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Abstract

Ocular coloboma is a sight-threatening malformation caused by failure of the choroid fissure to close during morphogenesis
of the eye, and is frequently associated with additional anomalies, including microphthalmia and cataracts. Although
Hedgehog signaling is known to play a critical role in choroid fissure closure, genetic regulation of this pathway remains
poorly understood. Here, we show that the transcription factor Sox11 is required to maintain specific levels of Hedgehog
signaling during ocular development. Sox11-deficient zebrafish embryos displayed delayed and abnormal lens formation,
coloboma, and a specific reduction in rod photoreceptors, all of which could be rescued by treatment with the Hedgehog
pathway inhibitor cyclopamine. We further demonstrate that the elevated Hedgehog signaling in Sox11-deficient zebrafish
was caused by a large increase in shha transcription; indeed, suppressing Shha expression rescued the ocular phenotypes of
sox11 morphants. Conversely, over-expression of sox11 induced cyclopia, a phenotype consistent with reduced levels of
Sonic hedgehog. We screened DNA samples from 79 patients with microphthalmia, anophthalmia, or coloboma (MAC) and
identified two novel heterozygous SOX11 variants in individuals with coloboma. In contrast to wild type human SOX11
mRNA, mRNA containing either variant failed to rescue the lens and coloboma phenotypes of Sox11-deficient zebrafish, and
both exhibited significantly reduced transactivation ability in a luciferase reporter assay. Moreover, decreased gene dosage
from a segmental deletion encompassing the SOX11 locus resulted in microphthalmia and related ocular phenotypes.
Therefore, our study reveals a novel role for Sox11 in controlling Hedgehog signaling, and suggests that SOX11 variants
contribute to pediatric eye disorders.
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Introduction

Ocular coloboma arises when the embryonic choroid fissure in

the ventral optic cup fails to close. It can cause significant pediatric

visual impairment [1], and is often associated with other ocular

abnormalities such as microphthalmia or anophthalmia (collec-

tively referred to as MAC). Coloboma may also be observed in

conjunction with dysgenesis of the anterior segment (front portion

of the eye) or optic nerve, lenticular defects (such as cataract), or

systemic congenital malformation syndromes [2]. In addition to

phenotypic heterogeneity, coloboma is genetically heterogeneous,

exhibiting differing patterns of inheritance, variable expressivity,

and reduced penetrance [2].

Among the signaling pathways that converge to regulate ocular

morphogenesis, Hedgehog (Hh) signaling has a critical role and

acts reiteratively during eye development [3]. Hh signaling from

the midline promotes the segregation of the single eye field into

two optic primordia, and is required for the correct proximodistal

and dorsoventral patterning of the optic vesicle [3–5]. Once the

optic cup has formed, intraretinal Hh signaling regulates the

differentiation of retinal progenitor cells [3]. Given its central role

in eye development, it is unsurprising that mutations in genes

encoding Hh pathway ligands (SHH) or targets (PAX2, VAX1) are

associated with congenital ocular malformations in humans [6–9].

However, these mutations account for only a minority of patients;

for the majority of MAC cases, the molecular defect has yet to be

identified. Because of their potency, the spatiotemporal levels of

Hh ligands must be tightly regulated throughout eye development;

yet, very little is known about the factors that restrict their expression

during oculogenesis. Such factors would represent excellent

candidate genes for human coloboma and associated ocular defects,

and potentially could be used to influence Hh signaling.
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Here, we focus on the role of the SRY-box transcription factor

Sox11 during eye development. Sox11 is a member of the group C

family of SOX proteins, which also includes Sox4 and Sox12 [10].

Sox11 is required for a variety of processes, including organogen-

esis and neurogenesis, craniofacial and skeletal development [10],

as well as being implicated in carcinogenesis (including mantle cell

lymphoma, medulloblastoma, and glioblastoma) [10,11]. Expres-

sion and functional studies support a role for Sox11 during several

stages of eye development. In the mouse, Sox11 is expressed in

the optic cup and periocular mesenchyme during early eye

development, and in the developing lens and retina at later stages

[12,13]. In the zebrafish retina, we previously found that Sox11 is

upregulated in rod progenitor cells during rod photoreceptor

regeneration [14]. Sox112/2 mice exhibit ocular abnormalities

such as anterior segment dysgenesis, microphthalmia, a persistent

lens stalk, delayed lens formation, and coloboma [13]. Finally,

some human chromosomal rearrangements resulting in ocular

abnormalities have been mapped to the vicinity of the SOX11

locus at chromosome 2p25.2 [15–18]. These data together

suggested intriguing roles for Sox11 in ocular morphogenesis

and rod photoreceptor differentiation, however the underlying

mechanisms were undefined.

In this study, we inhibited Sox11 activity in zebrafish embryos,

and based on the resultant phenotypes demonstrate that the

function of Sox11 in regulating lens development and choroid

fissure closure is evolutionarily conserved, and that Sox11 is

required for rod photoreceptor differentiation. We demonstrate

that elevated Hh signaling causes the ocular phenotypes in

Sox11-deficient zebrafish, and that Sox11 is required to repress

expression of the Sonic hedgehog gene (shha). Finally, we identify

SOX11 variants with reduced transactivation ability in MAC

patients, and in parallel demonstrate that decreased SOX11 gene

dosage results in congenital ocular abnormalities. In revealing

a previously uncharacterized role for Sox11 upstream of Hh

signaling, these studies may substantially extend our understand-

ing of additional Sox11-dependent developmental and pathologic

processes.

Results

Expression of sox11a/b during ocular development
Zebrafish possess two orthologs of mammalian Sox11, which

are expressed in overlapping and distinct domains ([19–21], this

study). Previous studies have shown that both sox11a and sox11b

are maternally expressed prior to the midblastula transition, and

are expressed in the region of the anterior neural plate that gives

rise to the diencephalon at the onset of the segmentation period

[20]. Using in situ hybridization with paralog-specific probes, we

investigated the expression of sox11a and sox11b both within the

forebrain during optic cup formation, and in the eye at later stages

of retinal development. At 18 hours post fertilization (hpf), we

detected expression of sox11a and sox11b in the telencephalon,

and in the dorsal ‘‘corner’’ formed by the diencephalon and the

evaginated optic stalk/optic vesicle (top panel arrows and second

row closed asterisks, Figure 1A). We also detected faint expression

of sox11a and sox11b at the ventral hinge of the optic stalk/optic

vesicle axis (open asterisks, Figure 1A). However, we did not

detect expression of sox11a or sox11b within the optic vesicle itself

(Figure 1A). At 24 hpf, sox11a/b expression persisted in the

diencephalon adjacent to the retina and in the telencephalon,

and both paralogs were also expressed in the hypothalamus

(Figures 1A, C). Within the developing retina at 24 hpf, sox11b was

expressed diffusely across the lens and retinal neuroepithelium,

and was distinctly visible in a small cluster of cells in the ventro-

nasal retina (arrow, bottom right panel, Figure 1A), corresponding

to the location at which retinal neurogenesis initiates [22]. As

retinal development proceeded, sox11a expression was observed in

the ganglion cell layer (GCL) at 48 hpf, whereas the expression of

sox11b was detected in a few scattered cells across the central retina

but was mostly restricted to the undifferentiated peripheral retina

(Figure 1B; [14]). By 72 hpf, when retinal neurogenesis was mostly

complete, both sox11a and sox11b were predominantly expressed in

the persistently neurogenic ciliary marginal zone (Figure 1B; [14]);

expression of sox11a also persisted in the GCL and in some cells

in the inner half of the inner nuclear later (INL). Interestingly,

the expression domains of both sox11 paralogs were adjacent to

regions of shha expression in the ventral diencephalon at 18 and 24

hpf (Figure 1C), whereas at 48 hpf sox11a expression overlapped

with the previously described location of shha in the GCL [23,24].

Knockdown of sox11a/b causes abnormal ocular
morphogenesis

To investigate the function of Sox11 paralogs during eye

development, translation of sox11a and sox11b was blocked

with morpholino oligonucleotides (MOs), whose efficiency and

specificity were confirmed using a second sox11 MO and a GFP

reporter assay, respectively (Figures S1A, C). Zebrafish embryos

were injected with sox11a and sox11b MOs simultaneously

(hereafter referred to as sox11 morphants), as co-inhibition of both

paralogs induced the highest prevalence of ocular phenotypes

(Figure S1B). At 24 hpf, 72.967.4% of sox11 morphants displayed

a misshapen, rudimentary, or absent lens (Figures 2A, S1B). Sox11

morphant lenses mostly recovered to a spherical shape by 2 days

post fertilization (dpf), however at this stage a similar proportion of

morphants (70.067.7%) displayed coloboma (Figures 2A, S1B).

Sox11 morphant eyes were also hypopigmented ventrally, and

microphthalmic compared to controls (Figure 2A, B). Histological

sections revealed that the colobomatous retinas in sox11 morphants

frequently extruded through the open choroid fissure into the

brain (Figure 2C). Approximately 54% (15 of 28 individuals

examined) of sox11 morphant retinas with coloboma also exhibited

poor or reduced retinal lamination, suggesting a delay in retinal

Author Summary

Ocular coloboma is a condition in which tissue is missing
from a portion of the eye due to its abnormal develop-
ment. Coloboma is also frequently associated with
additional anomalies, including microphthalmia (abnor-
mally small eye) and cataracts. Although some of the
genes that cause coloboma have been identified, in the
majority of cases the underlying genetic cause has not
been determined. One pathway that has been implicated
in coloboma is the Hedgehog (Hh) signaling pathway. In
this study, we have taken advantage of the ability to titrate
levels of gene expression in zebrafish to demonstrate for
the first time that the transcription factor Sox11 is required
to limit levels of Hedgehog (Hh) signaling during ocular
development. We show that in the absence of Sox11,
levels of the Sonic Hedgehog (Shh) ligand are greatly
elevated, which disrupts the proper patterning of the optic
stalk and optic vesicle, resulting in coloboma. We also
provide evidence that SOX11 dosage changes or mutations
contribute to human coloboma, microphthalmia, and rod
photoreceptor dysfunction. Thus, our work establishes a
novel link between Sox11 and Hh signaling, and suggests
that mutations in SOX11 contribute to pediatric eye
disorders such as coloboma.

Sox11 Negatively Regulates Hedgehog Signaling
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differentiation. In contrast, of the sox11 morphant retinas that did

not display coloboma, only 14% were poorly laminated (4 of 29).

This suggests that similar mechanisms may underlie the ocular

morphogenesis and retinal developmental defects observed in

sox11 morphants with coloboma. The presence of the coloboma

prevented the retinal pigmented epithelium (RPE) from complete-

ly enclosing the posterior eye (Figure 2C), which likely accounts for

the hypopigmented appearance of the ventral portion of the eye

when viewed laterally (Figure 2A). This coloboma phenotype was

reminiscent of the zebrafish blowout mutant, which has a mutation

in patched2 (formerly named patched1), a negative regulator of

Hh signaling [25,26]. In addition to the ocular phenotypes, sox11

morphants also frequently displayed a downward kink of the tail,

as well as brain abnormalities such as widened ventricles, likely

reflecting Sox11’s expression and function in the posterior somites

and developing brain, respectively [10,20]. All of the morphant

phenotypes were rescued by injection of wild type sox11a and

sox11b mRNA, consistent with the morpholinos being specific for

Sox11 (Figure 2A, D). Importantly, these phenotypes were also

rescued by injection of human SOX11 mRNA, indicating that the

Figure 1. Developmental expression of sox11. In situ hybridization with antisense probes for sox11a, sox11b, and shha was performed on whole
embryos or on tissue sections at the indicated time points. (A) Sox11a and sox11b were expressed in the diencephalon adjacent to the optic vesicle
(arrows in top row and asterisks in second row) at 18 hpf (top two rows) and 24 hpf (third and fourth rows). Sox11a expression was not detected in
the lens or retina at 24 hpf (bottom left). Sox11b was expressed in a patch of cells in the ventronasal retina (arrow, bottom right) and more diffusely
across the rest of the retina and lens. Top and third rows are dorsal views of flat-mounted embryos. Second and fourth rows are frontal sections
through the head. Bottom panels are lateral views of dissected eyes; (n = 20 embryos examined per time point, 3 independent repeats). (B) Transverse
sections through the eye at 48 hpf (top) and 72 hpf (bottom). Sox11a expression was detected in the ganglion cell layer (GCL) and in few sporadic
cells in the inner nuclear layer (INL); sox11b expression was observed in scattered cells across the central retina and in the peripheral retina. At 72 hpf,
sox11a expression persisted in the GCL and in some cells in the INL; sox11a and sox11b were also expressed in the persistently neurogenic ciliary
marginal zone (CMZ); n = 20 embryos examined per time point, 3 independent repeats. (C) Expression patterns of sox11a (left), sox11b (center), and
shha (right) in the developing brain at 18 hpf (top) and 24 hpf (bottom). The eye was removed to better image the brain. Expression of sox11a and
sox11b, but not shha, was observed in the telencephalon. Expression of all three genes was detected in the hypothalamus and ventral diencephalon
at 24 hpf (n = 20 embryos examined per time point, 3 independent repeats). Scale bar = 100 mm; D, dorsal; V, ventral; A, anterior; P, posterior; hpf,
hours post fertilization; OV, optic vesicle; L, lens; R, retina; GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; CMZ, ciliary
marginal zone; tel, telencephalon; hy, hypothalamus; di, diencephalon.
doi:10.1371/journal.pgen.1004491.g001
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Figure 2. Sox11 knockdown disrupts ocular morphogenesis and causes coloboma in zebrafish. (A) Representative eye and body images
of control and sox11 morphants (taken from the set of embryos analyzed in (D). At 24 hpf, approximately 70% of sox11 morphants displayed a
malformed lens (arrowhead) and a posterior kink in the tail (arrow). At 2 dpf, a similar proportion of sox11 morphants displayed coloboma (bracket),
and had a hypopigmented and underdeveloped ventral retina. Both the abnormal lens and coloboma phenotypes were rescued with co-injection of
wild type zebrafish sox11 mRNA (bottom row). (B) Sox11 morphants were microphthalmic at 24 hpf. Eye area was normalized to body length (*p,

Sox11 Negatively Regulates Hedgehog Signaling
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function of Sox11 in regulating early eye development is

evolutionarily conserved (Figure 2D).

One mechanism that has been suggested to contribute to optic

fissure closure defects is overproliferation of progenitor cells within

the presumptive neural retina [27]. To determine whether changes

in mitotic activity underlie the lens and coloboma phenotypes

in sox11 morphants, we immunolabeled retinal sections from

control and sox11 morphants with an antibody to phosphohistone

H3 (PH3). We observed a modest but significant increase in the

number of PH3-positive cells in sox11 morphant optic vesicle and

retinas at 18 and 24 hpf, and a larger increase in proliferation

relative to controls at 48 and 72 hpf (Figure S2C, D). However, the

excess PH3-positive cells were not clustered in the ventral retina,

optic stalk, or lens at 24 hpf (Figure S2D), by which time the

abnormal ocular phenotypes are already apparent. Therefore,

we conclude that overproliferation likely does not underlie the

early ocular phenotypes of sox11 morphants. We also performed

TUNEL staining on sections from control and sox11 morphant

retinas (Figure S2A, B). This analysis revealed a variable but

significant increase in TUNEL-positive cells in the optic vesicle of

sox11 morphants at 18 hpf. At 24 hpf, we did not detect elevated

apoptosis in the retina or optic stalk of Sox11-deficient embryos.

However, we did observe a significant increase in TUNEL-positive

cells in the anterior lens of sox11 morphants, which persisted

through 72 hpf (Figure S2A, B). This increase in apoptotic cells in

the lens may be related to the abnormal lens morphology we

observed by light microscopy (Figure 2A). Finally, we observed an

increase in TUNEL-positive cells in the colobomatous tissue of

sox11 morphant retinas at 48 hpf (Figure S2B), indicating that this

abnormal ocular structure negatively impacted the survival of the

cells within it.

Sox11 morphants possess fewer mature rod
photoreceptors

Given that expression of sox11a/b is upregulated in adult

zebrafish rod progenitor cells during rod photoreceptor regener-

ation [14], we investigated whether Sox11-deficient embryos

displayed altered rod development. Since we found that a

significant proportion of sox11 morphant retinas with coloboma

also displayed poor lamination, indicating a potential delay in

retinal development, for analysis we divided the sox11 morphants

into those with and without coloboma. This approach minimized

the potential secondary effects on retinal development from the

ocular morphogenetic defect masking any additional role for

Sox11 in retinal neurogenesis. Using immunohistochemistry

with cell-type specific antibodies, we found that sox11 morphants

without coloboma (approximately 30% of morphant embryos)

possessed well-laminated retinas with normal numbers of ganglion,

amacrine, horizontal, and bipolar cells, Müller glia, and cone

photoreceptors at 72 hpf (Figure S3A, B). In contrast, when

control and sox11 MOs were injected into a rod photoreceptor-

GFP transgenic reporter line [28], we observed a significant

reduction in mature rod photoreceptors in sox11 morphant retinas

without coloboma at 3 dpf (control embryos, 34.967.4rods/

section; sox11 morphants, 8.768.9 rods/section; p,0.00001;

Figure 3A, B). Furthermore, several retinal sections from sox11

morphants contained no detectable GFP-positive rods at 3 dpf.

The reduction in mature rod photoreceptors in sox11 morphant

retinas was confirmed by immunolabeling with the rod-specific

antibody 4C12 (not shown), by fluorescent in situ hybridization

(FISH) of retinal sections with a probe for rhodopsin (rho), and

by quantitative RT-PCR (qPCR) for the rho transcript at 3 dpf

(Figure 3C, D). Rod photoreceptor number could be rescued by

injection of wild type sox11 mRNA (Figure 3B), demonstrating

that the reduction in rods was due to Sox11 deficiency. To

determine whether depletion of Sox11 blocks specification of

the rod photoreceptor fate, we conducted FISH on 3 dpf retinal

sections from control and sox11 morphants using probes for three

genes associated with the rod photoreceptor lineage: neuroD, crx,

and nr2e3 [29–31]. Interestingly, we found that expression of

all three rod lineage genes was qualitatively normal in sox11

morphant retinas, even those with coloboma and poor lamination

(Figure 3C). We also verified by qPCR that nr2e3 transcript levels

were not significantly different in sox11 morphants and controls

(Figure 3D) Therefore, these data suggest that Sox11 is required

for the terminal differentiation, but not the specification, of

rod photoreceptor cells. Because the window of rod photoreceptor

differentiation is longer than that of cones or other retinal neurons

[32,33] we investigated whether rod photoreceptor number

remained reduced in sox11 morphants later in development. The

number of rods in sox11 morphant retinas was higher at 4 dpf than

at 3 dpf, but remained significantly reduced relative to controls

(sox11 morphants, 15.962.9 rods/section; controls, 57.965.4

rods/section; p,0.001; Figure S3C). Taken together, these data

suggest that terminal differentiation of rods requires Sox11.

Sox11 negatively regulates Hedgehog signaling
As mentioned above, the coloboma phenotype of sox11

morphants is similar to the zebrafish blowout mutant, in which

increased Hedgehog signaling results in altered proximodistal

patterning of the optic vesicle [25]. To determine whether a

similar defect was present in sox11 morphants, we performed FISH

on retinal sections to examine the expression of pax2a and pax6a,

which mark optic stalk and retinal territories, respectively. This

revealed expansion of the pax2a domain in approximately 50% of

sox11 morphant embryos at 18 and 36 hpf, while at later stages (48

hpf), expression persisted around the open choroid fissure, whereas

it was barely detectable in controls (Figure 4A). These expression

changes were verified by qPCR at 18 and 24 hpf. Although we

did not observe a concomitant decrease in pax6a expression in

the optic vesicle at 18 hpf, there was a significant reduction in

transcript levels detected by qPCR at 24 hpf (Figure 4B). To

further test whether Hh signaling was elevated in sox11 morphants,

we made use of a recently described Hh signaling reporter line of

0.0001, Student’s t-test; control MO: n = 10 embryos examined; sox11 MO: n = 12 embryos examined, 3 independent repeats). (C) Sections of 72 hpf
control (left) and sox11 morphant eyes (right) stained with cresyl violet revealed the extrusion of the retina into the brain through the open choroid
fissure of sox11 morphants (asterisk); n = 6 individuals examined per group. The thickened appearance of the dorsal RPE in the sox11 morphant retina
is a staining artifact and was not observed in fresh tissue sections. Scale bar = 50 mm. (D) Injection of zebrafish and human sox11 mRNA rescued the
ocular phenotypes in sox11 morphants. Number of embryos analyzed: 24 hpf control MO, 4.18 ng/embryo, n = 1007; 2 dpf control MO, 4.18 ng/
embryo, n = 1001; 24 hpf sox11 MO, 4.18 ng/embryo, n = 309; 2 dpf sox11 MO, 4.18 ng/embryo, n = 294; 24 hpf sox11 MO, 8.36 ng/embryo, n = 559; 2
dpf sox11 MO, 8.36 ng/embryo, n = 392; 24 hpf sox11 MO 8.36 ng/embryo plus 2.0 ng/embryo zebrafish sox11 mRNA, n = 185; 2 dpf sox11 MO,
8.36 ng/embryo plus 2.0 ng/embryo zebrafish sox11 mRNA, n = 167; 24 hpf sox11 MO, 8.36 ng/embryo plus 0.3 ng/embryo human SOX11 mRNA,
n = 130; 2 dpf sox11 MO, 8.36 ng/embryo plus 0.3 ng/embryo human SOX11 mRNA, n = 125. Three biological replicates were performed for all
experiments. (*p,0.001, Student’s t- test). D, dorsal; V, ventral; A, anterior; P, posterior; L, lens; R, retina; hpf, hours post fertilization; dpf, days post
fertilization; MO, morpholino; GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; RPE, retinal pigmented epithelium.
doi:10.1371/journal.pgen.1004491.g002

Sox11 Negatively Regulates Hedgehog Signaling
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zebrafish, which expresses GFP under the control of the patched2

(ptc2) promoter [34]. Sections through the head of 24 hpf control

and sox11 morphants on the ptc2:GFP background revealed both

an increase in GFP expression and an expansion of the GFP-

positive domains in the brain, retina, and RPE of sox11 morphants

(Figure 5A). Taken together, these data strongly suggest that Hh

signaling is indeed elevated in sox11 morphants.

To directly test this hypothesis, control and sox11 morphant

embryos were treated from 5.5–13 hpf with the Hh inhibitor

cyclopamine. This treatment window was chosen because it

resulted in maximal rescue of colobomas in the blowout mutant

[25]. The proportion of embryos displaying a malformed lens at

24 hpf (21.368.8%) or coloboma at 2 dpf (10.163.8%) was

significantly reduced after cyclopamine treatment, compared to

vehicle-treated sox11 morphants (.70% for both phenotypes;

p,0.0001; Figures 5B and S4A). Moreover, cyclopamine treat-

ment significantly increased the number of rods at 72 hpf

(sox11 MO: 20.3611.1 rods/section; sox11 MO + cyclopamine:

43.8610.5 rods/section; p = 0.02; Figures 5C and S4B), and

corrected the lamination and differentiation defects that were

associated with colobomatous retinas (Figure S4C). In a reciprocal

experiment, embryos were injected with half the full dose of each

Figure 3. Sox11 morphants lack mature rod photoreceptors. (A) Representative transverse retinal sections from XOPS-GFP zebrafish injected
with control, sox11 MO, or sox11 MO plus zebrafish sox11 mRNA at 3 dpf (from the set of individuals analyzed in (B). Even sox11 morphants with well-
laminated retinas and no evidence of coloboma (second panel) displayed greatly reduced numbers of mature rods compared to controls (left panel).
Co-injection of wild type zebrafish sox11 mRNA (right panel) rescued the rod deficiency at 3 dpf. (B) Quantification of the number of rod
photoreceptors/section. Number of embryos analyzed: control MO, n = 25; sox11 MO without coloboma, n = 25; sox11 MO with coloboma, n = 25;
sox11 MO plus zebrafish sox11 mRNA, n = 17 (**p,0.00001; n.s., p.0.05, Student’s t- test). (C) Two-color fluorescent in situ hybridization (FISH) for
neuroD, crx, nr2e3, and rhodopsin expression in control and sox11 morphants with and without coloboma at 3 dpf. Expression of the rod lineage
genes neuroD (top), crx (middle), and nr2e3 (bottom) was qualitatively normal in sox11 morphants with or without coloboma. However, rhodopsin
expression (green) was greatly reduced compared to control morphants (left column). Number of embryos analyzed: n = 14 per group, 3 independent
biological replicates. (D) Quantitative RT-PCR (qPCR) performed on mRNA from control and sox11 morphant heads at 3 dpf revealed a significant
decrease in rhodopsin expression in sox11 morphants compared to controls. However, nr2e3 transcript levels were not significantly different between
control and sox11 morphants. Relative transcript abundance was normalized to atp5h levels and is presented as the mean fold-change in expression
relative to controls (n = 30 embryos per group, 3 independent biological replicates). *p,0.003; n.s, p.0.05, Student’s t-test. D, dorsal; V, ventral; L,
lens; dpf, days post fertilization; MO, morpholino; GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; ON, optic nerve.
doi:10.1371/journal.pgen.1004491.g003

Sox11 Negatively Regulates Hedgehog Signaling
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sox11 MO, and treated with either a Hh agonist (purmorphamine)

or vehicle control (DMSO) from 5.5–24 hpf. We used a

sub-threshold dose of purmorphamine (75 mM), which did not

cause coloboma when given alone (Figure 5B). In contrast, when

the half dose of sox11 MO was combined with purmorphamine,

the prevalence of lens malformations at 24 hpf and coloboma at 2

dpf significantly increased (sox11 MO half dose + purmorphamine:

57.9610.2% malformed lens, 57.265.3% coloboma; sox11 MO

half dose + DMSO: 24.263.5% malformed lens, 28.965.9%

coloboma; p,0.0001; Figures 5B and S4A). Together, these data

demonstrate that deficiency of Sox11 increases Hh signaling,

resulting in defects in ocular morphogenesis and reduced rod

photoreceptor number.

Finally, we injected sox11a and sox11b mRNA into wildtype

zebrafish embryos and evaluated the prevalence of a cyclopic

phenotype, which is classically associated with reduced Hh

pathway activity [3], at 24 hpf. Injection of sox11a and sox11b

mRNA caused a cyclopic phenotype in 33.862.9% of the

embryos, whereas only 4.260.7% of embryos had cyclopia when

injected with a control td-tomato mRNA (p,0.001; Figure 5D).

Taken together, these results demonstrate that Sox11 is required

to limit Hh signaling during zebrafish ocular development.

Transcription of sonic hedgehog a (shha) is strongly
upregulated in sox11 morphants

Zebrafish possess five Hedgehog ligands (Sonic hedgehog a and

b, Indian hedgehog a and b, and Desert hedgehog), two Patched

and one Smoothened receptor, and four Gli effectors. To

determine whether expression of any of these pathway members

was altered in sox11 morphants, we performed qPCR on mRNA

prepared from 18 and 24 hpf control and sox11 morphant heads.

At 18 hpf, no significant gene expression changes were observed,

except for gli2a and gli3, which were both slightly elevated in sox11

morphants (Figure S5A). In contrast, at 24 hpf we observed a

very strong increase (189-fold) in the expression of shha in sox11

morphants relative to controls, as well as a modest decrease in ihhb,

ptc1, and gli2b expression, and a 2-fold increase in expression of ptc2

(Figure 6A). The increase in shha expression in sox11 morphants

appeared to be dose-dependent, as injection of one-half the full

dose of sox11 MOs resulted in only a 65-fold elevation in shha

Figure 4. Pax2.1 and pax6a expression is altered in sox11 morphants. (A) Fluorescent in situ hybridization on transverse sections from control
and sox11 morphants with probes for pax2.1 and pax6a. The expression domain of f pax2.1 was expanded into the optic vesicle of sox11 morphants at
18 hpf (top right, arrows), and there was a modest retraction of pax6a expression compared to controls (top left; number of embryos analyzed:
control MO, n = 14; sox11 MO, n = 13). At 36 and 48 hpf, in control retinas pax2.1 expression decreased and was only observed lining the optic nerve
(asterisk; left middle and bottom rows); in contrast, pax2.1 expression was expanded and persisted around the open choroid fissure in sox11
morphant retinas (asterisks, right middle and bottom rows). Pax6a expression in the retina of sox11 morphants at 36 and 48 hpf appeared
comparable to the control morphant retinas at this stage (number of embryos analyzed: 36 hpf control MO, n = 7; 36 hpf sox11 MO, n = 12; 48 hpf
control MO, n = 8; 48 hpf sox11 MO, n = 14). (B) QPCR performed on mRNA from control and sox11 morphant heads at 18 and 24 hpf revealed a
significant increase in pax2.1 expression at both 18 and 24 hpf, and a downregulation of pax6a expression at 24 hpf, in sox11 morphants compared to
controls. Relative transcript abundance was normalized to atp5h (18 hpf) or gapdh (24 hpf) levels and is presented as the mean fold-change in
expression relative to controls (n = 50 embryos per group, 3 independent biological replicates. *p,0.05. D, dorsal; V, ventral; OV, optic vesicle; L, lens;
hpf, hours post fertilization; MO, morpholino.
doi:10.1371/journal.pgen.1004491.g004
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(Figure S5B). In situ hybridization revealed greatly increased shha

signal intensity in regions of the sox11 morphant embryo that

normally express shha, such as the ventral forebrain and the

notochord (Figure 6B), with ectopic expression observed in the

dorsal midbrain and telencephalon (Figure 6B). These results

suggest that the ocular phenotypes in sox11 morphants are caused

by elevated levels of Shha. However, we were puzzled that shha

transcript levels were not significantly increased at 18 hpf (Figure

S5A), and yet cyclopamine treatment from 5.5–13 hpf rescued the

ocular defects of sox11 morphants. Therefore, we asked whether

Figure 5. Sox11 negatively regulates Hedgehog (Hh) signaling. (A) Transverse retinal sections from 24 hpf ptc2:EGFP zebrafish embryos
injected with control or sox11 MO. Sox11 morphants displayed elevated GFP expression in the brain as well as in the central and dorsal retina, and the
dorsal RPE (number of embryos analyzed: control MO, n = 8; sox11 MO, n = 10). (B) Treatment with the Hh inhibitor cyclopamine rescued the ocular
phenotypes in sox11 morphants. In contrast, treatment with the Hh agonist purmorphamine increased the prevalence of ocular phenotypes in
embryos injected with a half dose of sox11 MO. Number of embryos analyzed: 24 hpf sox11MO (plus 100% ethanol), n = 393; 2 dpf sox11 MO (plus
100% ethanol), n = 319; 24 hpf sox11 MO plus cyclopamine, n = 276; 2 dpf sox11 MO plus cyclopamine, n = 263; 24 hpf half dose sox11 MO (plus
DMSO), n = 258; 2 dpf sox11 MO half dose (plus DMSO), n = 241; 24 hpf uninjected plus purmorphamine, n = 83; 2 dpf uninjected plus
purmorphamine, n = 81; 24 hpf half dose sox11 MO plus purmorphamine, n = 291; 2 dpf half dose sox11 MO plus purmorphamine, n = 270; 3
independent biological replicates. * and # p,0.0001, Fisher’s exact test. (C) Treatment with cyclopamine rescued rod photoreceptor number in sox11
morphants. Rods were counted in retinal cryosections from 3 dpf embryos. Number of embryos analyzed: control MO, n = 17; sox11 MO, n = 20; sox11
MO plus cyclopamine, n = 18; 3 independent replicates. *p = 0.02, Student’s t-test). (D) Overexpression of zebrafish sox11 increased the proportion of
embryos with a cyclopic phenotype (right) compared to embryos injected with equimolar amounts of control td-tomato mRNA (left). Number of
embryos analyzed: control mRNA, n = 168; sox11 mRNA, n = 202, 3 independent biological replicates.*p,0.001, Fisher’s exact test. D, dorsal; V, ventral;
A, anterior; P, posterior; hpf, hours post fertilization; dpf, days post fertilization R, retina; hy, hypothalamus; L, lens; MO, morpholino.
doi:10.1371/journal.pgen.1004491.g005
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shha levels were elevated in sox11 morphants at earlier time points.

We performed qPCR analysis on mRNA from control and sox11

morphants at 8, 10, and 12 hpf and found that shha levels are

elevated approximately 2-fold in sox11 morphants at these time

points (Figure 6C). Moreover, using the ptc2:GFP line, we detected

increased GFP levels in the ventral midline of sox11 morphants at

Figure 6. Shha expression is upregulated in sox11 morphants. (A) QPCR performed on mRNA from control and sox11 morphant heads at 24
hpf revealed a dramatic upregulation of shha expression, and a small but significant increase in ptc2 expression, in sox11 morphants compared to
controls (n = 70 embryos per group, 3 independent biological replicates). Relative transcript abundance was normalized to gapdh levels. The Y-axis
(log-scale) represents the mean ratio of sox11 morphant to control expression for three biological and three technical replicates. *p,0.01, Student’s t-
test. (B) In situ hybridization with a shha probe on control (left) and sox11 morphant (right) embryos at 24 hpf revealed expanded shha expression in
sox11 morphants throughout the brain and also in the notochord (inset). Numbers of embryos analyzed: n = 15 embryos per group, 3 independent
repeats. (C) QPCR performed on mRNA from control and sox11 morphant heads at 8, 10 and 12 hpf demonstrated an upregulation of shha expression
in sox11 morphants compared to controls. Relative transcript abundance was normalized to gapdh levels and is presented as the mean fold-change in
expression relative to controls (n = 60 embryos per group, 3 independent biological repeats). **p,0.001, *p = 0.01, Student’s t-test. (D) Sox11
morphants (right) on the ptc2:EGFP background displayed elevated GFP expression in the midline at 12 hpf compared to control morphants (left). The
bottom panels are an enlargement of the boxed area indicated in the top left panel. Number of embryos analyzed: control MO, n = 34; sox11 MO,
n = 41, 3 independent biological replicates. (E) Co-knockdown of shha and sox11 reduced the proportion of embryos displaying abnormal lens and
coloboma phenotypes at 24 hpf and 2 dpf, respectively. Number of embryos analyzed: 24 hpf control MO, n = 186; 2 dpf control MO, n = 165; 24 hpf
sox11 MO, n = 199, 2 dpf sox11 MO, n = 182; 24 hpf shha MO, n = 249; 2 dpf shha MO, n = 231; 24 hpf sox11+ shha MO, n = 207; 2 dpf sox11+ shha MO,
n = 190; 3 independent biological replicates. *p,0.0001, Student’s t-test. D, dorsal; V, ventral; A, anterior; P, posterior; hpf, hours post fertilization; dpf,
days post fertilization; R, retina; di; diencephalon, tel, telencephalon; hy, hypothalamus; MO, morpholino.
doi:10.1371/journal.pgen.1004491.g006
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12 hpf, confirming that Hh signaling was elevated at this stage

(Figure 6D). Taken together, these results suggest that knockdown

of sox11 results in elevated expression of shha, and an increase in

Hh signaling, as early as 8–12 hpf when the optic vesicle is

evaginating from the midline.

To test the hypothesis that elevated Shha levels cause the ocular

phenotypes of sox11 morphants, we knocked down both shha and

sox11 simultaneously (using our sox11 MOs and a previously

described shha MO [35]) and scored embryos at 24 hpf and 2 dpf

for malformed lens and coloboma phenotypes, respectively. We

used a low dose of the shha MO (3.14 ng/embryo), which by

itself did not produce lens defects, coloboma, or rod photoreceptor

defects (Figures 6E and S5C). The prevalence of ocular pheno-

types was significantly reduced in the double morphants (sox11

MO: 70.3%66.7% malformed lens, 75.4%68.3% coloboma;

sox11 + shha MOs: 28.9%69.2% malformed lens; 34.7%62.7%

coloboma; p,0.0001; Figures 6E and S5C). Rod photoreceptor

number was also significantly increased at 3 dpf in the double

shha/sox11 morphants, however it did not reach the levels observed

in controls (sox11 MO: 5.867.1 rods/section; sox11 + shha MOs:

14.662.3 rods/section; p,0.05; Figure S5D). We performed

qPCR analysis on sox11 morphants treated with cyclopamine and

purmorphamine and confirmed that these treatments caused a

decrease and an increase in shha transcript levels, respectively

(Figure S5E, F). Cyclopamine treatment of sox11 morphants

also restored expression of the Hh target gene ptc2 to control

levels (data not shown). Moreover, qPCR analysis of embryos

injected with control or sox11 mRNA confirmed that overexpres-

sion of sox11 resulted in a concomitant decrease in shha expression

(Figure S5G). Finally, we determined that there was not a

reciprocal regulation of sox11 by shha, because injection of the shha

morpholino alone did not result in a change in expression of sox11a

or sox11b (Figure S5H). Taken together, these results demonstrate

that Sox11 controls levels of Hh signaling primarily through

negative regulation of shha expression, and that limiting shha

expression is essential for proper ocular morphogenesis.

Bmp7b can rescue the ocular phenotypes in sox11
morphants

Thus far, our data strongly suggest that Sox11 is required

to limit levels of shha expression during ocular development.

However, Sox11 and other members of the SoxC family have

previously been shown to function as transcriptional activators

rather than repressors [36–38]. Furthermore, a scan of the shha

promoter revealed no perfect consensus binding sequences for Sox

factors (not shown; [37]), and the expression domains of sox11 and

shha only partially overlap in the ventral midline during ocular

morphogenesis. Therefore, we hypothesized that Sox11 negatively

regulates Shha indirectly and perhaps non-cell autonomously, by

activating the expression of an upstream inhibitor of Shha. We

searched the literature to identify candidate Shha repressors that

are expressed in the forebrain during development, and then asked

whether expression of any of these factors was reduced in sox11

morphant heads at 24 hpf (Figure 7A). We analyzed five candidate

genes: bmp7b, fgfr2, tbx2a, tbx2b, and kras, which had been shown

previously to negatively regulate shha expression during develop-

ment [39–44]. Of these five, bmp7b showed significantly decreased

expression in sox11 morphants compared to controls (Figure 7A).

Bmp7b represents a good candidate intermediary between Sox11

and shha for several reasons. First, Bmp7 null mice display

microphthalmia and optic fissure defects, similar to sox11 null

mice [45]. Second, bmp7 is expressed in the ventral midline and

proximal optic vesicle in the mouse [45], and bmp7b is expressed in

the forebrain adjacent to the optic vesicle in zebrafish at 18 hpf in a

similar pattern to sox11 [41]. Third, bmp7 expression was reported

to be reduced in Sox112/2 mice [13]. And finally, a scan of the

bmp7b promoter revealed two perfect Sox consensus binding sites

[37] located approximately 950 bp upstream of the transcription

start site (not shown).

Because we had detected elevated shha levels as early as 8 hpf

in sox11 morphants, we asked whether bmp7b expression is also

downregulated at that time. qPCR analysis revealed that bmp7b

transcript levels were significantly reduced at 8, 10, and 12 hpf

in sox11 morphants when compared to controls (Figure S6).

Interestingly, bmp7b expression increased to just above control

levels at 18 hpf, before declining significantly again at 24 hpf.

This rebound in bmp7b expression at 18 hpf precisely mirrors the

normal levels of shha expression in sox11 morphants at this time

(Figure S5A). Taken together, these data suggest that the initial

decrease in bmp7b expression (and corresponding elevation of shha)

caused by knockdown of sox11 induces a compensatory pathway

that works to bring transcriptional levels back to normal, but that

the continued knockdown of sox11 results in renewed dysregula-

tion of bmp7b and shha.

We reasoned that if Bmp7b functions downstream of Sox11 and

upstream of Shha, then expression of bmp7b in sox11 morphants

should rescue the ocular phenotypes caused by elevated Hh

signaling. To test this hypothesis, we injected bmp7b mRNA

into control and sox11 morphant embryos, and determined the

proportion of embryos that displayed lens defects and coloboma at

24 hpf and 2 dpf, respectively. We found that co-injection of bmp7b

mRNA into sox11 morphants significantly reduced the number of

embryos displaying ocular phenotypes (sox11 MO: 72.662.22%

malformed lens, 74.561.8% coloboma; sox11 MO + bmp7b

mRNA: 35.666.9% malformed lens; 43.8614.4% coloboma;

p,0.001; Figure 7B, C), although the rescue was not as large as

that observed with cyclopamine treatment. These data suggest

that Sox11 negatively regulates shha at least in part through

Bmp7b.

Sox4 can compensate for the loss of Sox11
As functional redundancy between SoxC family members has

been observed in mouse models [10,36,46], we investigated

whether another SoxC factor could compensate for the loss

of Sox11 during zebrafish ocular morphogenesis. By in situ

hybridization and qPCR, we observed elevated expression of the

SoxC factor sox4a in sox11 morphants at 24 and 36 hpf, suggesting

that sox11 deficiency induces a compensatory increase in sox4

expression (Figure S7A, B). We then injected sox4 mRNA into

sox11 morphants and found that this significantly reduced

the proportion of embryos with lens and coloboma phenotypes

(Figure S7C). This result suggests that increased Sox4 expression

may buffer the effects of Sox11 deficiency. Consistent with this

hypothesis, we observed a significantly greater proportion of

embryos with coloboma in sox4/sox11 double morphants than

when either gene was knocked down alone (data not shown).

Identification of SOX11 variants in patients with
coloboma

To investigate whether SOX11 mutations contribute to patient

phenotypes, the coding region was sequenced in DNA samples

from 79 MAC patients [47]. These DNA samples had been

previously screened for mutations in two other coloboma-related

genes, GDF3 and GDF6 [47–49]. We identified heterozygous

sequence changes in two probands (Figure 8A), both of whom are

Canadians of white European ancestry. The first, a c.488GRT

missense mutation in a coloboma patient, is predicted to result in a

G145C amino acid alteration, considered damaging by SIFT

Sox11 Negatively Regulates Hedgehog Signaling
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analysis (http://sift.jcvi.org/). The second variant, a 12-nucleotide

duplication (c.1106–1117) in a patient with bilateral iris and

retino-choroidal coloboma (Figure 8B), is predicted to result in

an in-frame, four amino acid duplication (S351–354dup). The

affected amino acid residues are located outside previously defined

functional domains and are conserved in chimp and macaque

SOX11 (Figure 8A). These variants were absent from dbSNP and

the 1000 Genomes databases, and from the NHLBI database

comprising more than ten thousand exomes (Figure S8A).

Sequencing of SOX11 from the probands’ family members

revealed that the S351–354dup alteration was present in the

proband’s mother, who did not exhibit a phenotype clinically

(Figure 8C). In light of the rod photoreceptor phenotype in

zebrafish sox11 morphants, an electroretinogram (ERG) was

performed on the mother carrying the S351–354dup alteration.

This analysis demonstrated a reduction in scotopic b-wave

amplitude, indicating reduced rod photoreceptor function (Figure

S8B). In addition, her 10Hz dim white flicker response was

appreciably reduced, and was associated with a change in latency.

The mother was asymptomatic at the time the ERG was

performed, which may reflect her young age (37 years). Her cone

flicker response was normal.

Intrigued by the presence of phenotypic effects in a heterozy-

gote only on targeted testing, 384 DNA samples derived from

patients undergoing screening for hemochromatosis were se-

quenced, which detected the S351–354dup variant in three

individuals, whilst the G145C variant was absent. Unfortunately,

these three carriers could not be recalled for clinical examination.

To determine whether the two SOX11 sequence variants

had functional consequences, their ability to rescue the lens and

coloboma phenotypes of zebrafish sox11 morphants was compared

to wild type human SOX11 mRNA. Whereas wild type SOX11

mRNA significantly reduced the proportion of sox11 morphants

displaying lens defects and coloboma, no significant rescue was

observed with mRNA containing either SOX11 variant (Figures 8D

and S8D), suggesting that both sequence changes compromise

SOX11 function. Next, we utilized a luciferase reporter containing

the promoter region of the SOX11 target gene GDF5 [50] to

Figure 7. Bmp7b expression is reduced in sox11 morphants. (A) QPCR was performed on mRNA from control and sox11 morphant heads at 24
hpf for known repressors of shha transcription. A significant downregulation of bmp7b was observed in sox11 morphants compared to controls.
Relative transcript abundance was normalized to gapdh levels and is presented as the mean fold-change in expression relative to controls (n = 50
embryos per group, 3 independent biological repeats). **p,0.01, Student’s t –test. (B) Injection of bmp7b mRNA significantly reduced the proportion
of sox11 morphants displaying abnormal lens and coloboma phenotypes at 24 hpf and 2 dpf, respectively. Number of embryos analyzed: 24 hpf
control MO, n = 127; 2 dpf control MO, n = 123; 24 hpf sox11 MO, n = 282; 2 dpf sox11 MO, n = 274; 24 hpf bmp7b mRNA, n = 95; 2 dpf bmp7b mRNA,
n = 91; 24 hpf sox11 MO + bmp7b mRNA, n = 140, 2 dpf sox11 MO + bmp7b mRNA, n = 134; 3 independent biological replicates. *p,0.006. (C)
Brightfield images of a representative sox11 morphant and a sox11 morphant rescued with bmp7b mRNA, taken from the set of embryos analyzed in
(B). D, dorsal; V, ventral; A, anterior; P, posterior; hpf, hours post fertilization; dpf, days post fertilization; MO, morpholino.
doi:10.1371/journal.pgen.1004491.g007
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Figure 8. Association of SOX11 locus with MAC. (A) Schematic representation of SOX11, indicating the positions of the two MAC sequence
variants, and an alignment of the SOX11 protein sequence encompassing the two affected regions. (B) Photographs of the S351–354dup proband,
indicating bi-lateral iris coloboma (top) and retino-choroidal coloboma (bottom). (C) Pedigree showing the S351–354dup proband and his parents. The
proband’s mother also carries the S351–354dup mutation, but does not have coloboma. (D) SOX11 mRNA containing G145C (MI) or S351–354dup (MII) did
not rescue the abnormal lens or coloboma phenotypes of sox11 morphants. Number of embryos analyzed: 24 hpf control MO, n = 202; 2 dpf control MO,
n = 174; 24 hpf sox11 MO, n = 148; 2 dpf sox11 MO, n = 133; 24 hpf sox11 MO +wild type SOX11 mRNA, n = 177; 2 dpf sox11 MO + wild type SOX11 mRNA ,
n = 159; 24 hpf sox11 MO + MI SOX11 mRNA, n = 203, 2 dpf sox11 MO + MI SOX11 mRNA, n = 188; 24 hpf sox11 MO + MII SOX11 mRNA, n = 219, 2 dpf sox11
MO + MII SOX11 mRNA, n = 201; average of three independent biological replicates. *p,0.0001, Fisher’s exact test. (E) GDF5-luciferase reporter activity.
Transfection of either SOX11 G145C (MI) or S351–354dup (MII) did not significantly enhance luciferase levels. Firefly luciferase activity was normalized to
Renilla luciferase and is represented as mean fold change over the empty vector (pGEM3Z) from three biological and six technical replicates (*p,0.0001,
Student’s t-test). (F) Whereas overexpression of wild type (WT) human SOX11 mRNA increased the proportion of embryos with a cyclopic phenotype
compared to injection of control (td-Tomato) mRNA, human SOX11 mRNA containing G145C (MI) or S351–354dup (MII) did not cause cyclopia. Number of
embryos analyzed: control mRNA, n = 67; WT SOX11 mRNA, n = 62; MI SOX11 mRNA, n = 165; MII SOX11 mRNA, n = 128, 3 independent biological repeats.
*p,0.006 (G) Array CGH data for 2p25.2 demonstrating deletion breakpoints (red arrows) in a patient with agenesis of the optic nerve, microphthalmia,
and developmental delay. The corresponding annotated genomic region, modified from the UCSC genome browser (http://genome.ucsc.edu/), is shown
below; SOX11 is the only protein-coding gene within the deleted region. MAC, microphthalmia, anophthalmia, and coloboma; MO, morpholino.
doi:10.1371/journal.pgen.1004491.g008
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further analyze the functional consequences of the two mutations.

Expression of increasing amounts of wild type SOX11 in COS-7

cells produced a dose-dependent increase in luciferase activity

from the GDF5 reporter (Figure 8E). In contrast, transfection of

equivalent amounts of either SOX11 variant did not enhance

luciferase activity over the empty vector control (Figure 8E),

although the variants showed comparable levels of protein

expression by Western blot (Figure S8C). Equivalent results were

obtained with the luciferase assay in two additional cell lines

(HEK293 and HeLa; data not shown). To further confirm that the

two SOX11 sequence variants are functionally compromised, we

overexpressed them in zebrafish and quantified the proportion of

embryos that exhibited a cyclopic phenotype at 24 hpf. Whereas

injection of WT human SOX11 mRNA caused a significant

increase in the proportion of cyclopic embryos compared to

injection of control td-Tomato mRNA (61.16610.7% in WT

SOX11 injected vs. 35.3611% in control injected; p,0.05),

neither of the SOX11 sequence variants produced elevated levels

of cyclopia (G145C, 10.064.8%, S351–354dup, 13.164.11%;

Figures 8F and S8E). Taken together, these data suggest that the

two variants compromise SOX11’s transactivation ability.

Finally, array comparative genomic hybridization (array

CGH) was performed on DNA from a patient with microph-

thalmia, unilateral optic nerve agenesis, and a de novo chromo-

some 2p25 deletion [18]. This defined a 1.14 Mb segmental

deletion (5,206,155–6,343,906; chromosome build GRCh37),

encompassing an interval within which SOX11 is the only

protein-coding gene (Figures 8G and S8F). Taken together,

these data demonstrate that perturbed SOX11 function, either

through mutation or decreased gene dosage, contributes to

structural (microphthalmia/coloboma) or functional (rod pho-

toreceptor) phenotypes.

Discussion

This study reveals a novel role for Sox11 in maintaining the

correct level of Hedgehog (Hh) signaling during ocular morpho-

genesis. We demonstrate that knockdown of Sox11 in zebrafish

perturbs lens formation, induces coloboma, and reduces the

number of differentiated rod photoreceptors – phenotypes that can

be rescued by pharmacological inhibition of the Hh pathway

(cyclopamine) or morpholino inhibition of shha. Comparable

lenticular and coloboma phenotypes have also been observed in

murine mutants [13], demonstrating that Sox11’s function in

vertebrate ocular development is evolutionarily conserved. How-

ever, the perinatal lethality of Sox11 null mice has precluded a

thorough in vivo assessment of rod photoreceptor differentiation,

which mostly occurs postnatally. Expression of the rod photore-

ceptor genes Nrl, Nr2e3, and Sag (Rod arrestin) is significantly

reduced in E16 retinas from Sox112/2 mice [51], suggesting that

Sox11 does regulate aspects of rod photoreceptor differentiation in

mammals. However, in retinal explants derived from Sox11 null

mice and cultured for several days, reduced rod photoreceptor

number was not observed [51]. Our data suggesting that early,

midline-derived Shh influences rod photoreceptor differentiation

(see below), indicates that retinal explants, being removed from the

source of extra-retinal Shh, may not accurately reflect the in vivo

response of retinal progenitor cells to their environment. In

this context, the external embryogenesis, rapid pace of retinal

development, and continual rod photoreceptor genesis in the

zebrafish have benefitted our studies and permitted us to uncover

for the first time both the mechanism of Sox11’s action during

early ocular development, as well as a role for Sox11 in regulating

rod photoreceptor differentiation.

A second key finding of our study is that Sox11 acts upstream of

Hh signaling specifically by negatively regulating transcription of

the ligand shha. In Sox11-deficient embryos, we observed a strong

increase in shha expression in the ventral forebrain, as well as an

expansion of the shha territory into the dorsal diencephalon and

the telencephalon. Therefore, in addition to regulating expression

of shha expression in the ventral midline, our data suggest that

Sox11 is also required to prevent activation of shha in the more

dorsal regions of the brain. Within the retina, the expression of

sox11a in the GCL at 48 hpf suggests that Sox11 continues to

regulate Hh signaling during retinal neurogenesis.

The magnitude of the increase in shha expression in the absence

of sox11 (over 180-fold) at 24 hpf suggests that loss of shha

transcriptional repression is accompanied by a significant positive

transcriptional feedback loop. However, the Hh target gene ptc2

demonstrated a much smaller increase in expression (2-fold) at this

time, raising the question of why the dramatic upregulation in shha

did not produce a correspondingly large transcriptional response.

One possible explanation is that post-transcriptional mechanisms

narrow the range of Shha protein expression in sox11 morphants.

Moreover, additional feedback mechanisms may work to attenuate

the transcriptional response of Hh target genes such as patched. In

any case, the elevated and expanded GFP expression in the Hh

reporter line ptc2:GFP, as well as the rescue by cyclopamine and

shha co-knockdown, strongly argue that the rise in shha transcrip-

tion induced by sox11 deficiency has functional consequences.

In the absence of Sox11, we observed an early expansion of the

optic stalk marker pax2.1 in the optic vesicle, and a later reduction

in the retinal marker pax6a. Such altered proximodistal patterning

of the optic vesicle has been observed in several models of elevated

Hh signaling [4,5,25,52,53]. The increased apoptosis in the lens

and its abnormal development may be attributable to reduced

pax6a expression in sox11 morphants, since similar phenotypes

were observed in a lens-specific Pax6 conditional mutant mouse

model [54]. In parallel, we suggest the expansion of pax2.1

expression due to elevated levels of Shh enlarged the area of the

optic vesicle that was specified as optic stalk, hindering closure of

the choroid fissure and thus causing coloboma. Elevated Hh

signaling could also account for the increase in mitotic cells in the

retina, as this pathway is known to be mitogenic [55].

Previous studies in zebrafish have shown that blocking early Hh

signaling, either with shha and shhb morpholinos or by cyclopamine

treatment, caused a reduction in rhodopsin expression in the

retina, suggesting that Hh signaling promotes rod photoreceptor

differentiation [56]. However, murine studies have found that

activation of the Hh pathway results in a non-cell autonomous

inhibition of rhodopsin expression [57], which is consistent with

our results. Moreover, loss of Shh was shown to cause accelerated

differentiation of rods and cones in a conditional mouse model

[58]. The seemingly paradoxical response to increased and

decreased Shh levels is potentially explained by the requirement

for precise Shh dosage, with either alteration resulting in reduced

photoreceptor number. This accords with a comparable model for

Shh’s effect on reactive astrocytes [59], and is a well-recognized

feature of transcription factors, as exemplified by the effects of

altered Pax6 dosage in inducing microphthalmia [60].

Interestingly, we observed a significant increase in shha

expression at 8–12 hpf, when the optic vesicle is evaginating from

the midline, and we confirmed that Hh signaling was increased at

this time using a ptc2:GFP reporter line (Figure 6). Furthermore,

treatment of sox11 morphants with cyclopamine during this

developmental window was sufficient to restore rod photoreceptor

number at 72 hpf. Thus, taken together, these data indicate that

early, midline-derived Shh influences rod photoreceptor differen-
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tiation. This is not the first demonstration that early midline

Hh signals influence later neurogenesis in the retina. It has been

shown previously that the timely progression of ath5 expression in

the retina, which coincides with the activation of neurogenesis,

depends on axial Shh [61]. As ath5-positive cells contribute

significantly to the rod photoreceptor lineage [62], it is plausible

that elevated Shh coming from the midline in sox11 morphants

delays rod photoreceptor differentiation by influencing the cell-

intrinsic neurogenic program of retinal progenitor cells.

Although the phenotypes of zebrafish blowout (blw) mutants and

sox11 morphants are similar with respect to coloboma, blw mutants

do not appear to have a defect in the differentiation of rod

photoreceptors or any other retinal cell types. This is surprising,

given the well-described influence of Hh signaling on retinal

neurogenesis [3,4,33,56,61,63–66]. Moreover, patients with ele-

vated Hh signaling due to heterozygous loss of function mutations

in PTCH exhibit retinal abnormalities, and PtchlacZ+/2 mice

display a delay in photoreceptor and horizontal cell maturation at

P5, all of which is consistent with our data [67]. One possible

explanation as to why sox11 morphants and blw mutants differ in

this aspect of their phenotype is that the mutation in ptc2 may be a

partial loss of function allele, which is supported by the observation

that ptc2 morphants display more severe phenotypes than blw

mutants [25].

Since SoxC factors are generally considered to function as

transcriptional activators rather than repressors [36,38], we

hypothesized that Sox11 regulates Shha indirectly, through the

induction of a repressor. Indeed, we found that bmp7b expression

was significantly reduced in sox11 morphants, and that injection of

bmp7b mRNA into sox11 morphants could rescue the lens and

coloboma phenotypes (Figure 7). As Bmp7 has previously been

shown to antagonize Shh signaling [42,68], our results are

compatible with a model whereby Bmp7 functions downstream

of Sox11 to limit Shh expression during ocular morphogenesis.

However, since the magnitude of the bmp7b rescue was not as large

as that observed with cyclopamine treatment, additional mecha-

nisms linking Sox11 with the regulation of Hh signaling are likely.

So far, more than 27 genes are associated with coloboma

in humans [2], however mutations in these account for less than

20% of cases. Consequently, it is important to define additional

causative genes, both to extend understanding of pathogenesis and

define pathways that may be amenable to therapeutic modulation.

Our work, in combination with previous studies [13], strongly

supports a contribution from SOX11 to coloboma phenotypes,

however our data indicate that the relationship is complex. With

a 50% reduction in gene dosage (2p25 segmental deletion;

Figure 8G), a profound phenotype was observed. In contrast,

milder coding changes (S351–354dup) with a low prevalence

in the general population, resulted in incompletely penetrant

phenotypes, with the unaffected carrier exhibiting a sub-clinical

phenotype, only detectable on ERG testing. Since the variants had

significantly reduced function on in vitro and in vivo assays, this

suggests that such mild alleles contribute to MAC but may be

insufficient to induce phenotypes alone in all cases. Coloboma, like

many developmental defects, exhibits extensive phenotypic vari-

ability, suggesting complex relationships between disease genes

and modifying alleles that complicate simple genotype-phenotype

correlations. It is also possible that oligogenic inheritance is a

factor in coloboma, in which individuals in non-penetrant families

carry a combination of pathogenic alleles at two or more disease

loci, as has been described for other genetically heterogeneous

developmental disorders such as the ciliopathies [69]. Further-

more, functional redundancy between Sox subgroup family

members is also commonly observed [36,46,70], suggesting that

one SoxC family member may buffer the effects of mutation in

a second. Consistent with this model, we observed elevated

expression of the SoxC factor sox4 in sox11 morphants at 24 and 36

hpf, and found that the lens and coloboma phenotypes of sox11

morphants could be rescued by injection of sox4 mRNA (Figure

S7). Finally, in light of the incompletely penetrant phenotypes

evident with multiple other MAC-causing genes [47,49,71–73], a

similar additive contribution from other SOX gene variants is

highly plausible.

In summary, we describe here a novel role for Sox11 in

regulating levels of Shh during ocular morphogenesis. It will

be interesting to determine whether dysregulated Hh signaling

underlies any of the additional developmental defects observed in

Sox112/2 mice, such as congenital cardiac malformations and

craniofacial anomalies. Future studies will continue to explore

the mechanisms of how Sox11 regulates Hh signaling and Shh

transcription, as well as the identification of direct molecular

targets of Sox11 transcriptional control.

Materials and Methods

Zebrafish
The Tg (XlRho:EGFP)fl1 transgenic line has been previously

described [28], and was generously provided by J.M. Fadool (Florida

State University, Tallahassee, FL). The Tg (gfap:GFP)mi2001 line

has been previously described [74] and was obtained from the

Zebrafish International Resource Center (Eugene, OR). The Tg

(3.2TaC-EGFP) line has been previously described [75], and was

generously provided by S.E. Brockerhoff (University of Washington,

Seattle, WA). Tg(GBS-ptch2:nlsEGFP) has been previously described

[34] and was kindly provided by R. Karlstrom (University of

Massachusetts, Amherst, MA). Zebrafish (Danio rerio) were reared,

bred, and staged according to standard protocols [76,77]. All animal

procedures were carried out in accordance with the policies

established by the University of Kentucky Institutional Animal

Care and Use Committee (IUCAC).

Morpholino (MO) injection and analysis
Morpholinos (MOs) were obtained from Gene Tools, LLC

(Philomath, OR) and were prepared and injected as previously

described [78]. The following MOs were used in this study:

standard control MO, 59-CCTCTTACCTCAGTTACAATT-

TATA-39; sox11a MO1, 59 –GTGCGTTGTCAGTCCAAAA-

TATCAA-39; sox11b MO1, 59 –CATGTTCAAACACACTTT-

TCCCTCT; shha-MO: 59CAGCACTCTCGTCAAAAGCCG-

CATT [35]. The specificity of the sox11 morphant phenotype

was confirmed using a second sox11 morpholino placed further

downstream of the first set (completely non-overlapping with

sox11a MO1, and overlapping by only 4 nucleotides with sox11b

MO1). Because the target site for this morpholino extended into

the coding region (which is highly similar in sequence for both

genes) it simultaneously targets both sox11a and sox11b (sox11

MO2, 59 –TCCGTTTGCPGCACCATG-39; the ‘‘P’’ indicates a

photo-cleavable moiety that was not used in this study). The sox11

MO2 produced the same coloboma phenotype as the first set of

MOs (Figure S1C). All data presented in this study are from

embryos injected with sox11a MO1 and sox11b MO1. Unless

stated otherwise, embryos were injected with 4.18 ng each of

sox11a MO1 and sox11b MO1, 4.18 ng of the standard control

MO, or with 3.14 ng of shha MO. We also confirmed that no

abnormal phenotypes were observed when embryos were injected

with 8 ng of standard control MO. To determine the efficiency of

the sox11 MOs, PCR fragments corresponding to the 59UTRs of

sox11a and sox11b encompassing the morpholino target sequences
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were amplified (using primers listed in Table S1) and cloned

upstream and in frame with the EGFP gene in the pEF1a:GFP

plasmid (Addgene plasmid 11154). One-cell stage zebrafish

embryos were injected with 100 pg/embryo of pEF1a:GFP

plasmid containing the MO binding site in the presence or

absence of the sox11 MOs. GFP expression in injected embryos

was analyzed by fluorescence microscopy at 24 hpf.

mRNA synthesis and injection
Zebrafish sox11a and sox11b or human wild type and variant

SOX11 coding sequences were PCR amplified (using primers listed

in Table S1) and cloned into the pGEMT-easy vector (Promega).

The pCRII-bmp7b plasmid has been previously described [41] and

was a kind gift from Dr. S. Fabrizio (The Novartis Institutes

for Biomedical Research, Cambridge, MA). The constructs were

linearized and mRNA was prepared using the mMESSAGE

mMACHINE kit (Ambion) according to manufacturer’s instruc-

tions. Zebrafish sox11a and sox11b mRNAs (1.0 ng each), human

SOX11 mRNA (0.3 ng), zebrafish bmp7b mRNA (1.0 ng) or

zebrafish sox4a and sox4b (0.5 ng each) were injected into zebrafish

embryos at the one-cell stage. For mRNA rescue experiments, the

mRNAs were either co-injected with sox11 MOs, or were injected

sequentially after injection of the MOs. As both methods produced

similar results, the data presented here are for co-injection of

mRNA and morpholino. Injections were always performed in

triplicate, and a minimum of 55 injected embryos were analyzed

in each experiment. For mRNA overexpression experiments,

embryos were injected with either a control (tdTomato) mRNA,

zebrafish sox11a/b mRNA, or human WT, G145C (MI), or S351–

354dup (MII) SOX11 mRNA, all at equimolar concentrations.

The control mRNA was synthesized from pRSET-B-td-Tomato

(kindly provided by Dr. D.A. Harrison, University of Kentucky,

Lexington, KY). To compare control versus sox11a/b mRNA,

0.003 pmol of each mRNA was injected. To compare control

versus human WT and variant SOX11 mRNA, 0.0133 pmol of

each mRNA was injected. Zebrafish embryos were injected at the

one-cell stage, and embryos were scored for cyclopic phenotypes

(one single eye in the center of the head, two eyes that were

almost fused at the midline, or one normal eye and one vestigial

eye) at 24 hpf.

Patient analysis
To screen for mutations in human SOX11, PCR was performed

using three sets of overlapping primers that spanned the entire

coding region of the single-exon SOX11 gene. The amplicons were

sequenced on an ABI Prism 3100 capillary sequencer (Applied

Biosystems), analyzed using DNABaser v.3.1.5 and sequence

alignments were performed using ClustalW. Mutations were

confirmed by bi-directional Sanger sequencing and RFLP analysis

of the SOX11 amplicons. Half of the 384 control DNA samples

were screened by RFLP analysis, using TseI (NEB) for the G145C

variant and SfcI (NEB) for the S351–S354dup variant, and the

other half were screened by direct Sanger sequencing of the

SOX11 coding region. Array CGH analysis was performed using a

custom designed Nimblegen 4672 whole human genome array.

Oligonucleotide probes were spaced approximately every 75 bp

across a 2.65 Mb region at 2p25.2, and backbone probes covered

the rest of the genome. Four technical replicates were performed

on the proband’s DNA, and two replicate hybridizations were

performed for each parental DNA sample. Array hybridization

and scanning were performed by the Roy Carver Center for

Genomics at the University of Iowa (Iowa City, IA). Array data

were analyzed using the segMNT analysis program (Nimblegen).

Informed consent was obtained from all participants. Study

approval was provided by the University of Alberta Hospital

Health Research Ethics Board and the Ethics Committee of the

IRCCS Oasi Maria SS Onlus, Troina, Italy.

Pharmacological manipulations
Cyclopamine (Sigma) was resuspended at 1 mM concentration

in 100% ethanol and diluted in fish water for exposure. A dose

response curve was generated by exposing wild type embryos to

0.5, 1.0, and 2.0 mM of cyclopamine from 5.5–13 hpf, and the

dose (2.0 mM) at which no abnormal phenotype and negligible

toxicity was observed was used for control and sox11 morphants.

Purmorphamine (Calbiochem) was resuspended at 50 mM con-

centration in DMSO and diluted in fish water for exposures. Wild

type embryos were exposed to 10–100 mM of purmorphamine

from 5.5–24 hpf, and the dose (75 mM) at which no ocular

phenotypes were observed was used to treat control and sox11

morphants.

Whole mount in situ hybridization, two-color fluorescent
in situ hybridization (FISH) and immunohistochemistry

Whole mount in situ hybridization (WISH) and immunohisto-

chemistry were performed essentially as previously described [78].

For FISH embryos were manually dechorionated and fixed in

4% paraformaldehyde (PFA) made with diethyl pyrocarbonate

(DEPC)-treated PBS at 4uC overnight. The fixed embryos were

sequentially cryoprotected in 10% sucrose-DEPC and 30%

sucrose-DEPC at 4uC overnight. Embryos were then embedded

in OCT (Ted Pella, Redding, CA) and frozen at 280uC. Ten-

micron sections were collected using a cryostat (Leica CM1900,

Leica Biosystems, Buffalo Grove, IL), placed on Superfrost

plus glass slides (Fisher Scientific, Waltham, MA) and air dried

at room temperature overnight. The sections were post-fixed in

1% PFA-DEPC and rehydrated in PBST-DEPC. The sections

were permeabilized for 10 minutes with 1 mg/ml proteinase K.

Sections were acetylated in triethanolamine buffer plus 0.25%

acetic anhydride (Sigma-Aldrich, Saint Louis, MO), and then

rinsed in DEPC treated water. Sections were hybridized

with digoxigenin (DIG) and fluorescein (FITC) labeled probes

(2.5 ng/ml) in hybridization buffer (0.25% SDS, 10% dextran

sulfate, 16 Denhardt’s solution , 200 mg/ml torula yeast tRNA,

50% de-ionized formamide, 1 mM EDTA, 600 mM NaCl, and

10 mM Tris pH 7.5 in DEPC-treated water) at 65uC in a sealed

humidified chamber for a minimum of 16 hours. Following

hybridization, the slides were rinsed in 56 SSC and then with

pre-warmed 16 SSC/50% formamide. Endogenous peroxidase

activity was quenched with 1% H2O2 for 30 minutes. Sections

were blocked using 0.5% PE blocking solution (Perkin Elmer Inc,

Waltham, MA) for at least 1 hour. For two-color FISH, sections

were incubated first with anti-DIG-POD Fab fragment (Roche,

Indianapolis, IN) at 4uC overnight. Subsequently, probe signal was

detected using the TSA plus Cy3 kit (Perkin Elmer Inc, Waltham,

MA) following the manufacturer’s instructions. For the second

color detection, the sections were treated with 1% H2O2 for

30 minutes and then incubated with anti-FITC-POD Fab

fragment (Roche, Indianapolis, IN) at 4uC overnight. Subsequent-

ly, the FITC-labeled probe signal was revealed using TSA plus

Fluorescein (Perkin Elmer Inc, Waltham, MA). Finally, sections

were counterstained with 49, 6-diamidino-2-phenylindole (DAPI;

Sigma-Aldrich, Saint Louis, MO), mounted in 40% glycerol, and

imaged on an inverted fluorescent microscope (Nikon Eclipse Ti-

U; Nikon Instruments, Melville, NY) using a 406 objective.

The sox11a, sox11b and shha cDNAs were amplified (using

primers listed in Table S1) and cloned from 48 hpf whole embryo

cDNA. The sox11b and NeuroD antisense probes have been
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previously described [14]. The pax6a , crx, and nr2e3 probes have

been previously described, and were kindly provided by Y.F.

Leung (Purdue University, Indiana). The pax2.1 probe has

been described previously [25] and was a gift from J.M. Gross

(University of Texas, Austin, TX). The following primary

antibodies and dilutions were used: Zpr-1 (1:20; ZIRC), which

labels red-green cones; Zn-8 (1:10; ZIRC), which labels ganglion

cells; anti-Prox-1 (1:2000; Millipore), which recognizes horizontal

cells; anti-PH3 (1:500; Millipore), which marks cells in G2/M

phase; 5E11 (1:10; J.M. Fadool, Florida State University),

which labels amacrine cells; and anti-PKCa (1:300; Santa Cruz

Biotechnology), which labels bipolar cells. Alexa Fluor secondary

antibodies (Molecular Probes, Invitrogen) and Cy-conjugated

secondary antibodies (Jackson ImmunoResearch) were all used

at 1:200 dilution. Sections from the same region of the eye were

analyzed for quantification purposes. One section was quantified

per individual embryo (for both control and sox11 morphants).

TUNEL Assay
Terminal deoxynucleotide transferase (TdT)-mediated dUTP

nick end labeling (TUNEL) was performed on retinal cryosections

using the ApopTag Fluorescein Direct In Situ Apoptosis Detection

Kit (Millipore) according to the manufacturer’s instructions.

Sections from the same region of the eye were analyzed for

quantification purposes. One section was quantified per individual

embryo (for both control and sox11 morphants).

Real-time quantitative RT-PCR
RNA extracted from the heads of control, sox11, and shha

morphant embryos at various time points was used to perform

first-strand cDNA synthesis (GoScript Reverse Transcriptase Sys-

tem; Promega). Real time PCR was performed using either Maxima

SYBR Green qPCR master mix (Thermo Scientific) or FastStart

SYBR Green Master (Roche) on an iCycler iQ Real Time PCR

Detection system (Bio-Rad) or LightCycler 96 (Roche) with primers

listed in Table S1. Three biological replicates were performed for

each experiment. The gene expression change was determined using

a relative standard curve quantification method with gapdh, atp5h, or

18s rRNA [79] expression as the normalization control.

Statistics
Statistical analysis was performed on all data using the

GraphPad Prism 6.02 software. Continuous data were analyzed

using Student’s-t-test and Fisher’s exact test. For all graphs, data

are represented as the mean 6 the standard deviation (s.d.).

Dual luciferase assays
COS-7 cells were transfected with the pcDNA3 expression

vector (Invitrogen) containing the coding region of wild type,

G145C, or S351–354dup SOX11; the pGL3 Firefly Luciferase

reporter vector (Promega) containing the GDF5 core promoter was

a kind gift from Akinori Kan (Harvard Medical School, Boston,

MA) [80]; and the pRL-TK vector (Promega) containing Renilla

luciferase driven by a ubiquitous tyrosine kinase promoter to

control for transfection efficiency. Transfections were performed

using Fugene 6 (Promega), following manufacturer’s instructions.

The total mass of DNA and molar ratios of pGL3 and pRL-TK

were held constant across transfections, which were repeated a

minimum of 6 times. Dose response curves were generated using

wild type SOX11 at 0:100, 1:20, 1:10, and 1:5 molar ratios to the

GDF5 reporter. The mutant SOX11 variants were transfected at a

1:5 molar ratio to the GDF5 reporter. Firefly and Renilla luciferase

activity were measured 24–36 hours post transfection using the

DualGlo Luciferase Assay System (Promega). Data was analyzed

as follows: Firefly luciferase (FFLuc) was baselined against

untransfected control (UTC) samples ( = FFLuc – UTC) and

normalized using the Renilla luciferase (RLuc). The Relative

Luciferase Activity (RLA) was calculated as (FFLuc-UTC)/RLuc

and compared between experimental and control transfections.

Supporting Information

Figure S1 Efficiency and specificity of sox11 morpholinos. (A)

Schematic representation of the pEF1a:GFP plasmid containing a

portion of the sox11 59 UTR placed upstream of the GFP reporter

(top). The binding site for the sox11 morpholino is shown in red.

Separate reporters were constructed for the sox11a and sox11b

MOs. (Center) Lateral view (anterior at top) of 24 hpf embryos

injected with EF1a- sox11a/b-GFP plasmids alone (left) or with

both sox11 MOs. No GFP expression was detected in the embryo

injected with sox11 MOs. (Bottom) Quantification of the pro-

portion of GFP-positive embryos at 24 hpf. The sox11 MOs were

highly effective at blocking GFP expression. Number of embryos

analyzed: pEF1a-sox11-GFP plasmid alone, n = 169; pEF1a-sox11-

GFP + sox11 MOs, n = 140, 3 independent repeats; *p = 0.004,

Student’s t-test. (B) Both sox11a and sox11b contribute to abnormal

lens and coloboma phenotypes observed in sox11 morphants.

The proportion of embryos displaying either phenotype was

significantly higher when injected with sox11a and sox11b MOs

simultaneously, compared to either MO alone. Number of

embryos analyzed: 24 hpf control MO, n = 463; 2 dpf control

MO, n = 441; 24 hpf sox11a MO, n = 229; 2 dpf sox11a MO,

n = 214; 24 hpf sox11b MO, n = 341; 2 dpf sox11b MO, n = 316; 24

hpf sox11a + sox11b MO, n = 271; 2 dpf sox11a + sox11b MO,

n = 262, 3 independent repeats. *p,0.001, Fisher’s exact test. (C)

A second non-overlapping sox11 MO (that targeted both sox11a

and sox11b simultaneously) produced the same coloboma pheno-

type in similar proportion to the first set. Number of embryos

analyzed: control MO, n = 186 embryos; sox11 MO, n = 194, 3

independent repeats; *p,0.001, Fisher’s exact test. MO, morpho-

lino; hpf, hours post fertilization; dpf, days post fertilization.

(TIF)

Figure S2 Cell proliferation and apoptosis in sox11 morphants.

(A) Quantification of TUNEL+ cells in the optic vesicle, lens, and

retina of control and sox11 and morphants from 18–72 hpf. Sox11

morphants had an elevated number of TUNEL+ cells in the optic

vesicle at 18 hpf. Additionally, sox11 morphants consistently

displayed more TUNEL+ cells in the anterior lens compared to

controls from 24 -72 hpf. Number of embryos analyzed: 18 hpf

control MO, n = 20; 18 hpf sox11 MO, n = 22; 24 hpf control MO,

n = 15; 24 hpf sox11 MO, n = 19; 48 hpf control MO, n = 10; 48

hpf sox11 MO, n = 13; 72 hpf control MO, n = 12; 72 hpf sox11

MO, n = 12; average of 3 independent biological replicates.

**p,0.00001, *p,0.01, Student’s t-test. (B) Representative

transverse sections of control (left column) and sox11 (right

column) morphants at 18, 24, and 48 hpf, taken from the set of

individuals analyzed in (A). At 48 hpf, TUNEL+ cells were

detected within the colobomatous tissue and the region of the

optic stalk in sox11 morphants (arrow, bottom right). (C) Sox11

morphant retinas had more PH3+ cells than controls from 18–72

hpf. Number of embryos analyzed: 18 hpf control MO, n = 12; 18

hpf sox11 MO, n = 15; 24 hpf control MO, n = 20; 24 hpf sox11

MO, n = 19; 48 hpf control MO, n = 10; 48 hpf sox11 MO, n = 12;

72 hpf control MO, n = 14; 72 hpf sox11 MO, n = 12; average of 3

independent biological replicates. **p,0.001, *p,0.01, Student’s

t-test. (D) Representative transverse sections of control (left

column) and sox11 (right column) morphants at 18, 24, and 48

Sox11 Negatively Regulates Hedgehog Signaling

PLOS Genetics | www.plosgenetics.org 16 July 2014 | Volume 10 | Issue 7 | e1004491



hpf, taken from the set of individuals analyzed in (C). D, dorsal; V,

ventral; MO, morpholino; hpf, hours post fertilization; ON; optic

nerve; OV, optic vesicle; R, retina; L, lens.

(TIF)

Figure S3 Retinal neurogenesis in sox11 morphants. (A) Retinal

cell types were visualized by immunohistochemistry (ganglion,

amacrine, horizontal, and bipolar cells) or with fluorescent

reporter transgenic lines (Tg(gfap:GFP)mi2001 for Müller glia

and Tg(3.2TaC-EGFP) for cones) in controls (left) and sox11

morphants (center, right) at 3 dpf. In sox11 morphants without

coloboma (center), the retinas are well laminated and had normal

numbers of ganglion, amacrine, horizontal, and bipolar cells, cone

photoreceptors, and Müller glia. However, sox11 morphants with

coloboma (asterisk; right) had poorly laminated retinas and

reduced numbers of differentiated retinal cell types, indicating

delayed retinal development. (B) Quantification of numbers of

late-born retinal cell types in control and sox11 morphants without

coloboma. Only rod photoreceptors displayed a significant

reduction. Number of embryos analyzed: control MO, n = 19;

sox11 MO without coloboma, n = 25, 3 independent repeats.

**p,0.00001; ns = p.0.05, Student’s t-test.(C) At 4 dpf, sox11

morphants have more mature rod photoreceptors than at 3 dpf

but the number remains significantly less than controls (*p,0.001,

Student’s t-test); MO, morpholino; dpf; days post fertilization; L,

lens; GCL, ganglion cell layer; INL, inner nuclear layer; ONL,

outer nuclear layer; ON, optic nerve.

(TIF)

Figure S4 Elevated Hh signaling contributes to the abnormal

ocular phenotypes displayed by sox11 morphants. (A) Represen-

tative brightfield images of sox11 morphants treated with

cyclopamine, purmorphamine and their corresponding vehicle

controls at 24 hpf and 2 dpf, taken from the set of embryos

analyzed in Figure 5. Treatment with 75 uM purmorphamine

alone did not cause any abnormalities (last column; 24 hpf control

MO plus 75 uM purmorphamine alone, n = 123; 2 dpf control

MO plus 75 uM purmorphamine alone, n = 114, 3 independent

biological repeats). (B) Suppression of Hh pathway with cyclopa-

mine rescued the rod photoreceptor defect in sox11 morphants at 3

dpf (right; number of embryos analyzed: sox11 MO, n = 20; sox11

MO + cyclopamine, n = 18; 3 independent repeats). (C) Retinal

cell types were visualized by immunohistochemistry (ganglion,

cones, amacrine, horizontal, and bipolar cells) or with a transgenic

fluorescent reporter lines (Tg(gfap: GFP)mi2001) for Müller glia

in sox11 morphants (left) and sox11 morphants treated with

cyclopamine (right) at 3 dpf. The retinas of sox11 morphants

treated with cyclopamine were well laminated and displayed

normal distributions of all cell types (n = 15 per group, 3

independent repeats). D, dorsal; V, ventral; A, anterior; P,

posterior; MO, morpholino; hpf, hours post fertilization; L, lens.

(TIF)

Figure S5 Hh pathway gene expression changes in sox11

morphants. (A) QPCR performed on mRNA from sox11

morphant and control heads at 18 hpf reveal small increases in

gli2a and gli3 expression in sox11 morphants compared to controls,

but no significant change in shha expression. Relative transcript

abundance was normalized to atp5h levels and is presented as the

mean fold-change in expression relative to controls (B) At 24 hpf,

sox11 morphants demonstrated a large increase in shha expression,

which correlated with the dose of sox11 MO injected. Relative

transcript abundance was normalized to gapdh levels and is

presented as the mean fold-change in expression relative to

controls (n = 60 embryos per group, 3 independent biological

repeats) *p,0.01, Student’s t-test. (C) Representative bright-field

images of embryos injected with sox11 MO alone (left side), shha

MO alone (middle), or both shha and sox11 MOs (right side), taken

from the set of embryos analyzed in Figure 6E. (D) Co-knockdown

of shha increased rod photoreceptor number in sox11 morphants at

3 dpf (number of embryos analyzed: control MO, n = 11; shha

MO, n = 10; sox11 MO, n = 16, sox11+ shha MO, n = 15, 3

independent repeats) *p,0.05, Student’s t-test. (E) QPCR

performed on mRNA from heads of sox11 morphants treated

with vehicle (100% ethanol) or cyclopamine and compared to

control morphants treated with vehicle revealed a significant

reduction in shha expression in sox11 morphants treated with

cyclopamine at 24 hpf. Relative transcript abundance was

normalized to gapdh levels and is presented as the mean fold-

change in expression relative to controls (n = 40 embryos per

group, 3 independent biological repeats) **p,0.0001, Student’s

t-test. (F) QPCR for shha was performed on mRNA from the 24

hpf heads of sox11 morphants injected with half the normal dose

and treated with DMSO, sox11 morphants (half dose) treated with

purmorphamine, and compared to control morphants treated

with DMSO. An increase in shha expression was detected in sox11

morphants (half dose) treated with purmorphamine compared to

sox11 morphants (half dose) treated with DMSO, however the

increase did not reach the threshold for statistical significance.

Relative transcript abundance was normalized to gapdh levels and

is presented as the mean fold-change in expression relative to

controls (n = 40 embryos per group, 3 independent biological

repeats). (G) QPCR was performed on mRNA from the 24 hpf

heads of zebrafish embryos injected with control (td-tomato) mRNA

and embryos injected with zebrafish sox11 mRNA. This analysis

revealed a significant decrease in shha expression in embryos

overexpressing zebrafish sox11 mRNA compared to the controls.

Relative transcript abundance was normalized to 18s rRNA levels

and is presented as the mean fold-change in expression relative to

controls (n = 30 embryos per group, 3 independent biological

repeats). **p,0.0001, Student’s t-test. (H) QPCR performed on

mRNA from heads of 24 hpf embryos injected with shha MO or

control MO revealed no significant change in expression of

either sox11a or sox11b in shha morphants compared to controls.

Relative transcript abundance was normalized to gapdh levels and

is presented as the mean fold-change in expression relative to

controls (n = 45 embryos per group, 3 independent biological

repeats). ns, p.0.05, Student’s t-test. D, dorsal; V, ventral; A,

anterior; P, posterior; MO, morpholino; hpf, hours post

fertilization; dpf, days post fertilization; L, lens.

(TIF)

Figure S6 Bmp7b expression is reduced in sox11 morphants.

QPCR performed on mRNA from control and sox11 morphants

bodies (8–12 hpf) or heads (18–24 hpf) for bmp7b revealed a

significant downregulation of bmp7b in sox11 morphants at all time

points except 18 hpf compared to controls. Relative transcript

abundance was normalized to atp5h (18 hpf) and gapdh (8, 10, 12,

and 24 hpf) levels and is presented as the mean fold-change in

expression relative to controls (n = 50 embryos per group, 3

independent biological repeats). **p,0.01, *p,0.05, Student’s

t –test.

(TIF)

Figure S7 Sox4 compensates for the loss of Sox11. (A) Sox4a was

diffusely expressed in the control retina at 36 hpf (left); however,

sox4a expression was upregulated in the lens and retina of sox11

morphants (right; n = 20 per group); scale bar = 50 mm. (B)

QPCR performed on mRNA from the heads of 24 hpf zebrafish

embryos injected with sox11 MO or control MO reveal that sox4a

expression is elevated in sox11 morphants compared to controls.
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Relative transcript abundance was normalized to gapdh levels and

is presented as the mean fold-change in expression relative to

controls (n = 40 embryos per group, 3 independent biological

repeats) *p,0.01, Student’s t-test. (C) Co-injection of sox4 mRNA

rescued the lens and coloboma phenotypes of sox11 morphants at

24 hpf and 2dpf. Number of embryos analyzed: 24 hpf control

MO, n = 136; 2 dpf control MO, n = 124; 24 hpf sox11 MO,

n = 179; 2 dpf sox11 MO, n = 161, 24 hpf sox11 MO + sox4

mRNA, n = 210, 2 dpf sox11 MO + sox4 mRNA, n = 184, 3

independent biological replicates. *p,0.001, Fishers exact test;

MO, morpholino.

(TIF)

Figure S8 Association of SOX11 locus with ocular abnormalities.

(A) Amino acid sequence of human SOX11, with previously

identified non-synonomous SNPs highlighted in green. The two

variants identified in the MAC patients (positions indicated in red)

are novel. (B) Scotopic ERG analysis of the proband’s mother

carrying the S315–354dup variant, demonstrating a reduction in

the b-wave amplitude. (C) Western blot for SOX11 and b-actin in

COS-7 cells transfected with SOX11 expression constructs.

Densitometric analysis was performed with ImageJ software. (D)

Representative brightfield images of sox11 morphants co-injected

with either WT, MI (G145C), or MII (S315–354dup) SOX11

mRNA at 24 hpf and 2 dpf, taken from the set of embryos

analyzed in Figure 8D. (E) Representative brightfield images of

embryos overexpressing human WT, MI, or MII SOX11 mRNA,

taken from the set of embryos analyzed in Figure 8F. (F) Array

CGH analysis of a proband with optic nerve agenesis and

microphthalmia and her parents, confirming the presence of a de

novo interstitial deletion at chromosome 2p25.2 (shaded gray). D,

dorsal; V, ventral; A, anterior; P, posterior; MO, morpholino; hpf,

hours post fertilization; dpf, days post fertilization; L, lens.

(TIF)

Table S1 Primer sequences used in this study.
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