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Abstract

Deep Brain Stimulation (DBS) is an effective treatment for patients with Parkinsons disease, but

its impact on basal ganglia nuclei is not fully understood. DBS applied to the subthalamic nucleus

(STN) affects neurons in the Globus Pallidus pars interna (GPi) through direct projections, as well

as indirectly through the Globus Pallidus pars externa (GPe). Since traditional statistical analyses

of electrophysiological data provide too coarse a view of circuit dynamics, and mesoscopic

biophysical dynamic models contain an intractable number of state variables for small populations

of neurons, we apply a modular approach and treat each region in the STN-GPe-GPi circuit as a

multi-input multi-output point process system. We use microelectrode recordings of a normal

primate with DBS applied to STN at 100 and 130 Hz to estimate point process models (PPMs) for

recorded regions in GPi. Our PPMs uncovered distinct dependencies between regions of GPe and

GPi neurons, separated by the position of the GPi neurons, and showed normal refractory periods,

inhibition from projecting neurons in the GPe, and DBS-induced oscillatory effects. The PPMs

also showed the relative impact of the above factors, which traditional statistics fail to capture.

Our PPM framework suggests a useful approach for understanding dynamics of complex neural

circuits.

I. INTRODUCTION

Parkinons disease (PD) is a chronic progressive neurological disorder affecting an estimated

6.5 million people world-wide, with no treatment to stop disease progression. The

symptoms, namely tremor, rigidity, and bradykinesia, are aided by a highly promising

therapy: deep brain stimulation (DBS). An electrode is surgically implanted sub-cortically

and wired to a battery-powered electrical stimulator in order to postoperatively deliver

periodic trains of electrical pulses. When appropriately stimulated, patients can regain

control of movements. The electrode is implanted in the basal ganglia (BG), a set of sub-

cortical nuclei involved in multiple segregated parallel loops (e.g., limbic, prefrontal, motor

loop) that modulate cortical activity [1]. Although clinically effective, and despite a growing

number of applications [2], [3], the exact effect of the stimulation is still not fully

understood, since the neurons in these areas are densely connected in an excitatory and

inhibitory manner. This gives rise to a multitude of interrelated outcomes in the cortex [4]. It

is important to better understand the effects of DBS to further fine-tune stimulation applied
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to the basal ganglia, thus leading to more effective therapeutic outcomes. In PD patients,

DBS is typically delivered to the subthalamic nucleus (STN), which directly affects the

Globus Pallidus pars interna (GPi), one of the output nuclei of the basal ganglia. The effects

of STN DBS on GPi mainly stem from direct activation of the subthalamo-pallidal

projections, which are both excitatory in nature (direct projection) as well as inhibitory via

the Globus Pallidus pars externa (GPe) [1], as seen in Fig.1. The relative impact of these two

pathways, however, is still not fully understood. Microelectrode exploration has enabled the

collection of large amounts of electrophysiological data in PD patients and primates from

the basal ganglia [5], [6], [7], [8]. However, this data is not sufficient to support

biophysically detailed modeling of the neural circuits composing BG nuclei [7], [9], [10],

forcing neuroscientists to compute first and second-order statistics (eg. rastograms,

histograms, power spectra) [8], [11]. Instead, we use a modular approach, treating each

nuclear region within the BG as a multi-input, multi-output stochastic system. Probability

distributions describing temporal dependencies of neurons in each system are estimated

from primate data. The estimated probability distributions parameters also help uncover

strengths of interconnections between nuclei. We focus on the STN-GPe-GPi circuit and

model each recorded region within the GPi as a point process system whose spike train

outputs are influenced by two inputs: the DBS signal applied to STN and the activity from

projecting GPe neurons. This can be visualized in Fig.1. A point process model (PPM)

generalizes the spike-rate of a Poisson process to one that is time-varying, history

dependent, and can characterize the relative contribution of intrinsic factors (e.g. spike

history effects of projecting nuclei) and extrinsic factors (e.g. DBS signal) on the probability

that a neuron will spike at any given time [12]. Each GPi PPM captures aggregate

information about neural activity in the GPi system as it specifies one spike-rate function

applicable to all neurons in it. This implies that the stochastic nature of these neurons is

governed by the same probability distribution. PPMs provide a way to incorporate the

inherent dynamic nature and temporal dependencies in the activity of neurons while under

DBS. In this paper, we concentrate on the effect of DBS on the GPi neurons, since these are

the neurons that directly project to the thalamus and thus have a more immediate impact on

the cortex [1]. Our PPMs gave us information about the connections between neurons in

different positions of the GPi and GPe. The PPMs built on these groups of neurons showed

us the oscillations and spiking patterns seen by traditional methods of analysis, in addition to

quantifying the impact of the GPe neurons and the DBS signal on the dynamics of GPi

neurons. Identification of refractory behavior, inhibition due to GPe neurons at a latency of

4–6 ms, and an excitation due to the DBS signal was made using our models.

II. METHODS

A. Data Collection

Recordings from one non-human primate were used in this study. The animal was awake

and trained to limit itself to passive movements. Details about surgical procedures and data

collection are in [5]. Briefly, the primate (macaca mulatta) was implanted with a recording

chamber and received a constant current biphasic square pulse stimulation in the STN via a

reduced scale model of the human DBS lead. Stimulation frequencies were 100 and 130 Hz.

Microelectrode recordings were alternatively obtained from different sites in the motor side
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of GPe and GPi during STN DBS (positions later confirmed by histological examination).

During each recording session, continuous recordings of neuronal activity were made during

30s under stimulation. Only neurons with an average spiking rate 10 Hz before stimulation

were included in this study (Table I).

B. Point Process Models

Point process methods have been used in the past to analyze the spike train activity for a

broad range of neural systems [12], [13], [14]. We formulated point process models to relate

the spiking propensity of GPi neurons in each recording site to their own spiking history, the

spiking history of the neurons in the GPe sites, and the DBS pattern. We used the model

parameters to analyze oscillations and modulations of the GPi spiking due to the DBS signal

and the activity of GPe neurons. A neural spike train may be treated as a point process, i.e., a

series of random binary events that occur continuously in time [12], [14]. In this case, the 1s

correspond to the individual spike times and the 0s are the times at which no spikes occur. A

PPM of a neural spike train is completely characterized by considering an observation

interval (0,T] and defining its conditional intensity function (CIF), λ(t|Ht):

(1)

where N(t) is the number of spikes counted in interval (0,t] for t in (0,T], Ht the history of

spikes up to time t, and P the probability [15], [16]. When Δ is small, It follows from (1) that

the probability of a single spike in (t,t +Δ] is approximately λ(t|Ht)Δ, which gives the spiking

propensity at time t. The CIF generalizes the rate function of a Poisson process to a rate

function that is history dependent. Because the CIF completely characterizes a spike train,

defining a model for the CIF defines a model for the spike train [17], [18]. For our analyses,

we defined one CIF model for each group of GPi neurons (i.e., neurons recorded in the same

site under the same stimulation settings) by using generalized linear models (GLM) [19].

The GLM is an extension of the multiple linear regression model in which the variable being

predicted, in this case spike times, need not be Gaussian [19]. GLM also provides an

efficient computational scheme for model parameter estimation and a likelihood framework

for conducting statistical inferences [17]. Instead of estimating the CIF continuously

throughout the entire trial, we estimated it at discrete time intervals, each a millisecond in

length, for a duration of 30 seconds. Specifically, for each millisecond bin, k, we modeled

the CIF for GPi neurons as follows:

(2)

where T is the time window (equivalent to the inter pulse interval in this study, i.e., 10 ms

for 100Hz DBS and 8ms for 130Hz DBS),  the number of spikes observed in the interval

[a,a + 1) (in ms) at nucleus b, and  the number of DBS pulses delivered in the same

interval. The vector of parameters  was estimated by

maximizing the likelihood of observing the recorded spike trains from GPe and GPi, and

quantifies spiking history effects of both groups of neurons on the propensity that neurons in
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the GPi site will spike. Specifically, α accounts for the history-independent activity of each

neuron, βGPis measure the effect of the neurons own spiking history, βGPes measure the

effect of the spiking of the GPe neurons, and γs measure the time-varying effect of the DBS

signal. Establishing the degree of agreement between a point process model and

observations of the spike train and associated experimental variables is a prerequisite for

using the point process analysis to make scientific inferences. 80% of spike trains were used

for model parameter fitting and the last 20% for validation. We used Kolmogorov-Smirov

(KS) plots based on the time-rescaling theorem [20] to plot the empirical cumulative

distribution function of the transformed spike times versus the cumulative distribution

function of a unit rate exponential in order to assess goodness-of-fit for each model. The

model is better if its corresponding KS plot lies near the 45 degree line.

C. Connections between Groups of Neurons

Rather than relying on functional models of the basal ganglia loop, we used the data

available to uncover the most influential dependencies between groups of GPe and GPi

neurons. Specifically, we used PPMs to systematically identify the most significant

dependencies between GPe and GPi, i.e., the physiological connections. However, we did

not have the data to relate this to anatomical connections in the basal ganglia. We considered

4 groups of neurons in GPe and 3 in GPi (Table 1), separated on the basis of their recording

sites (Fig.2A). For each group, we concatenated all spike trains according to several

randomized concatenation sequences. For each sequence of concatenated spike trains in GPi,

taking as its input each sequence in GPe, we estimated a PPM of the form (2). All the

computed vectors of PPM parameters were then collected and segmented via K-means

clustering [21]. Silhouette coefficients were computed for each cluster point to measure the

intra-cluster homogeneity and cluster-to-cluster heterogeneity [22]. Only clusters with three

or more vectors with a silhouette coefficient 0.7 were considered as valid, and new point

process models were built based on the information provided by these. A population model

taking as inputs spike trains from all the neurons in the GPe and modeling the spiking

activity of all the neurons in GPi was also constructed for comparison purposes. The

Akaikes criterion (AIC), which is 2*(number of parameters -log likelihood of model), is

useful to analyze the efficiency of a likelihood model [23]. When comparing two models

with the same number of parameters, a lower AIC value indicates an increase in the

likelihood of the model [12]. The AIC number was compared between the population model

and the clustered model to gage the increase in efficiency obtained after clustering.

III. RESULTS

PPMs were estimated from data collected over 80 sessions on 15 neurons from different

sites in GPe and GPi.

A. Connections between Groups of Neurons

Three strong clusters emerged that mapped connections from all GPe groups to each GPi

group, as shown in Fig.2A,B. The factor that separates the clusters is the site of the GPi

group, i.e., the same activity by a group of GPe neurons affects each of the GPi neurons

differently. This remained consistent for both DBS frequencies 100 and 130Hz. A possible
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explanation for that comes from the architecture of GPi and GPe: GPi is smaller than GPe in

primates, with highly segregated pathways and several projections from GPe. GPe

projections have a highly patterned set of collaterals which result in a multifarious effect on

the target cells in GPi [24]. The impact of the GPe activity depends therefore on the actual

conditions of the target neurons in the GPi. This is also confirmed by the analysis of the

parameters of the PPMs (see III-B). The AIC values of the clustered models are also seen to

decrease when compared to models estimated from all the GPe and GPi neurons, which

suggests an increase in the likelihood of the model as compared to the observed data using

the clustered PPMs (for ex. the AIC value is 2344.1 for the population model as opposed to

an average of 1604.8 for the clustered models under 100 Hz DBS).

B. Point Process Models

As we just demonstrated, the clustering of PPM parameters is useful for analyzing the most

influential connections between the different positions in connected nuclei. Furthermore, the

point process models based on these connections increase in precision. Here, we highlight

two PPMs fitted on data recorded in the same GPi site under 130 Hz (Fig.3A) and 100 Hz

(Fig.3C) DBS respectively. In both cases, we plot the optimal maximum likelihood

estimates of each models parameters (bold lines) along with their 95% confidence bounds

(shaded regions). The goodness-of-fit of the PPMs is confirmed by the KS-plots (Fig.3B, E),

which are within their 95% confidence bounds. The first row plots the single eα parameter

(around 11Hz) with its confidence bounds. The  estimates (whose exponentials are

depicted in Fig.3A, second row, from right to left) show the dependency of GPi spiking

propensity on the GPis own history. They suggest that the GPi neurons have a refractory

period between 1–6 msec and a prominent oscillation at the stimulation frequency. The peak

at , indeed, suggests that at any time t, the propensity to spike of a GPi neuron is

significantly modulated up (factor of 4) if it spiked 8 ms prior to t. The  parameters

(whose exponentials are depicted in Fig.3A, third row) suggest that the neurons in the GPe

site have an inhibitory effect on GPi neurons with a delay of approximately 5 ms (minimum

for j=5 and ). We also see a slight excitation around j = 7,8  which

means that the GPi spiking propensity increases if neurons in the GPe site fired 7–8 ms prior

to t, probably showing rebound activity of the GPi neurons. The effect of the DBS

stimulation can either appear in the GPi’s own history parameters , or the DBS signal

parameters (γh). This can be seen as an indication of the level of entrainment of the neurons

to that frequency, i.e. if the stimulation effect is seen in the  parameters, as in the case

of a 130 Hz stimulation frequency, this suggests that the DBS mainly works by fully

entraining the GPi neurons in oscillations at the stimulation frequency. This observation is

further strengthened by the low value of the γh estimates (the exponentials of which are

depicted in Fig.3A, fourth row). For the case of 100 Hz stimulation frequency (Fig.3D),

DBS modulates the spike propensity of the GPi neurons in a more complicated way. In

particular, the propensity of the GPi neurons to spike dramatically increases (eγ5 > 2.5) at a

lag of 5ms after the DBS signal and there is a lack of excitatory influence by the 

parameters, suggesting that neurons being stimulated at lower frequencies are not fully

entrained to the stimulation. The refractory behavior of the neurons is seen in the 
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parameters, which show inhibition at delays of 1, 2, 4 and 6 ms. A minimal impact is seen

by the GPe spiking activity (low values of the  parameters in Fig.3D), which is mainly

due to the dominant role of the GPi’s own history and DBS pattern. It could, however, also

be a result of the alignment of a possible GPe inhibition with the DBS excitation. We also

see a slight decrease in the parameter α with the stimulation frequency (eα = 11 Hz for 130

Hz DBS, eα = 9.5 Hz in case of 100 Hz DBS). The temporal dependencies shown by

analyzing the PPM parameters are also consistent with traditional statistics. The Peri

Stimulus Time Histograms (PSTHs) in Fig.3C,F confirm that GPi neurons at both

frequencies are in effect being stimulated by the DBS. In the case of the stimulation at 130

Hz, the effect of this stimulation masks the effect of the GPe inhibition in the PSTH.

However, this effect is uncovered in the GPe covariates as seen in Fig.3A.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we use a rare experimental setup and a point process modeling framework to

investigate the physiological connections between different sites in the GPe and GPi. Our

PPMs are consistent with classic statistical analyses. Furthermore, they show the relative

impact of GPe spiking activity and DBS inputs on the GPi spiking propensity. Details on

comparing PPMs to traditional statistics are given in [25]. We are currently extending our

work by increasing the number of primates and neurons included in the study, and

investigating the temporal dependencies between GPe and GPi in Parkinsonian-induced

primates treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
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Fig. 1.
The different pathways for the effects from STN to reach GPi neurons
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Fig. 2.
Clustering Analysis. (A) Schematic Diagram of the dependencies between sites in GPe and

GPi; (B) Principal Components of the parameter vectors for 100Hz stimulation frequency.
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Fig. 3.
PPM of the group of GPi neurons recorded in site p1d1. Parameters are estimated by using

spike trains from the GPe neurons recorded in sites p1d1, p1d2 and p2d2 (where available)

as history covariates. A, D) PPM parameters for 130Hz and 100Hz DBS respectively. B, E)

KS plots for the PPMs with 95% confidence intervals for the models in A, D respectively. C,

F) Z-scores of Peri Stimulus Time Histograms with 95% confidence intervals for the spiking

of the GPi neurons used in the models A, D respectively.
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Saxena et al. Page 11

TABLE I

Experimental Set Up

Nucleus Recording Site Label Frequency Number of Neurons Number of Sessions

GPi p1d1 130Hz 2 6

100Hz 1 3

p1d2 130Hz 1 3

100Hz 2 8

p1d3 130Hz 1 3

GPe p1d2 130Hz 3 11

100Hz 2 6

p1d1 130Hz 4 15

100Hz 4 13

p2d2 130Hz 1 3

p1d3 130Hz 1 3
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