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Abstract

Gene/pathway-based methods are drawing significant attention due to their usefulness in detecting

rare and common variants that affect disease susceptibility. The biological mechanism of drug

responses indicates that a gene-based analysis has even greater potential in pharmacogenetics.

Motivated by a study from the Vitamin Intervention for Stroke Prevention (VISP) trial, we

develop a gene-trait similarity regression for survival analysis to assess the effect of a gene or

pathway on time-to-event outcomes. The similarity regression has a general framework that covers

a range of survival models, such as the proportional hazards model and the proportional odds

model. The inference procedure developed under the proportional hazards model is robust against

model misspecification. We derive the equivalence between the similarity survival regression and

a random effects model, which further unifies the current variance-component based methods. We

demonstrate the effectiveness of the proposed method through simulation studies. In addition, we

apply the method to the VISP trial data to identify the genes that exhibit an association with the

risk of a recurrent stroke. TCN2 gene was found to be associated with the recurrent stroke risk in

the low-dose arm. This gene may impact recurrent stroke risk in response to cofactor therapy.
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1. Introduction

Genetic variations play a significant role in drug responses. A gene that participates in a

particular physiological mechanism might influence the response to a specific therapeutic
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agent that targets the mechanism. Identifying these influential genes may help to clarify if an

individual might benefit from or be harmed by the therapy. Understanding the genetic

diversity of drug responses can help to identify medications that maximize treatment

effectiveness and minimize the risk of adverse effects for individuals. Such an understanding

will also lead to improved risk stratification, prevention, and treatment strategies for human

diseases. Pharmacogenetics studies how an adverse reaction or positive response to

pharmaceutical treatment is affected by an individual’s genetic makeup and has the potential

to deliver both public health and economic benefits rapidly. With the recent advancements

in high-throughput technologies, it is becoming common for pharmacogenetic researches to

systematically investigate genetic markers across the genome. Nevertheless, appropriate and

efficient analysis of the data remains a challenge.

Gene- or pathway-based analyses can assess pharmacogenetic effects more effectively than

single-marker based analyses (Goldstein, Tate and Sisodiya, 2003; Goldstein, 2005). First,

there often exist obvious candidate genes and pathways that metabolize the drug and carry

variants that are relevant to the drug responses. Responses to therapies usually involve

complex relationships between gene variants within the same molecular pathway or

functional gene set. When applied to pharmacogenetic studies, gene- or pathway-based

methods might identify multiple variants of subtle effects that are missed by single-marker

based methods. Second, pharmacogenetic studies typically enroll only a moderate number of

patients, which limits the power of the association detection. Gene-based analyses have been

shown to yield higher power than standard single-marker and haplotype analyses. This type

of analysis can particularly facilitate studies on rare-event drug responses, such as adverse

reactions, where it could take many years to collect a sufficient number of samples to obtain

adequate power for standard analyses. In gene-based analyses, the association signals are

aggregated across variants, and the total number of tests is reduced; the amplification of the

association signals and the alleviation of the multiple testing burdens result in improved

power.

Our study was motivated by the need for a gene-based analysis of the time-to-event data of

the Vitamin Intervention for Stroke Prevention (VISP) trial (Toole et al., 2004; Hsu et al.,

2011). Our goal is to assess the association between the recurrent stroke risk and the 9

candidate genes involved in the homocystein (Hcy) metabolic pathway (see Data section for

more details). In our preliminary analysis, we used the Cox proportional hazards (PH) model

(Cox, 1972) to perform single-SNP screening on 69 SNPs across 9 genes from 969

individuals. There were no SNPs past the significance threshold after accounting for

multiple testing. However, the top 6 hits, thresholding at unadjusted p-values <0.05, were

concentrated in two genes. Specifically, 4 SNPs are from TCN2 (i.e., rs1544468, rs731991,

rs2301955, and rs2301957 have Wald’s test p-values of 0.0065, 0.0072, 0.0346, and 0.0346,

respectively) and 2 SNPs are from CTH (i.e., rs648743 and rs663465 each have a Wald’s

test p-value of 0.0115). The Kaplan-Meier curves of these 6 SNPs are shown in Figure 1 and

indicate the potential for different risk patterns among different variants at these loci. The

clustering within the two genes suggests that it would be more efficient to combine the

individual signal strengths and model the joint effect of multiple loci in a gene.
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We perform the gene-based analysis using a gene-trait similarity regression inspired by

Haseman-Elston regression from linkage analysis (Elston et al., 2000; Haseman and Elston,

1972) and haplotype similarity tests for regional association (Beckmann et al., 2005; Qian

and Thomas, 2001; Tzeng et al., 2003). First, we quantify the genetic and trait similarities

for each pair of individuals. The genetic similarity is determined using identity by state

(IBS) methods. The trait similarity is obtained from the covariance of the transformed

survival time conditional on the covariates. We then regress the trait similarity on the

genetic similarity and test the regression coefficient to detect the genetic association. There

are several gene-based approaches for censored time-to-event phenotypes in the literature,

including Goeman et al. (2005) and Lin and colleagues (Cai, Tonini and Lin, 2011; Lin et

al., 2011). In these approaches, the multimarker effects were modeled under the Cox PH

model using linear random effects (Goeman et al., 2005) or a nonpara-metric function

induced by a kernel machine (Cai, Tonini and Lin, 2011; Lin et al., 2011). The global effect

of a gene was detected by testing for the corresponding genetic variance component. These

approaches were found to be superior in identifying pathways or genes that are associated

with survival.

For many years, similarity-based methods have been successfully used to evaluate gene-

based associations in quantitative and binary traits (Beck-mann et al., 2005; Lin and Schaid,

2009; Qian and Thomas, 2001; Tzeng et al., 2003; Wessel and Schork, 2006). Our work

makes such approaches available for survival phenotypes. In addition, our similarity

regression covers a variety of risk models, including the commonly used PH model and the

proportional odds (PO) model. Furthermore, we show that the coefficient of the similarity

regression obtained for survival phenotypes can be re-expressed as a variance component of

a certain working random effects model. Such results facilitate the derivation of the test

statistic and unify the similarity model and previous variance-component methods (Goeman

et al., 2005; Cai, Tonini and Lin, 2011; Lin et al., 2011). Specifically, under the Cox PH

model, our test statistic is equivalent to the test statistic defined by a kernel machine

approach (Lin et al., 2011). We also show that the test statistic can be robust to model

misspecification. Specifically, the proposed test gives the correct type I error even if the true

risk model is misspecified. However, the correct specification of the true risk model

generally leads to a test with better power. Finally, we demonstrate the utility of the

similarity regression by identifying the important TCN2 gene in the VISP study. The

significance of TCN2 to stroke risk has been reported by other association studies (Giusti et

al., 2010; Low et al., 2011) and has been supported by molecular biology evidence (Afman

et al., 2003; von Castel-Dunwoody et al., 2005). Our findings further suggest potential

interactions between TCN2 and B12 supplementation. This new information furthers the

possibility that TCN2 could be utilized to predict recurrent strokes, identify at-risk

individuals and identify therapeutic targets for ischemic stroke.

2. Data

The VISP study was a prospective, double-blind, randomized clinical trial (Toole et al.,

2004). The trial was designed to study if high doses of folic acid, vitamin B6, and vitamin

B12 reduce the risk of a recurrent stroke as compared to low doses of these vitamins. The

trial enrolled patients who were 35 or older, had a non-disabling cerebral infarction within
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120 days of randomization, and had Hcy levels in the top quartile of the U.S. population.

Subjects were randomly assigned to receive daily doses of either a high-dose formulation

(containing 25 mg vitamin B6, 0.4 mg vitamin B12, and 2.5 mg folic acid) or a low-dose

formulation (containing 200 μg vitamin B6, 6 μg vitamin B12, and 20 μg folic acid). Patient

recruitment began in August 1997 and was completed in December 2001. A total of 3680

participants were enrolled at 56 clinical sites across the United States, Canada, and Scotland.

The patients were followed for a maximum of two years, and the average follow-up duration

was 1.7 years. In the VISP genetic study, 2206 participants provided informed consent and

blood samples. The SNP genotypes of 9 genes related to the enzymes and cofactors in the

Hcy metabolic pathway were collected: BHMT1, BHMT2, CBS, CTH, MTHFR, MTR,

MTRR, TCN1, and TCN2 (Hsu et al., 2011). In a previous study, Hsu et al. (2011) conducted

single-SNP analyses on targeted loci (e.g., Hcy-associated variants) to examine the genetic

association with the recurrent stroke risk. In the low-dose arm, the authors found that TCN2

SNP rs731991 under a recessive mode was associated with the risk of a recurrent stroke with

an unadjusted logrank test p-value of 0.009. The associations for the remaining SNPs within

the 9 genes in the low dose arm were not studied. We extend this previous analysis to all 9

genes using a gene-based approach. After quality control screening of the data (e.g.,

removing loci with >99% missing proportion or HardyWeinberg disequilibrium under

additive mode and removing individuals with missing genotypes), the analysis included 969

individuals in the low-dose arm with 69 recessively-coded SNPs.

3. Gene-Trait Similarity Regression for Survival Traits

3.1. The Model

For individual i (i = 1, 2, …, n), let Ti denote the survival time of interest and Ci denote the

censoring time. We observe T̃
i = min (Ti, Ci) and the censoring indicator δi = I(Ti ≤ Ci). In

addition, let Xi denote the K × 1 vector of covariates and Gmi denote the allele count vector

of marker m for person i, where the length of Gmi, ℓm, is the number of distinct alleles at

marker m, m = 1, 2, …, M. For example, for a tri-allelic locus m, Gmi = (1, 0, 1)T if person i

has genotype ‘A1A3’ and (0, 2, 0)T if person i has genotype ‘A2A2’.

For each pair of individuals i and j, we measure the genetic similarity, Sij, of the targeted

gene and the trait similarity, Zij. The genetic similarity is quantified using the weighted IBS

sum across the M markers in the gene, i.e., , where  if |Gm,i − Gm,j|

is a zero vector,  if |Gm,i − Gm,j| contains exactly two 1s (and if ℓm > 2, the remaining

entries are 0.), and  otherwise. The weights, wm, are specified to up-weight or down-

weight a variant based on certain features. Examples include weights that are based on allele

frequencies, the degree of evolutionary conservation, or the functionality of the variations

(Wessel and Schork, 2006; Schaid, 2010a; Schaid, 2010b; Price et al., 2010). We can use the

minor allele frequency of marker m, denoted as qm, to up-weight similarities that are

contributed by rare variants. Specifically, one can set a moderate weight, such as 

(Pongpanich et al., 2012) or  (Tzeng et al., 2011), to promote similarity attributed

by rare alleles, or use a more extreme weight, such as wm = (1 − qm)24 (Wu et al., 2011), to

target rare variants only.
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The trait similarity, Zij, is quantified as follows. First, we define Yi = H(Ti), where H(·) is an

(unspecified) monotonic increasing transformation function, such as the logarithm

transformation Yi = log (Ti). Assume that the conditional mean of Yi given the covariates and

genes is , where θ is the intercept, gi is the multi-locus genetic

effect of person i, and γ is the K-dimensional covariate effect. Further, define .

The trait similarity is defined as the product of the paired residuals adjusting for the

covariate effects, i.e., . The expected value of the trait similarity is the

covariance between the transformed survival times of subjects i and j.

The gene-trait similarity regression has the form

(3.1)

Just as in Tzeng et al. (2009) and Tzeng et al. (2011), the regression has a zero intercept and

does not have the covariate term XiXj because the baseline and covariate effects have been

adjusted when defining Zij. This argument will become more obvious from the viewpoint of

variance components in the following subsection. Under model (3.1), the overall association

of a gene can be evaluated by testing the null hypothesis: b = 0.

3.2. Score Test for the Gene-Level Effect

We derive the score test statistic based on the equivalence between the similarity regression

and a mixed model. This equivalence is demonstrated as follows. Consider a working mixed

model for the transformed survival time:

(3.2)

where (g1, …, gn)T ~ N (0, τ S) with , i.e., the covariance between gi and gj

depends on the genetic similarity between subjects i and j, and , i = 1, …, n are

independently and identically distributed with a known distribution that is independent of Xi

and gi. Given Xi and gi, model (3.2) specifies a general class of linear transformation models

(Cheng, Wei and Ying, 1995), which contains many popular survival models as special

cases. For example, when  follows the standard extreme value distribution, the linear

transformation model becomes the PH model (Cox, 1972). When  follows the standard

logistic distribution, the linear transformation model becomes the PO model (Bennett,

1983).

Under (3.2), the conditional expectation of the trait similarity between individuals i and j (i ≠

j) is
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Therefore, we have b = τ, i.e., the regression coefficient in the similarity regression (3.1) is

the genetic variance component in the mixed model (3.2). This motivates us to develop a

score test for the variance component in the working model. As shown in the Appendix, the

score test statistics for τ = 0 can be written as

where

ω̂
i(t) = λ̇{Ĥ(t) − γ̂T Xi}/λ{Ĥ(t) − γ̂T Xi}, and S is as defined after equation (3.2). Here, λ(·)

and Λ(·) are the hazard and cumulative hazard functions of , respectively, λ̇(·) is the first

derivative of λ(·), and γ̂ and Ĥ(·) are the estimates of γ and H(·), respectively, in model (3.2)

under the null hypothesis: τ = 0. For example, if the PH model is imposed, i.e., λ(u) = λ̇ (u)

= eu, the estimators γ̂ and Γ̂(·) ≡ eĤ(·) can be taken as the maximum partial likelihood

estimator and Breslow’s estimator, respectively. Under this case, ω̂
i(t) ≡ 1 and r̂i = δi − Γ̂(T̃

i)

exp(−γ̂T Xi), i.e., the martingale residual for the null model. If the PO model is used, i.e.,

λ(u) = eu/(1 + eu) and λ̇(u) = eu/(1 + eu)2, we have ωî(t) = 1/[1 + exp{Ĥ(t) − γ̂T Xi}]. In

general, γ and H(·) can be estimated using the martingale-based estimating equations (Chen,

Jing and Ying, 2002) or the nonparametric maximum likelihood estimation method (Zeng

and Lin, 2006) for the semiparametric linear transformation model. In the Appendix, we

show that under the null hypothesis the test statistic, Qn, asymptotically follows a weighted

χ2 distribution where the weights can be estimated consistently. The p-values can then be

calculated numerically using a resampling method or moment-matching approximations

(Pearson, 1959; Duchesne and Lafaye, 2010).

We note that the proposed score test can be robust to the misspecification of the true

survival model. As an illustration, consider the test derived under the PH model. Based on

the results for the robust inference of the PH model (Lin and Wei, 1989), when the PH

model is misspecified, the maximum partial likelihood estimator, γ̂, and Breslow’s

estimator, Γ̂ (·), do not converge to the true parameters but converge to some deterministic

values γ* and Γ*(·) under certain regularity conditions. The corresponding

 is not a martingale residual but has a mean of 0 under the null

hypothesis. Therefore, it can be shown that Qn converges in distribution to a weighted χ2

distribution under the null hypothesis even with model misspecification. As shown in our

simulation studies, the proposed score test derived under the PH model still gives correct

type-I error when the true model is the PO model. However, the power of the test depends
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on the assumed working model. In general, the test derived under the true risk model may

have better power.

4. Results of the Analysis of the VISP Trial Data

We now return to the VISP trial to evaluate the association between the recurrent stroke risk

and the 9 candidate genes studied in Hsu et al. (2011). In our analysis, we conducted a gene-

based screening on the 9 genes using the low-dose samples. After removing loci with >1%

of missingness and subjects with missing genotypes, there were 969 individuals with 69

polymorphic SNPs under recessive coding. Of the 969 individuals, 86 experienced a

recurrent stroke (i.e., 91.1% censoring). We used the proposed similarity regression

(referred to as SimReg) with inverse allele frequency weights , i.e., the weight

recommended in Pongpanich et al. (2012) when analyzing a mixture of common and rare

variants. We calculated the p-values of the SimReg statistics using the resampling method.

Specifically, we computed the nonzero eigenvalues, ξ∘1, ···, ξ∘d, of Σ∘ as defined in the

Appendix. We generated 104 sets of . Each set consisted of d independently

and identically distributed  random variables. For each set, we calculated the value

, and the 104 values formed an empirical null distribution of the SimReg

statistics. The SimReg p-value was the proportion of the generated null statistics that were

greater than the observed statistic. We performed SimReg analyses under the PH model

(referred to as SimReg-PH) and the PO model (referred to as SimReg-PO). The

performances of the SimReg methods were benchmarked against three approaches: (a) the

single SNP minimum p-value method using the Cox PH model (referred to as minP), (b) the

multi-SNP method using the global test for survival under the PH model (Goeman et al.,

2005) as implemented in the R-package globaltest (referred to as Global), and (c) the multi-

SNP method using kernel machine (Lin et al., 2011) as implemented in the R-package

KMTest.surv (referred to as KM) with 104 resamplings. Although the SimReg-PH test

statistic is identical to the KM test statistic, the results may be slightly different due to the

different resampling methods adopted to obtain the p-values. Specifically, in the KM

method, the score statistic was perturbed by multiplying i.i.d. normal random variables to

achieve the same limiting distribution of the test statistic. In SimReg-PH, the weights in the

limiting weighted χ2 distribution, i.e., ξ1, ···, ξd, were consistently estimated and then the

samples were directly generated from the estimated weighted χ2 distribution based on a

large number of i.i.d.  random variables. The different resampling approaches also lead to

different computational burden. For example, using a 3.6 GHz Xeon Processor with 60GB

RAM with 104 resamplings, the system run-time of SimReg-PH was < 1/6 of KM in the

VISP analysis, and the time difference became greater with a larger number of resamplings.

For the minP method, we fitted the standard PH model to each SNP in a gene, took the

smallest p-value, and calculated the adjusted p-value of a gene to correct for the multiple

SNPs using 1–(1–minimum raw p-value)Keff. The effective number of independent tests,

Keff, was estimated using the method of Moskvina and Schmidt (2008) and accounts for the

correlations in recessive coding of loci. As studied by Hsu et al. (2011), all analyses were

considered under the recessive mode and were adjusted for age, sex, and race.
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The p-values for each of the methods are shown in Table 1, and the p-values are compared

with the Bonferroni threshold adjusted for the 9 gene analyses, i.e., 0.05/9 = 0.0056.

SimReg-PH detected a significant association between the recurrent stroke risk and TCN2

(i.e., p-value = 0.0040), which strengthens the observation of differential survival between

different variants from the single SNP analysis. Gene CTH had the second smallest p-value

(0.0073), which did not pass the Bonferroni threshold but was near the cutoff. These results

also agree with the findings in the single SNP analysis. The results of SimReg-PO are

similar to those of SimReg-PH except that the p-values are slightly larger, i.e., p-value =

0.0052 for TCN2 and 0.0075 for CTH. On the other hand, the KM, Global and minP

methods did not yield any significant findings. However, the smallest p-values of the 9

genes were obtained for TCN2 (i.e., p-values of TCN2 are 0.0075 for KM, 0.0457 for Global

and 0.0704 for minP). As expected, the results of KM were very similar to those of SimReg-

PH, except that the p-value of TCN2 was slightly above the 0.0056 threshold. The smallest

p-values for the minP method were from the TCN2 SNP rs731991 with a raw Wald’s test p-

value of 0.0065. However, neither the raw minimum p-value (0.0065) nor the adjusted p-

value (0.0704) survived the significance threshold corrected for multiple testing (0.0056).

All methods also had CTH as the gene with the second smallest p-value (i.e., p-values

0.0078 for KM, 0.0518 for Global, and 0.00918 for minP).

Next, we assessed the prediction performance of Cox PH models built with and without

TCN2 using the procedure described in Li and Luan (2005). Specifically, we randomly

divided the samples into a training set (n = 646) and a testing set (n = 323). Based on the

training set, we fitted the Cox PH regression with two models: Model 1 included only the

baseline covariates (age, sex and race), i.e., no genetic information, and Model 2 included

the baseline covariates plus the top 7 principal components (PCs) of TCN2 SNPs that

explained 95% of the variations. The PCs were used instead of the 15 original genotypes

because of the high linkage disequilibrium among them. Based on the fits of the PH model

from the training set, we obtained the risk scores of every subject under each model and

computed the medians of the risk scores. We also computed the risk scores for the testing set

using the estimated coefficients from the training set. Next, we divided the subjects into 2

risk groups: high-risk and low-risk. Individuals with a risk score higher/lower than the

median risk scores obtained from the training data comprised the high-risk/low-risk group.

Finally, we plotted the Kaplan-Meier curves for the 2 risk groups in the training data and the

two risk groups in the testing data separately and obtained the p-values of the corresponding

log-rank tests. The results are given in Figure 2. As expected, the p-values for both models

under the training set were very significant. However, only Model 2 is significant (p-value is

0.048) under the testing set. This result implies that TCN2 gives a more accurate prediction

of the risk for recurrent stroke.

Vitamin supplements have been identified as a potential treatment for vascular diseases. The

beneficial effects of vitamin supplements on stroke recurrence are not yet fully understood.

In VISP, vitamin supplements did not show an effect on the recurrent stroke risk during the

2 years of followup. However, we found that genetic variants, such as SNPs in TCN2, were

associated with the recurrent stroke risk in the low-dose arm. This finding is consistent with

the literature. TCN2 was previously found to be associated with ischemic stroke risk (Low et
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al., 2011; Giusti et al., 2010) and premature ischemic stroke risk (Giusti et al. 2010). It has

been reported that TCN2 interferes with the intracellular availability of vitamin B12 (von

Castel-Dunwoody et al. 2005). The gene is associated with plasma homocysteine levels and

affects the proportion of vitamin B12 bound to transcobalamin (Afman et al., 2003). It is

suspected that SNPs on the genes coding for enzymes involved in the methionine

metabolism have been suspected to beare associated with hyperhomocysteinaemia, which

can result in occurrence of stroke (Giusti et al., 2010). Our significant findings in the low-

dose arm suggest that there may be an interaction between TCN2 and B12 supplementation;

a finding that warrants further studies. The findings lead to a hypothesis that there may be

one specific combination of genotypes of TCN2 that is more efficient at transporting B12

and thus impacts the effectiveness of cofactor therapy on recurrent stroke risk. A functional

study is being planned to localize possibly independent regions of association and determine

their function.

Besides TCN2, CTH is marginally associated with recurrent stroke risk in the low-dose arm.

It encodes cystathionine gamma-lyase, which is an enzyme that converts cystathionine to

cysteine in the trans-sulfuration pathway (Wang et al., 2004). It may be a determinant of

plasma Hcy concentrations, which may increase the risk of recurrent stroke because of

arterial disease. It is worth further study as well.

5. Simulation Studies

We performed simulations to assess the validity and effectiveness of the proposed SimReg

methods based on the 15 SNPs in TCN2 of the 969 VISP low-arm samples. The rarest minor

allele frequency (MAF) is approximately 3%. We generated genotypes of n individuals by

randomly sampling with replacement from the 15-SNP genotypes of the 969 samples. For

individual i, we generated the covariate, Xi, from N (0, 1). We generated the survival time,

Ti, based on the genetic and covariate information under two models: the PH model and the

PO model. Specifically, for the PH model, , where  follows

the standard extreme value distribution; for the PO model,

, where  follows the standard logistic distribution.

The value of  is determined by the genotypes at the causal locus ℓ and the mode of

inheritance. For example, if A is the causal allele at locus ℓ, then  = 2, 1, and 0 for

genotypes AA, Aa, and aa, respectively, under an additive mode. Under a dominant mode, 

= 1, 1, and 0, respectively. Under a recessive mode,  = 1, 0, and 0, respectively. For type I

error analysis, no SNPs were set to be causal, i.e., γℓ was set to be 0 for all ℓ. For power

analysis, we selected 3 SNPs with different MAFs and LD patterns as causal loci from the

15 SNPs in TCN2 and referred to them as SNP R, SNP U, and SNP C. The MAFs are 0.036

(rare) for SNP R, 0.132 (uncommon) for SNP U, and 0.419 (common) for SNP C. The

average R2s between a causal locus and the remaining loci are 0.002 (low) for SNP R, 0.003

(low) for SNP U, and 0.216 (high) for SNP C. The specific values of γℓ’s are given in Table

2 for each scenario under different inheritance modes and censoring rates. The values were

set to consider 1, 2, and 3 causal loci in the gene and to consider causal loci that have either

the same or different effect sizes (e.g., rarer variants with larger effect sizes). All of the

power scenarios assumed linear additive effects of the causal loci, which favors the linear
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random effects model (e.g., Global) and can be used to examine the utility of using the non-

linear IBS function to capture the multi-marker effects.

We generated the censoring time, Ci, from Unif(0, c), where c is uniquely chosen for each of

3 censoring rates: 15%, 40%, and 90%. Specifically, we set c = 6.7, 2.0 and 0.2 for

censoring rates of 15%, 40%, and 90%, respectively. The sample sizes, n, were 500 for the

15% and 40% censoring rates under the additive and dominant modes. For the 90%

censoring rate under the additive and dominant modes and all censoring rates under the

recessive mode, n = 1000. Each scenario was analyzed using SimReg (PH and/or PO), minP,

Global and KM. SimReg-PH and KM have identical test statistics but used different

resampling approaches to obtain p-values. Because both resampling approaches are

asymptotically equivalent, we expect minor differences in finite sample performance

between SimReg-PH and KM. In all analyses, the causal loci were excluded.

5.1. Results of Type I Error Analyses

We first examined the performance of the proposed SimReg-PH model. Table 3 displays the

type I error rates of different methods when the survival times were generated from the PH

model. The results were based on 105 replications except that KM was based on 5×104

replications due to computational cost. In each replication, the p-values of SimReg-PH were

obtained from 5 × 105 resamplings. We report the type I error rates evaluated at the nominal

levels of 5 × 10−2, 5 × 10−3, and 5 × 10−4. The type I error rates obtained by SimReg-PH

remained around the nominal levels. However, the deviations were larger for α = 5 × 10−4,

mainly due to fewer resampled statistics observed on the extreme tail. In particular, for the

low censoring proportion (i.e., 15%), the type I error rates were slightly inflated, while for

the high censoring proportion (i.e., 90%), the type I error rates became a little conservative

when α = 5× 10−4. Nevertheless, the overall results suggest that the SimReg-PH test

maintained an appropriate size, which confirms the validity of the derived null distribution

of the test statistic, Qn. As expected, the type I error rates obtained by KM were very similar

to SimReg-PH. The type I error rates obtained by the Global test are overly conservative;

similar behavior has been reported in the literature (Zhong and Chen, 2011). The minP

method had correct type I error rates under additive and dominant modes. However, the

method had inflated type I error rates under the recessive mode, and the inflation was more

severe with smaller α. Under the recessive mode, the Bonferroni corrected p-values obtained

by replacing Keff with the total number of SNPs also yielded inflated type I error rates.

Specifically, the empirical type I error rates for 15%, 40%, and 90% censoring are (0.0627,

0.0687, 0.0608) for α = 5 × 10−2, (0.0145, 0.0152, 0.0163) for α = 5×10−3, and (0.0042,

0.0041, 0.0053) for α = 5×10−4, respectively. The anti-conservation appears to be somewhat

related to the rare recessive loci; when the rare loci are excluded from the analysis, the

empirical type I error rate became closer to the nominal level (data not shown). However,

such an exclusion strategy might give uninformative results because the relevant signals

were excluded from the analysis.

Table 4 displays the type I error rates when the survival times were generated from the PO

model. Both SimReg-PH and SimReg-PO were implemented. The results were based on

5000 replications, and the type I error rates were calculated at the nominal level of 0.05. The
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type I error rates for both SimReg-PO and SimReg-PH were close to 0.05 independent of the

inheritance mode and the censoring proportions. These results show the validity of the

SimReg-PO tests and the robustness of the SimReg-PH tests. Though not performed, KM is

expected to have the same robustness as SimReg-PH. As seen previously, the Global test

had conservative type I error rates, but the magnitude of conservation is less than that seen

in Table 3. The minP method yielded slightly inflated type I error rates for the additive and

dominant modes with low censoring proportion (i.e., 15%). As before, it yielded inflated

type I error rates for the recessive mode.

5.2. Results of Power Analyses

The power analyses were performed using the settings specified in Table 2. The results were

based on 100 replications under each scenario. Figure 3 shows the power when the survival

times were generated from the PH model. We first consider the additive mode. When one

large-effect causal locus has low MAF and low LD with the other markers (e.g., Scenarios 1,

5 and 11), minP tends to have the highest power independent of the censoring proportion.

The good performance of minP is not unexpected in these scenarios because the overall

association of the gene was driven by a single large-effect locus, for which the majority of

the other SNPs did not carry much information. As a result, there is no power gain when

borrowing information from other SNPs, which is what SimReg-PH does. However, the

power gain of minP over other methods generally diminishes as the number of causal loci

increases (e.g., Scenarios 5 to 10). In scenarios where the marker set is not dominated by a

single causal locus of low MAF and low LD, SimReg-PH showed comparable or higher

power. As expected, KM had near identical power as SimReg-PH in all scenarios. In most

scenarios, the Global test produces the least amount of power largely due to the over-

conservative test size. The overall performance under the dominant mode has a similar trend

to that of the additive mode. However, the power of SimReg-PH is comparable to or better

power than the power of minP in more cases under the dominant mode than under the

additive mode. For the recessive mode, SimReg-PH appears to have better power than the

Global test. We did not perform a power analysis for minP because the type I error rates

were inflated.

Figure 4 shows the power performance when the survival times were generated from the PO

model. The power obtained using SimReg-PO is similar to or better than the power obtained

using SimReg-PH, indicating that efficiency is gained when the correct model is used. The

power gain of SimReg-PO is more substantial when the censoring proportion is low to

medium, and the power is comparable to or better power than the minP power in some of

those difficult cases, such as Scenario 1.

6. Discussion

In this work, we extended the similarity regression (SimReg) approaches, which have shown

effectiveness in modeling marker-set effects on binary and continuous outcomes, to survival

models to facilitate the assessment of gene or pathway effects on drug responses. The

genetic effect is evaluated by assessing the association between the IBS status of a pair of

individuals and the covariance of their survival times. We derived the equivalence between

the similarity survival regression and a random effects model. The equivalence facilitates the
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derivation of the score test statistics and unifies the current variance-component based

methods. Specifically, the KM approach (Lin et al., 2011) is equivalent to SimReg-PH when

the same kernel function is used to quantify the genetic similarity, Sij. The Global test

(Goeman et al. 2005) can be viewed as a special case of SimReg-PH with

 (i.e., the linear kernel). However, the results of Global and SimReg-PH

with linear kernels may be different because different approaches were used to derive the

asymptotic distributions of the test statistics. Compared to these existing gene-based

approaches, our proposed method has the generality to incorporate a variety of risk models

in the class of linear transformation models, and we explicitly constructed the SimReg tests

under the PH model and the PO model in this work. We also proposed a resampling

approach to obtain the p-values that improves the computational efficiency. Finally, we

showed that the derived inference procedure is robust against the misspecification of the risk

model, which is an attractive feature because the underlying risk model is often unknown.

Through simulations, we showed that the power of the SimReg method is comparable to or

higher than the power of the minP and Global methods across various scenarios. We also

verified that the SimReg-PH test statistics remain valid even if the risk model is

misspecified.

In the data application on the VISP study, we illustrated how SimReg can be used to search

for genes or pathways that are associated with a time-to-event outcome and confirmed

previous findings using this gene-based approach with statistical significance. Although we

focused our method development and demonstrated its utility based on pharmacogenetics

studies, the proposed method is applicable to other genetic clinical researches or

observational studies with time-to-event outcomes. For a pharmacogenetic study with

sample sizes 1000, such as the VISP trial, 1000 runs of the SimReg analyses took ≤1 hour to

complete on an Intel Xeon 3.33 GHz machine with 12 Gb RAM using one processing core.

We expect a gene-based whole genome analysis on ~20K genes should be completed in a

day using a comparable computing facility. We implemented the proposed methods in R and

made it available at the authors’ websites. We are incorporating the software into the

SimReg R package.

Motivated by the data application where the risk variant acted recessively, we further

investigated the behavior of the gene-based approaches under different modes of

inheritance. We found that all of the studied gene-based methods performed appropriately

under the additive and dominant modes. However, caution should be used when performing

the minimal p-value approaches under the recessive mode; the minimal p-value approaches

had severely inflated type I error rates. The inflation might be related to the extremely rare

recessive loci. However, excluding those rare recessive loci is suboptimal because the

important signals can be artificially removed and lead to power loss. In contrast, the global

test and the similarity regression are not vulnerable to such a situation and appear to be more

suitable options given their reasonable performance under the recessive mode.

This work focused on assessing the genetic main effect on drug response in an effort to

understand how individual variation affects drug efficacy and toxicity. In pharmacogenetics

and personalized medicine, one major topic is to study if the genetic effects are modified by
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treatments and how the effects differ across treatment options. As observed in the VISP

genetic studies, the effect of TCN2 on recurrent stroke risk is restricted to the low-dose

treatment. An analysis stratified by treatments allows for the evaluation of such

heterogeneous effects between different treatment groups, but its efficiency can be further

improved by incorporating the gene-treatment interaction in the regression model. Such an

extension is not straightforward because the calculation of the score test requires the

variance component estimates for the genetic main effect under a mixed effects survival

model. We are developing further extensions of SimReg to incorporate interaction effects.
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APPENDIX SECTION

Derivation of the score statistic Qn

Given the working mixed model: , the log likelihood function of the

observed data can be written as

where λ and Λ are the specified hazard and cumulative hazard functions of , fG(g1, …, gn)

is the joint density of g1, …, gn, i.e., a multivariate normal density with mean 0 and

variance-covariance matrix τS. Consider the variable transformation

, where S = S1/2S1/2. Then,  follows a

standard multivariate normal distribution. The result leads to

where  is the density for the standard multivariate normal distribution. After some algebra,

we have

where ei = H(T̃
i)−γT Xi, λ̈(·) is the second derivative of λ(·), si is the ith row of the matrix

S1/2 and . The equality in the above

equation is obtained by first taking the derivative of ln(γ, H, τ) with respect to τ and then

deriving its limit as τ → 0 using L’Hôpital’s rule. Note that the first term on the right-hand

side of the above equation is nonnegative, and the second term converges in probability to a

constant as n goes to infinity. In addition, under the null hypothesis, ri’s have expectation of

0 at the true values of γ and H because they are martingale integrations. Therefore, if the null

hypothesis is correct, the first term in the summation should be close to 0. This result

motivates us to consider a score test and reject the null hypothesis when the score (1/n)

∂ln(γ∘, H∘, τ)/∂τ |τ=0 is bigger than some value, where γ∘ and H∘ are the estimates of γ and H,

Tzeng et al. Page 15

Ann Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



respectively, under the null model. It is asymptotically equivalent to consider the test

statistic Qn = n−1(r∘1, …, r∘n)S(r∘1, …, r∘ n)T and reject the null hypothesis when Qn > cα,

where cα is the critical value for a level-α test.

Null Distribution of the score statistic Qn

Here, we consider the estimators γ∘ and H∘ (·) obtained via the martingale-based estimating

equations for the standard linear transformation model (Chen, Jin and Ying, 2002) under the

null hypothesis. Note that . Let γ0 and H0 denote

the true values of γ and H, respectively, in the null model. Based on the derivations given in

Chen, Jin and Ying (2002), we have the following asymptotic representations:

The definitions of A, μX(·), b1(·) and φ(·, ·) can be found in Chen, Jin and Ying (2002). By

Taylor expansion, we can show that

as n → ∞, where  and

Here
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Therefore, Qn converges in distribution to a weighted χ2 distribution: , where

 are d independently and identically distributed χ2 random variables with

degree freedom of 1, and ξ1, · · · , ξd are the d nonzero eigenvalues of the matrix Σ. To

obtain the critical value, cα, of the limiting weighted χ2 distribution, we use a numerical

method. Specifically, we first obtain a consistent estimator, Σ̂, of Σ using the usual plug-in

method and compute the nonzero eigenvalues ξ̂
1, · · · , ξ̂

d of the matrix Σ̂. Next we generate

a large set (e.g., 10000 sets) of independent and identically distributed random variables

. For each set of χ2 random variables, we compute . We can then

estimate cα by the upper α-quantile of ’s and the associated p-value of the score

test can be computed accordingly.
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Figure 1. The Kaplan-Meier survival curves for the top 6 SNPs identified from the single SNP
association analysis with risk of recurrent stroke in the VISP study
The single SNP association analysis on the 969 subjects under a recessive mode using Cox

proportional hazards model showed that 6 out of 69 SNPs within the 9 candidate genes were

potentially associated with risk of recurrent stroke (i.e., unadjusted p-values <0.05) in the

low-dose arm. The Kaplan-Meier curves of the four TCN2 SNPs (p-values for rs1544468,

rs731991, rs2301955, and rs2301957 are 0.0065, 0.0072, 0.0346, and 0.0346, respectively)

and two CTH SNPs (p-values for rs648743 and rs663465 are 0.0115.) are included. Note

that SNP = 1 if homozygous of a risk allele, SNP = 0 otherwise. The numbers of individuals

of SNP=1 are 208, 206, 137, 137, 194, and 194 for rs1544468, rs731991, rs2301955,

rs2301957, rs648743, and rs663465, respectively.
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Figure 2. The Kaplan-Meier survival curves for the TCN2 gene
The VISP subjects were randomly divided into a training dataset (n = 646) and a testing

dataset (n = 323). Each plot shows the Kaplan-Meier curves of the high-risk group vs. the

low-risk group in the training dataset (left panel) or in the testing dataset (right panel). A

subject is in the high-risk (low-risk) group if his/her risk score, calculated from one of the

PH models described below, is higher (lower) than the median risk score in the training

dataset. Two PH models were considered: Model 1 (top row) included only baseline

covariates and Model 2 (bottom row) included baseline covariates and the TCN2 gene. The

p-values in the parentheses are for the log-rank tests comparing the corresponding two

Kaplan-Meier curves.
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Figure 3. Power when the survival times are generated from the PH model
The 11 scenarios are defined in Table 2. Each row shows the results under different

censoring proportions, 15%, 40% and 90% from top down. The Y axis is the power. Powers

were obtained based on 100 replications using different methods under a PH model

assumption.
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Figure 4. Power when the survival times are generated from the PO model
The 11 scenarios are defined in Table 2. Each row shows the results under different

censoring proportions, 15%, 40% and 90% from top down. The Y axis is the power. Powers

were obtained based on 100 replications using different methods under a PH model

assumption for minP, Global and SimReg-PH, and under a PO model for SimReg-PO.
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