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Abstract

The persistence of airway hyperresponsiveness (AHR) and
serotonergic enhancement of airway smooth muscle (ASM)
contraction induced by ozone (O3) plus allergen has not been
evaluated. If this mechanism persists after a prolonged recovery, it
would indicate that early-life exposure to O3 plus allergen induces
functional changes predisposing allergic individuals to asthma-
related symptoms throughout life, even in the absence of
environmental insult. A persistent serotonergic mechanism in
asthma exacerbations may offer a novel therapeutic target, widening
treatment options for patients with asthma. The objective of this
study was to determine if previously documented AHR and
serotonin-enhancedASMcontraction in allergicmonkeys exposed to
O3 plus house dust mite allergen (HDMA) persist after prolonged
recovery. Infant rhesus monkeys sensitized to HDMA were exposed
to filtered air (FA) (n = 6) or HDMA plus O3 (n = 6) for 5 months.
Monkeys were then housed in a FA environment for 30 months. At
3 years, airway responsiveness was assessed. Airway rings were then
harvested, and ASM contraction was evaluated using electrical field
stimulation with and without exogenous serotonin and serotonin-
subtype receptor antagonists. Animals exposed to O3 plus HDMA
exhibited persistent AHR. Serotonin exacerbated the ASM
contraction in the exposure group but not in the FA group.

Serotonin subtype receptors 2, 3, and 4 appear to drive the response.
Our study shows that AHR and serotonin-dependent exacerbation of
cholinergic-mediated ASM contraction induced by early-life
exposure to O3 plus allergen persist for at least 2.5 years and may
contribute to a persistent asthma phenotype.
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Clinical Relevance

Airway hyperresponsiveness and serotonin-dependent
exacerbation of cholinergic-mediated airway smooth muscle
contraction induced by early-life exposure to ozone plus allergen
persist for at least 2.5 years and may contribute to a persistent
asthma phenotype. These findings substantiate the need to
minimize exposure of young individuals to known environmental
contributors to asthma during critical periods of lung maturation
because damage inflicted during these times can contribute to
prolonged asthma symptoms. The identification of a persistent
5-HT–mediated enhanced airway smooth muscle contraction
may identify novel therapeutic targets for pharmacological
intervention in the treatment of childhood asthma.

Asthma is one of the most common chronic
childhood conditions in the United States.
In 2011, z 7 million children suffered from
asthma (1). The most frequent reason for
school absences is asthma, accounting for
one third of school days missed, and the

severity of symptoms is negatively
correlated with achievement (2).

The link between ozone (O3) and house
dust mite allergen (HDMA) exposure and
childhood asthma has been supported by
a wealth of research (3–9). In the latest State

of the Air report, almost half of United States
citizens—over 148 million people—live in
areas with unhealthy O3 levels (6).

Although the mechanisms responsible
for asthma symptoms are debatable,
research shows that O3 and HDMA
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exposure leads to functional, structural,
neural, vascular, and immunological
alterations in airways (10–16). This airway
remodeling indicates that environmental
insults early in life can have life-long
deleterious effects on lung function and
may lead to chronic asthma symptoms.

Airway hyperresponsiveness (AHR),
a functional hallmark of asthma, is assessed
with a bronchoprovocation test (17). The
presence of AHR after O3 and HDMA
exposure indicates that airway function has
been compromised. In humans, nonhuman
primates, and other models of asthma, O3

and HDMA exposure has been shown to
increase AHR (18–21).

Recent literature suggests that
serotonin (5-HT) plays a role in the asthma
response (22–24). Animal studies show that
5-HT increases airway resistance and O3 1
HDMA exposure of infant monkeys results
in 5-HT–positive cells within airway
epithelia (25–27). Patients with asthma
have higher 5-HT plasma levels, which are
inversely correlated with lung function, and
drug treatments that lower plasma 5-HT
decrease symptom severity and improve
lung function (6, 28, 29). Our lab has
shown that exposure of O3 1 HDMA
induces AHR and exacerbates 5-
HT–mediated airway smooth muscle
(ASM) contraction in a model of childhood
asthma (18) and that the combined
exposure of O3 1 HDMA results in
alterations in 9 of 10 immune, structural,
and functional end points, with six of the
end points demonstrating greater than
additive effects of O3 or HDMA exposure
alone (10). Studies have epidemiologically
confirmed asthma persistence from
childhood through adulthood, linking
persistent symptoms to atopy, smoking, air
pollution (including O3), early age at onset of
asthma, and airway remodeling (30–34).

To date, no study has examined the
persistence of AHR and 5-HT enhancement
of ASM contraction in a controlled setting
using a model of childhood asthma. The
aims of this project are (1) to determine
if AHR and 5-HT–enhanced ASM
contraction induced by O3 1 HDMA
exposure persist after a prolonged recovery
period in a filtered air (FA) environment
and (2) to identify which 5-HT subtype
receptors are responsible for driving the 5-
HT response. Confirming the persistence of
AHR caused by early-life exposure to O3 1
HDMA will help guide environmental
policy and substantiate the need to mitigate

exposure, especially in young populations.
Associating a 5-HT–mediated mechanism
with persistent AHR offers a novel
therapeutic target for asthma treatment.

Rhesus monkeys were used because
they have similar lung cellular morphology,
airway architecture, and immunology
and undergo a similar extensive period
of postnatal development compared
with humans (35–39). In addition to
possessing all of the components of the
intrapulmonary conducting airways that
are altered in humans with asthma, rhesus
monkeys display a similar progression of
asthma pathophysiology and symptoms
(11, 40). The sensitization protocol used
induces the functional, immunologic,
histological, and clinical characteristics that
are used to diagnose allergic asthma (40).

Materials and Methods

Care of animals complied with the Institute
of Laboratory Animal Resources and the
American Association for Accreditation of
Laboratory Animal Care (AAALAC).
Procedures were approved by the University
of California - Davis Institutional Animal
Care and Use Committee (41). The
University of California - Davis and the
California National Primate Research
Center are accredited by AAALAC.

General Protocol
Twelve 30-day-old, captive-born rhesus
monkeys were randomly assigned to one of
two groups: FA or O3 plus HDMA (O3 1
HDMA). All animals were sensitized to
HDMA and exposed to 11 episodes of FA
or O3 1 HDMA as previously described
(10, 18) (Figure 1). Exposures had a HDMA
mass concentration averaging 7.05 6
0.73 mg/m3 and a mean O3 concentration of
0.500 6 0.005 ppm. Monkeys were killed
with sodium pentobarbital (15 ml/kg). A
distal tracheal portion was harvested and
placed in modified Kreb’s solution.

Airway Responsiveness Testing
At 3 years of age, airway resistance (Raw)
was measured during a histamine challenge
and expressed as the concentration of
histamine causing a 200% increase in Raw
(EC200Raw) (40).

Electrical Field Stimulation
Airway rings were suspended between
platinum wire electrodes in tissue baths

(Myobath; WPI Inc., Sarasota, FL) as
previously described (18). Tension was
measured via Fort 10 g transducers (WPI
Inc.) and recorded with Powerlab Chart 5.1
software (ADInstruments, Colorado
Springs, CO). Monophasic square-wave
impulses (50 V, 4 Hz, 0.5 ms) were
delivered for 30 seconds every 4 minutes
until three consecutive stable responses
were observed. Pulses were induced via S88
Stimulators (Grass Technologies, West
Warwick, RI).

5-HT Concentration-Response
Curves
Six rings from each animal were used to
perform 5-HT concentration-response
curves during electric field stimulation
(EFS)-induced contractions.

Antagonist Concentration-
Response Curves
5-HT concentration-response curves were
performed in the presence of antagonists
(Table 1).

The Effect of 5-HT1AR Activation
Previous research identified an inhibitory
pathway mediated through 5-HT1A

receptors (18). These analyses were
reproduced.

Baseline Responses
Acetylcholine (ACh) concentration-
response curves were performed (one
control and one preincubated with 10 mM
5-HT). Voltage-response curves and
frequency-response curves were performed
on tracheal rings.

Concluding Experiments
Airway rings were exposed to 10 mM ACh
to compare tension with the initial ACh
concentration-response curves. The effect of
atropine (1 mM) was evaluated to ensure
muscarinic-mediated contractions. To
verify that the responses were neurogenic,
tissue was incubated in 3 mM tetrodotoxin
before EFS. All drugs were purchased from
Sigma-Aldrich Co. (St. Louis, MO).

Statistical Analysis
Results are expressed as mean 6 SEM.
Airway responsiveness data; between-group
EC50, EV50, EF50; and 5-HT direct effect
values were analyzed using Student’s t tests.
Within-group 5-HT direct effects and the
direct effect of 8-OH-DPAT were analyzed
with paired-samples t tests.
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Concentration-responses were compared
using repeated-measures ANOVAs. Tukey
post hoc testing was used to identify the source
of significance. The a level was set at 0.05.
Significance was based on the adjusted
P value. A one-way t test was used to assess
the direct effect of 5-HT on ASM
contraction based on previous findings that
5-HT constricts ASM.

Results

Airway Responsiveness
O3 1 HDMA exposure induced
a significant increase in airway
responsiveness when compared with FA
controls, even with a prolonged 2.5-year
recovery period in FA (EC200Raw FA =
14.436 3.89 mg/ml; O3 1 HDMA = 4.886
0.60 mg/ml; P = 0.04) (Figure 2).

5-HT Concentration Response
O3 1 HDMA exposure resulted in
enhanced airway contractility in the
presence of 5-HT, indicated by significantly
increased EFS-induced ASM tension
production when compared with FA
animals at 100 mM 5-HT (FA = 308.5 6
39.0%; O3 1 HDMA = 930.3 6 97.4%; P =
0.008). All 5-HT concentrations in the
O3 1 HDMA group produced significantly
greater tension than the EFS-induced
tension produced during their control
response (EFS-induced contraction in the
absence of 5-HT; P , 0.05), which was not
the case in the FA group. In the FA group,
none of the 5-HT concentrations elicited
a contraction significantly greater than its
control response (P . 0.05) (Figure 3).
There was also an overall group effect, with
the O3 1 HDMA group producing a
significantly higher mean tension (as % of

control EFS response) than the FA group
(O3 1 HDMA = 378.0%; FA = 214.3%; P,
0.006).

Antagonist Concentration Response
In the O3 1 HDMA group, incubation with
increasing concentrations of 5-HT2A

(ketanserin), 5-HT3 (ondansetron), or
5-HT4 (GR 113808) subtype receptor
antagonists attenuated the tension induced
by EFS at all 5-HT concentrations,
indicating that these three receptors are
involved in the ASM response to 5-HT
(Figure 4).

The Effect of 5-HT1A

Receptor Activation
Addition of the 5-HT1A receptor agonist
8-OH-DPAT significantly attenuated
EFS-induced ASM contraction in
a concentration-dependent manner
(Figure 5A). This effect was seen in both
the FA and O3 1 HDMA groups,
indicating that exposure had no effect. The
direct effect of 5-HT1A receptor activation
on ASM tension induced by 100 mM
exogenous ACh was also evaluated.
Concentrations of 10 and 100 mM 8-OH-
DPAT significantly attenuated ACh-
induced tension in both the FA and O3 1
HDMA groups. There was no between-
group difference in the response, indicating
that exposure had no effect on 5-HT1A

receptor activation (Figure 5B).

Direct Effect of 5-HT on ASM Tension
The addition of 10 mM 5-HT produced
a small, but consistent, increase in ASM
tension in the FA and O3 1 HDMA
groups. In the FA group, tension increased
from 0.992 6 0.007 g to 1.204 6 0.229 g
(P = 0.037). This increase was just over 6%
of the maximal response to ACh. In the
O3 1 HDMA group, 10 mM 5-HT caused
a tension increase amounting to 12.75% of
the maximal ACh response (Figure 6A).
When comparing the change in absolute
tension between the FA and O3 1 HDMA
groups, O3 1 HDMA exposure produced
a significantly greater 5-HT–induced
tension increase compared with the FA
group (0.549 6 0.146 g versus 0.211 6
0.094 g) (Figure 6B). This indicates that 5-
HT directly induces ASM contraction and
that O3 1 HDMA exposure exacerbates
this response.

Baseline ASM Response
Before 5-HT addition, frequency-response
and voltage-response curves were
performed. There was no difference in the
voltage needed to induce 50% of maximum
EFS tension (EV50) between groups (EV50,
FA = 41.6 6 2.5 V; O3 1 HDMA = 42.5 6
4.4 V; P . 0.05). There was no significant
difference in the frequency necessary to
induce 50% of maximum EFS tension
(EF50) between groups (EV50, FA = 9.6 6
2.4 Hz; O3 1 HDMA = 7.1 6 0.7 Hz;

Figure 1. Timeline of exposure protocol. FA, filtered air; HDMA, house dust mite allergen.

Table 1. Summary of Antagonists

Drug Receptor Concentration Range (mM) References

Ketanserin 5-HT2A 1, 10, 100 61, 62
Ondansetron 5-HT3 1, 10, 100 63, 64
GR 113808 5-HT4 1, 10, 100 65, 66
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P . 0.05). This indicates that without
exogenous 5-HT added to the tissue baths,
the airway rings from the O3 1 HDMA
animals and the FA animals responded
similarly to EFS.

Concluding Experiments
Tissue response to 10 mM ACh at the
conclusion of the experiment produced over
93% (1.442 g versus 1.541 g) of the tension
seen at the beginning of the protocol,
indicating adequate tissue viability
throughout the testing. Atropine and
tetrodotoxin completely attenuated EFS
response, confirming that EFS-induced
contractions were neurogenic of origin and
induced by activation of cholinergic
receptors on the ASM.

Discussion

Although persistent asthma symptoms have
been linked to environmental O3 and
allergen exposure, no study to date has
examined the persistent effect of O3 1
HDMA exposure in a model of childhood
asthma. Our previous research showed that
cyclical exposure to O3 1 HDMA from 1 to
6 months of life in allergic rhesus monkeys
results in a hyperresponsive airway and in
a 5-HT–mediated enhancement of ASM
contraction (18). With the wealth of
epidemiologic data supporting the negative
effects of early-life exposure to O3 and
allergens, it makes sense to question
whether or not the functional decrements
seen with O3 1 HDMA exposure in our

model of childhood asthma would persist if
the animals were allowed a prolonged
recovery in a FA environment (6, 42–44).
This study confirms that O3 1 HDMA
exposure induces persistent AHR and
exacerbated 5-HT–mediated ASM
contraction, even after a prolonged recovery
period, in a model of childhood asthma.

Airway Responsiveness
AHR is a functional indicator of asthma.
When comparing EC200Raw between the
O3 1 HDMA exposure and FA groups, the
exposure group required a significantly
lower dose (Figure 2). The AHR seen in the
O3 1 HDMA group closely resembles that
of our previous work using the same
exposure protocol that did not allow for
a prolonged recovery (18). This signifies
that the functional decrement induced by
O3 1 HDMA exposure seen after 5 months
of exposure persists even after 2.5 years
of recovery in a FA environment. The
persistence of AHR after a prolonged
recovery period underscores the deleterious
effects of early-life exposure to O3 1
HDMA and that such exposure not only
leads to acute pulmonary dysfunction in
allergic individuals but induces chronic
changes in airway function that remain
after a long recovery period even when the
environmental insult is no longer present.

Unlike previous studies (25, 45, 46) in
which sensitivity to HDMA was maintained
in the O3 1 HDMA group during recovery,
persistent functional alterations were found
in this study even though there was no
attempt to ensure maintained HDMA
sensitivity and the recovery period was
extended from 6 to 30 months. The impact
of this observation is even more significant
when one considers that the exposure
occurred during a period of rapid postnatal
lung development and that the detrimental
effects were still present at an age
equivalent to preadolescence in humans.
This reinforces the need to minimize
children’s exposures to air pollution and
allergens during the extended postnatal
maturation of the lungs, otherwise risking
decrements in lung function lasting into
adulthood, regardless of the presence of
environmental insults.

5-HT Concentration-Response
Curves
Not only did the pulmonary functional
decrements induced by O3 1 HDMA

exposure persist after the prolonged
recovery period, but the 5-HT–mediated
exacerbation of ASM contraction did
as well (Figure 3). The persistence of
a 5-HT mechanism with the functional
decrements indicates that altered
serotonergic signaling at the postganglionic
nerve innervating ASM may play a role
in the persistent AHR induced by O3 1
HDMA exposure. 5-HT has been
implicated in asthma from clinical,
inflammatory, immunologic, and
neurogenic points of view (23, 28, 29,
47–52). It is well substantiated that
5-HT can enhance the neuronal release
of ACh at nerve endings (53). Mechanistically,
it is possible that an increase in the
presence of 5-HT or an up-regulation
of 5-HT receptors at the postganglionic
nerve could induce exacerbated 5-
HT–mediated ASM contraction, leading
to AHR and contributing to chronic
asthma symptoms. 5-HT has been shown
to up-regulate thromboxane release,
leading to AHR (22). Exposure to O3 1
HDMA induces the proliferation of
5-HT–containing cells in the airway
epithelia (25), and 5-HT levels are
increased in the bronchoalveolar lavage
fluid of patients with asthma after allergen
challenge (23). In mice, allergen challenge
induces 5-HT release from platelets
(23). These studies indicate a plausible
mechanism for 5-HT contributing to AHR

Figure 2. Airway responsiveness during
histamine challenge. *The O3 1 HDMA group
exhibited a significant increase in airway
responsiveness when compared with FA (P =
0.04; n = 6). EC200Raw is the effective
concentration of histamine needed to induce
a 200% increase in airway resistance. The lower
the effective concentration, the more responsive
the airway.

Figure 3. Effect of serotonin (5-HT)
concentration on airway contractility during
electric field stimulation (EFS). *Tension
production in O3 1 HDMA group is significantly
greater than in the FA group at 100 mM 5-HT. †In
the O3 1 HDMA group, tension production at
each 5-HT concentration was greater than the
control response. Control response is defined as
the amount of tension produced via EFS before
addition of 5-HT. There was no within-group
effect seen in the FA group (P . 0.05; n = 6).
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and offer possible sources of 5-HT in the
asthmatic airway.

Antagonist Concentration-
Response Curves
To identify the specific 5-HT subtype
receptors involved in the 5-HT response in
the O3 1 HDMA group, 5-HT
concentration response curves where
conducted in the presence of 5-HT2A,
5-HT3, and 5-HT4 subtype receptor
antagonists. These receptors were targeted
due to previous experiments run by this
group and an extensive review of literature
(18, 27, 49, 54, 55). Separate incubation
with 5-HT2A, 5-HT3, and 5-HT4 subtype
receptor antagonists significantly

attenuated the ASM contractile response
to 5-HT, indicating that these receptors
play a prominent role in the O3 1
HDMA–induced enhancement of ASM
contraction.

The Effect of 5-HT1A Receptor
Activation
As noted in our previous exposure study,
a counterbalancing inhibitory 5-HT effect
was seen, mediated through 5-HT1A

receptors (18). The 5-HT1A receptor
agonist 8-OH-DPAT attenuated any tissue
response to EFS and was able to diminish
the tension produced by exogenous ACh,
indicating that these receptors exert their
effect at the ASM, as opposed to inducing

postganglionic neural inhibition. This
inhibitory effect was seen in both the FA
and O3 1 HDMA groups, with exposure
having no effect. Although dysregulation of
an inhibitory pathway could lead to AHR
and enhanced ASM contraction, these
results suggest that increased ASM
contraction with 5-HT is due to up-
regulation of an excitatory pathway rather
than the down-regulation of an inhibitory
pathway.

Direct Effect of 5-HT on ASM Tension
O3 1 HDMA exposure enhanced the direct
effect of 5-HT on ASM (Figure 6). 5-HT
has been shown to directly contract ASM
in multiple species (56, 56–58). The

Figure 4. Effect of 5-HT concentration on airway contractility during EFS in the presence of 5-HT subtype receptor antagonists. (A) The 5-HT2A receptor
antagonist ketanserin (Ket). (B) The 5-HT3 receptor antagonist ondansetron (Ond). (C) The 5-HT4 receptor antagonist, GR 113808. *All concentrations
of the receptor antagonist induced a significant reduction in tension at each 5-HT concentration when compared with concentration-response curve with
5-HT alone. †Administration of 10 and 100 mM of antagonist significantly reduced tension compared with the concentration-response curve with 5-HT
alone. “% of control” response is defined as the amount of tension produced via EFS before addition of 5-HT or 5-HT receptor antagonist (P, 0.05; n = 6).
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enhancement of 5-HT’s ability to contract
ASM is consistent with recent research
identifying that a similar exposure protocol
in rhesus monkeys induces an up-
regulation of 5-HT receptor expression
on ASM (59).

Although a functional study of this
nature using EFS on whole excised airway
tissue allows insight into the role of 5-HT in
ASM function and AHR in a model of
childhood allergic asthma, the limitations of
such an experimental preparation must be
acknowledged. Pharmacologic identification
of receptor subtypes is common practice,

but one must be careful when drawing
conclusions. We attempted to use the most
selective antagonists available, but, due to
the variance of published receptor affinities,
quantitative rank-order comparison of the
contributions of each receptor subtype could
not be established. Therefore, it was deemed
imprudent to make assumptions regarding
the relative contribution of each identified
5-HT receptor subtype (2–4) that was
shown to be involved in the serotonergic
enhancement of ASM contraction in
the exposed animals. Current
immunohistochemical studies are

underway to identify which receptor
subtypes are present at the ganglia and
terminal axon of cholinergic nerves in
FA and exposed monkeys.

This study focused on a conducting
airway site located in the middle to lower
trachea. Previous research shows that
vascular remodeling in HDMA-exposed
airways is generation specific (60). It is
possible that O3 1 HDMA exposure may
have differential effects along segments
of the tracheobronchial tree. Studies
evaluating ASM function at alternate
airway generations could assess whether

Figure 5. (A) Effect of the 5-HT1A agonist 8-OH-DPAT on airway contractility during EFS. *EFS-induced tension is significantly less than within-group
EFS control contraction before agonist addition. “% of control response” is defined as the amount of tension produced via EFS before addition of 5-HT
or 5-HT receptor agonist. There was no difference in response between groups. (B) Direct effect of 8-OH-DPAT on airway smooth muscle (ASM)
precontracted with 100 mM ACh. *ASM tension is significantly less than within-group control after 10 minutes of incubation with agonist. †Tension at
100 mM 5-HT is significantly less than within-group tension at 10 mM 5-HT. There was no difference in ASM tension between groups (P . 0.05; n = 6).

Figure 6. Direct effect of 5-HT on ASM tension. (A) *Addition of 10 mM 5-HT induced a significant increase in ASM compared with the within-group
baseline tension. PRE 5-HT, tissue at baseline tension of 1.0 g before addition of 5-HT; POST 5-HT, tissue tension after addition of 10 mM 5-HT. (B)
†5-HT–induced tension increase was significantly greater in the O3 1 HDMA group than in the FA group (P , 0.05; n = 6).
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exposure effects are widespread and
consistent throughout conducting airways.
Also, studies examining the intensity and
longevity of the persistence of AHR and
enhanced ASM contraction at different
time points of exposure and recovery could
help identify a critical window during
postnatal lung development in which the
airway is most susceptible to environmental
toxicant damage.

This study did not use strategies to
differentiate between responses due to
HDMA-associated immune responses or
reactive oxygen species formation via O3

exposure. Previous research has shown
a synergistic effect of O3 1 HDMA
exposure, with O3 amplifying the allergic,
structural, and neural remodeling effects of
HDMA sensitization and inhalation (10, 14,
25). Also, previous work has shown that
immediately after 6 months of exposure
to HDMA, O3, or O3 1 HDMA, similar
5-HT–induced increases in neurally
mediated ASM contractions were seen in all
the groups (18). The common factor in all
of these exposures is inflammation, whether

it was induced via an HDMA-driven
immune response or reactive oxygen
species production via O3 exposure. This
experimental design did not allow us to
differentiate between immune versus
oxidant-induced inflammation, but this is
a viable avenue for future research.

Further evaluation linking histological
and structural changes to alterations in
airway function and 5-HT handling will
bridge a critical gap in our proposed model.
Future research could also evaluate the
effectiveness of 5-HT receptor antagonists at
reversing AHR in whole animal studies. This
study focused on the persistence of the
combined effect of O3 1 HDMA exposure
on AHR and 5-HT enhancement of ASM
contraction and did not investigate the
effect of exposure to each environmental
insult separately, so the individual
contributions of O3 or HDMA to
persistence cannot be addressed.

In conclusion, this study verifies for the
first time that combined exposure to two
recognized environmental contributors to
asthma, O3 and HDMA, induce prolonged

decrements in lung function and lead to
a 5-HT–mediated exacerbation of ASM
contraction in a model of childhood
asthma. These hallmarks of asthma—AHR
and enhanced ASM contraction—persisted
even after exposure to O3 1 HDMA had
been discontinued for 2.5 years. This study
also identified three 5-HT subtype receptors
that contribute to the enhanced ASM
contractile response (5-HT2A, 5-HT3, and
5-HT4). These findings substantiate the
need to minimize exposure of young
individuals to known environmental
contributors to asthma during critical
periods of lung maturation because
damage inflicted during these times
can contribute to prolonged asthma
symptoms. The identification of
a persistent 5-HT–mediated enhanced
ASM contraction may identify novel
therapeutic targets for pharmacological
intervention in the treatment of childhood
asthma. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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