
legume symbioses.

Almost all rhizobia can produce at 
least one type of EPS.16 S. meliloti pro-
duces two types of EPS, succinoglycan 
and gluctoglycan.4,5 It has been reported 
that both EPSs are required for S. meli-
loti infection of alfalfa.4,5 Succinoglycan 
is a polymer consisting of several octo-
saccharide units (including one glactose 
and seven gluctose modified by one suc-
cinate and one acetate). Gluctoglycan is 
composed of thousand and hundreds of 
dimmers of one glactose and one gluctose 
with modification of one acetate. Their 
oligomers were found to work as signals 
on host plants. The transcriptomic data 
showed that S.meliloti exoY minus mutant 
(not synthesize succinoglycan) induced 
the elevated expression of many defense 
related genes on host M. truncatula, sug-
gesting that succinoglycan suppresses host 
immunity during infection.17 Whether the 
oligomer of EPS is perceived by a recep-
tor, interacting with MAPKs to constitute 
a signaling pathway will be elucidated by 
forward genetics and biochemistry.

Most rhizobia behave type III secre-
tion systems (T3SS) like pathogens.18,19 
Several effectors are secreted into host 
cells through T3SS. Sinorhizobium sp. 
NGR234 is able to infect and nodu-
late dozens of leguminous plants. S. sp. 
NGR234 secrets a few effectors including 
NopJ, NopL, NopM, NopP and NopT 

into host plant cells, where most of them 
interact with immune signaling pathways 
to suppress host defense responses.21-24 For 
example, NopL mimics a MAP substrate 
to impair the MAPK signaling, while 
NopM is a ubiqutin ligase to reduce the 
ROS production induced by flg22.20,21 
Therefore, we propose that rhizobial T3SS 
effectors could trigger ETS to promote 
Rhizobium infection and survival in host 
cells.

Absolutely, phytohormones includ-
ing ethylene, jasmonate and salicylic acid 
interplay with the signaling pathways of 
PTS or ETS associated with Rhizobium 
infection and survival in host legumes.25-27 
Moreover, the phytocytokine (like phy-
tosulfokine, Clavata3-like and plant 
elicitor peptides) signal transduction 
is possibly involved in immnosuppres-
sion of Rhizobium-legume symbiosis.28 
In summary, immunosuppression takes 
place in almost all key steps of rhizobium-
legume symbiosis. The signaling network 
could consist of PTS, ETS, phytohor-
mones, and phytocytokines, though the 
molecular mechanism is not very clear 
now. Therefore, local immunosuppres-
sin of plants should be considered dur-
ing engineering of Rhizobium-nonlegume 
symbiosis.
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