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Lipid droplets play an essential role in the life cycle of plants by 
housing lipid storage compounds, usually triacylglycerols, in seeds 
that are mobilized to support post-germinative growth, prior to pho-
tosynthetic establishment. Given this critical role in plant growth 
and development, the majority of research on plant lipid droplets 
has focused on their function in seed tissues. For instance, purifica-
tion of lipid droplets from plant oilseeds resulted in the identifica-
tion and characterization of the oleosins, which are an abundant 
class of lipid droplet-surface-associated proteins important for sta-
bilizing lipid droplets during seed desiccation1-3 and possibly serv-
ing as sites for recruitment of lipases that facilitate the breakdown of 
stored triacylglycerols during seedling establishment.4

It is now appreciated, however, that lipid droplets have numer-
ous functions beyond lipid storage in seeds and that they are pres-
ent in nearly all plant cell types, many of which do not accumulate 
appreciable amounts of lipid, such as the cells in leaves, stems, 
and roots.5 There is also emerging evidence that lipid droplets are 
highly dynamic organelles involved in a variety of cellular processes 
and physiological responses, some of which appear to be con-
served among eukaryotes.6-8 Nevertheless, the precise functions of 

lipid droplets in non-seed cell types in plants are currently poorly 
understood.

In an effort to increase our understanding of lipid droplet 
biogenesis and functions in plants, we recently characterized the 
proteome of lipid droplets isolated from the mesocarp of avocado 
(Persea americana).9 This tissue was selected for analysis since it is a 
rich source of non-seed lipid droplets that lack the abundant oleo-
sins found in oilseed tissues. Briefly, proteins enriched in the iso-
lated avocado mesocarp lipid droplet fraction were identified using 
a combination of multi-dimensional protein identification technol-
ogy and peptide mass fingerprinting, using an avocado RNAseq-
derived “proteome” for query. Two of the most abundant proteins 
associated with these lipid droplets were highly similar (86%) in 
sequence to each other and, thus, were annotated as lipid droplet-
associated protein 1 (LDAP1) and LDAP2 (Fig. 1A; Pam_LDAP1 
and Pam_LDAP2). We also showed previously that LDAP1 and 
LDAP2 gene expression during development of avocado mesocarp 
increased in correlation with oil accumulation.9 Interestingly, tran-
scriptome analysis of various tissues of oil palm (Elaeis guineensis) 
revealed the presence of three LDAP-like genes, of which one of 
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While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol 
esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid 
signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane 
whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated 
with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that 
localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small 
rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role 
of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs 
and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compart-
mentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant 
cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed.
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them showed the highest homology with LDAPs from other species 
(Fig. 1A; Egu_LDAP-like). The transcript levels for these LDAPs 

are high in oil palm mesocarp, 
another oil-rich non-seed tissue, 
during the period of oil accumu-
lation (Fig. 2A).10 The expression 
of the LDAP genes is moderate in 
oil palm kernel, which accumu-
lates about 40–60% oil, but was 
not elevated in leaf tissues that do 
not accumulate high amounts of 
oil (Fig.  2A). It is worth point-
ing out that transcript levels for 
oleosins were also abundant in oil 
palm kernel but absent in meso-
carp, where LDAP expression 
is more predominant (Fig.  2A). 
Most strikingly, proteome analy-
sis shows that LDAP levels match 
closely to that of oil accumula-
tion during mesocarp develop-
ment (Fig.  2B). Taken together, 
these observations support a role 
for LDAP-like proteins in the 
biogenesis of lipid droplets and 
accumulation of triacylglycerol in 
lipid-rich tissues such as avocado 
and oil palm mesocarp, where 
oleosin-mediated stabilization of 
lipid droplets is absent.

A search for LDAP-like 
genes in eukaryotic organisms 
whose genomes have been fully 
sequenced revealed that this gene 
is plant-specific and is highly con-
served among all plant species, 
and with most plants having 3 
different LDAP-like genes.9 The 
LDAP proteins are also highly 
similar in sequence to small rub-
ber particle proteins (SRPPs) that 
accumulate in certain rubber-
producing plants, such as rub-
ber tree (Hevea brasiliensis)11 and 
guayule (Parthenium argenta-
tum)12 (Fig. 1A; Hbr_SRPP and 
Par_SRPP, respectively). Thus, 
it appears that the LDAP genes 
are not unique to plants that 
produce high amounts of oil in 
their mesocarp, but rather are 
more likely involved in conserved 
aspects of lipid droplet biogenesis 
that are shared among most plant 
species. In support of this prem-
ise, we showed previously that the 
protein from Arabidopsis thaliana 

(At3g05500) with highest homology to the avocado LDAPs 

Figure 1. For figure legend, see next page.
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(Fig. 1A; Ath_LDAP) did indeed target specifically to lipid drop-
lets in model, non-seed plant cells, i.e., tobacco suspension-cultured 
cells.9 At3g05500 is also highly expressed in developing Arabidopsis 
seeds with a temporal pattern similar to oil body biogenesis and 
oleosin accumulation (Toronto BAR eFP browser; http://bar.uto-
ronto.ca/), consistent with a role in both seeds and non-seed tissues. 
Here, we show that guayule SRPP, which is associated with lipid 
droplets containing polyisoprenoids,12 is also capable of targeting 
to triacylglycerol-containing lipid droplets in tobacco cells (Fig. 3). 
Given the similar targeting of LDAPs and SRPPs to lipid droplets 
containing triacylglycerol, it is possible that the LDAP/SRPP fam-
ily of proteins share a generalized role in lipid droplet biogenesis by 
binding to and stabilizing the lipid droplet surface, thereby pro-
moting the proper partitioning of the lipophilic compounds stored 
within. Evidence in support of this idea is that knock down of 
SRPP gene expression in Russian dandelion (Taraxacum brevicor-
niculatum) results in rubber particles that are less stable and tend to 
aggregate, resulting in an overall reduction in rubber production.13 
Whether the knock down of LDAPs in a non-rubber accumulat-
ing plant, such as Arabidopsis, yields a similar phenotype, however, 
remains to be determined.

Although the precise functions of LDAPs are not yet fully 
understood, the SRPPs are known to function by stimulating 
the synthesis of polyisoprenoids in isolated rubber particles.11 
Interestingly, rubber particles isolated from H. brasiliensis also con-
tain shorter SRPP-like proteins called the rubber elongation fac-
tors (REFs), which also stimulate rubber production.14,15 The REF 
proteins are highly similar to the N-terminal regions of SRPPs and 
LDAPs (Fig. 1B), and thus may represent a minimal lipid droplet-
associating domain. It is also notable that while all higher plants 
are known to have the longer LDAP—or SRPP-like genes, only a 
few plants whose genomes have been sequenced contain predicted 
REF-like genes, including grape, rice, maize, and eucalyptus (data 
not shown). In addition to these shorter REF-like genes, certain 
plant species contain significantly longer LDAP-like genes that 
encode a fusion of LDAP to other domains, such as phosphatases, 
HORMA-like domains, or RALF-33-like peptide hormones, and 
also a fusion consisting of 3 LDAPs joined in tandem (Fig. 1B). 
However, whether any of these represent bona fide functional genes 
or artifacts of genome annotation requires further investigation. 

Nonetheless, it will be interesting to further elucidate the role(s) 
of the LDAPs in lipid droplet ontogeny and regulation.

Figure 1 (see previous page). Sequence analysis of LDAP-like proteins. (A) ClustalW alignment of bona fide lipid droplet-associated proteins (LDAPs) 
from avocado (Pam_LDAP1 and Pam_LDAP2) and Arabidopsis (Ath_LDAP), and biochemically characterized small rubber particle proteins (SRPPs) from 
rubber tree (Hbr_SRPP) and guayule (Par_SRPP). GenBank accession numbers are KF031141, KF031142, NM_111423, AJ223388, and AAQ11374, respec-
tively. The LDAP-like sequence (M01000058007; available at http://www.biomemb.cnrs.fr/contigs.html) from oil palm (E. guineensis), Egu_LDAP-like was 
identified by TBLASTN search of its transcriptome data10 using Ath_LDAP as a query. (B) Cartoon illustrating the various forms and functional domains 
fused to LDAPs in certain plant species. (1) LDAP domain, which is shared among LDAPs and SRPPs in non-rubber-accumulating and rubber-accumu-
lating plants, respectively (see A for examples). (2) Rubber elongation factor (REF) proteins, which are similar in sequence to the N-terminal portion 
of LDAPs and SRPPs and have been shown to associate with rubber particles isolated from the rubber tree (Hevea brasiliensis; e.g., GenBank number 
X56535).14 (3) Two similar genes, at 2 different loci in apple (Malus domestica; Phytozome loci MDP0000557646 and MDP0000608906 [www.phytozome.
net]), encoding putative proteins that each have a RALF (Rapid Alkalinization Factor) domain fused at the N terminus of the LDAP domain. RALF domains 
are peptide hormones involved in various aspects of plant growth and development.16 (4) C-terminal domain (CTD) small phosphatase-like protein 2 
sequences fused to both N – and C-terminal sides of an LDAP in Medicago truncatula (Phytozome locus Medtr3g085400). (5) HORMA domain (named 
after the Hop1p, Rev7p, and MAD2 proteins), typically involved in protein–protein interactions associated with chromatin binding,17 fused to LDAP in 
flax (Linum usitatissimum; Phytozome locus Lus10015786.g). (6) CTD small phosphatase-like protein 2 sequence and a HORMA domain fused to LDAP in 
both flax (Phytozome locus Lus10037019.g) and strawberry (Fragaria vesca; GenBank number XP_004310215). (7) Three LDAP domains fused together in 
a single gene in cotton (Gossypium raimondii; Phytozome locus Gorai.007G341500). Notably, we could amplify cDNA fragments corresponding to this 
latter gene, including one that spanned portions of all 3 LDAP domains (data not shown), confirming it is an authentic fusion.

Figure  2. Expression pattern of LDAPs in oil palm (E. guineensis). (A) 
Three LDAP-like genes, represented by 5 contigs (M01000063962, 
M01000058007, M01000030686, M01000019267, and M01000000234), 
were identified in oil palm. The average transcript levels of the 3 LDAPs 
were higher in mesocarp than kernel, which was harvested 15 wk after 
pollination, during which time oil accumulation is at a maximum. 
On the contrary, average EST levels for oleosins (sum of GBAF147758 
and GAJH01049154) were highest in kernel and very low in meso-
carp. Both LDAP and oleosin genes were barely expressed in leaf tis-
sues. Transcriptome data, in raw format, are available in GenBank 
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/) (oil palm: 
SRX059258–62). (B) Temporal changes in protein accumulation for the 
3 LDAPs during mesocarp development of oil palm, showing a rapid 
increase in abundance during the period when oil accumulation occurs 
(stages S3 to S5). The developmental stages of the mesocarp (S1-S5) 
were previously described.10 Relative protein levels from oil palm 
mesocarp were estimated by label-free proteomics (Dupuy JW and 
Arondel V, unpublished). 
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Figure  3. Localization of guayule SRPP-GFP to lipid droplets in a 
tobacco cell. Shown are representative epifluorescence micrographs 
of tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) suspension-
cultured cells, which serve as a well-characterized system for study-
ing protein localization in plant cells.18 BY-2 cells were transiently 
transformed via biolistic bombardment with plasmid DNA encoding 
full-length guayule SRPP12 (GenBank number AF541942) C-terminally 
fused to the N terminus of the green fluorescent protein (SRPP-GFP). 
Following bombardment, cells were incubated in linoleic acid, which 
induces a dramatic increase in the number and size of lipid droplets in 
these cells (see ref. 9 for additional details), and then incubated with 
monodansylpentane (MDH), which is a blue-fluorescing marker dye 
for lipid droplets in living cells.19 Note that the fluorescence attribut-
able to the MDH-stained lipid droplets is false colorized red. The yel-
low color in the merged images represents obvious co-localizations 
between SRPP-GFP and MDH-stained lipid droplets, most of which 
have coalesced, apparently due to the ectopic (over)expression of the 
fusion protein. These larger coalesced structures are not observed 
in the neighboring non-transformed cells wherein lipid droplets 
are usually dispersed throughout the cytosol. Similar coalescence of 
lipid droplets was observed in BY-2 cells transiently overexpressing 
Arabidopsis LDAP (Gidda SK, Watt SC, and Mullen RT, unpublished), as 
well as in various other cells types in which other lipid droplet proteins, 
such as perilipin 1 and the ancient ubiquitous protein 1, are ectopically 
(over)expressed.20,21 Shown also is the corresponding differential inter-
ference contrast (DIC) image. Bar = 10 μm.


